Cross, Roy
A handbook of petroleum, asphalt and natural gas

6716

A HANDBOOK

of

PETROLEUM ASPHALT

and
 NATURAL GAS

Methods of Analysis, Specifications, Properties, Refining Processes, Statistics, Tables and Bibliography

$$
\begin{gathered}
\text { by } \\
\text { ROY CROSS }
\end{gathered}
$$

Member of American Chemical Society, American Society for Testing Materials, American Association for Advancement of Science, American Society for Municipal Improvements, Kansas City Engineers Club

Published as
BULLETIN NO. 16

$=$
KANSAS CITY TESTING LABORATORY KANSAS CITY, MO.

Digitized by therthaternet Archive in 2009 with fanding from University of Toronto

Preface to Bulletin No. 16.

This handbook includes the following new matter, as well as addition to and revision of:

Universal gauging tables for horizontal cylindrical tanks.
Gauging tables for the bumped ends of horizontal cylindrical tanks.

Methods for the determination of the capacity of oil pipe lines.
Detail cost on the refining and cracking of oil.
The laws and taxes governing the sale and transportation of refined petroleum.

The detailed description of the decomposition of petroleum hydrocarbons in the presence of aluminum chloride.

The most recent specifications for the quality of petroleum products as used by the trade.

Standard method of drilling oil wells.
Detailed and explicit methods of analysis of all types of petroleum products giving preference to accepted or standardized methods.

New developments in the decomposition of heavy hydrocarbons for the production of gasoline.

Formulae for the calculation of the total gasoline obtainable by any means from crude oil of different gravities and bases.

The properties of crude oils from all of the important fields.
New matter on the uses, properties and value of fuel oil.
Specific gravity and Baume' gravity correction tables for very light petroleum oils and for very heavy petroleum oils.

Baume' gravity and Specific gravity equivalents for oils heavier than water, but on the lighter than water scale.

The combustion of gasoline and the products of combustion of internal combustion engines.

The properties of gasoline made by present methods of decomposition.

The properties of average gasoline as now sold on the market.
The vapor volumes of petroleum distillates and different temperatures and of different gravities.

Processes and U. S. patents issued to 1922.
The statistics of the production, transportation and refining of petroleum up to 1922.

Preface to Bulletin No. 15.

The purpose of this publication is to set forth in concise form for the petroleum producer, seller, refiner, and technologist, scientific information and statistics on the production, properties, handling, refining and methods of valuation of petroleum and related products.

All matter formerly published in Bulletin No. 14 has been revised and included in this publication. In addition there has been added fifty-five new illustrations, complete temperature-Baume' correction tables, extensive tank gauging tables, refinery engineering formulae, complete specifications for petroleum products, much additional data on oil cracking, geology, lubricants and asphalt, a complete set of methods of analysis of petroleum, asphalt and natural gas and a fairly complete bibliography.

The sources of original information have been from the research, commercial and engineering departments of the Kansas City Testing Laboratory and from the bibliography published at the end of the book.

November 1, 1919,
Kansas City, Missouri.

TABLE OF CONTENTS.

(General outline only. See index for detailed subject matter.)

1. Economics of Petroleum ..2-112

Uses, statistics, geographical distribution, geology, production, prices, depletion of wells, drilling methods.
2. Transportation, Storage and Jauging113-183

Pipe lines, storage losses, tank specifications, fire regulations, tank cars, loading, storage tanks, gauging, measurements.
3. Properties of Crude Petroleum...184-191

General and chemical constitution, distillation properties, physical properties. Special commercial petroleums.
4. Refining of Petroleun, Including Cracking..........................192-246

Refinery practice. Refinery designs. Cost of refining. Chemical nature of cracking. Properties of gasoline and naphtha made by various processes of decomposition. Aluminum chloride process. Classification of oil cracking processes. Benton process. Dewar \& Redwood process. Burton process. Cross process. Cracking and refinery engineering. Calculation of cracking yields and refinery profits.
5. Properties of Refined Petroleum...247-310

Gasoline. Benzol. Kerosene. Gas oil. Distillate oil. Straw oil. Lubricating oil. Grease. Paraffin wax. Transformer oils. Petroleum. Miscellaneous refined oils. Complete detailed specifications. State laws.
6. Fuel Oil
311-347

Chemical and physical properties. Advantages over other
fuels. Comparison with other fuels. Sampling. Relative costs.
Specifications. Combustion.
7. Oil Shale, Shale Oil and Coal Naphtha..................................348-366
Occurrence, properties, distillation products, by-product coal distillation plants, gas manufacturing.
8. Asphalt 367-392
Refining oil for road building and paving purposes. Prop-erties of asphaltic and bituminous materials. Various types ofasphalt pavements with their properties and specifications. Spe-cifications for brick filler. Asphalt for water-proofing. Road oils.
9. Natural Gas 393-424Occurrence of natural gas. Production. Prices. Composi-tion. Manufacture. Gasoline by absorption method. Capacityof absorption towers. Manufacture of carbon black. Propertiesand production of helium. Explosions of natural gas. Measur-ing the capacity of gas wells. Capacities of gas pipe lines.
10. Methods of Analysis of Petroleum, Asphalt, Natural Gas..425-519 Standardized and commercial methods.
11. Tables 520-561
Gravity correction tables, temperature correction tables. Mensuration conversion tables.
12. Bibliography 562-595
Publications and Patents.
13: Index 595-622

PETROLEUM-GENERAL DESCRIPTION OF USES.

The word petroleum has its derivation from the Latin "petra," rock, and "oleum," oil. Synonymous terms are mineral oil, rock oil, crude oil and crude naphtha. In the widest sense, the word embraces the whole of the hydrocarbons, gases, liquids and solids occurring in nature. In a commercial or practical sense, the word applies to natural liquid hydrocarbons, and the term asphalt applies to the solid forms, such as asphaltum, albertite, elaterite, gilsonite, ozokerite, glance pitch and hatchettite.

The occurrence of petroleum has been recorded from the earliest times and has been spoken of as oil springs, burning water and the like. The first probable exploitation of petroleum in the way of distillation was by Jas. Young, an Englishman. in 1850. Petroleum was obtained by well drilling first in 1858 by E. L. Drake. The depth of this well was 70 feet and the yield of oil was 25 barrels per day.

The original use of petroleun was in the preparation of illuminating oil to replace coal oil. After the production of illuminating oil from petroleum, it was soon shown that the heavy petroleum oil had far superior lubricating properties to vegetable and animal fats and oils so that at the present time, practically all lubricating oils are obtained from petroleum.

The development of the gasoline engine is due principally to the need of a commercial outlet for gasoline. Gasoline was originally used for lighting purposes and domestic stoves. It is now the most valuable and important product of petroleum, being approached in value only by that of lubricating oil. There are $10,000,000$ gasoline automobiles in the United States at this time.

The following outlines some of the main uses of petroleum. products:

Gasoline and Naphtha-Gas lighting, laboratory solvents. cleansing, gasoline stoves, automobiles, extraction of seed oils, metal polishes, gasoline engines, paint vehicles, asphalt paint and road binder solvent, refrigerant.

Kerosene and Illuminating Oils--Lamps, distillate engines, signal lights, gas washing and absorbents, portable stoves.

Gas Oil-Pintsch gas, Blaugas, town gas, straw oil, heating, cracking, anti-corrosives.

Heary Distillates-Lubricants, spindle oil, auto oil, machine oil, engine oil, cylinder oil, greases, vaseline, wax, medicinal oil, waterproofing for fabrics, candles, soap filler, paints, polishes.

Liquid Residua-Steam fuel, heating, concrete waterproofing. road and macadam oils, dust prevention, cracking, cylinder oil.

Semi-solid Residua-Asphalt pavement, waterproofing, brick filler, roofing, rubber filler or substitute.

Crude Oils-Diesel engines, dust prevention, waterproofing, steam fuel.

The following statistics show the extent of the petroleum industry at this time:

PETROLEUM IN 1919, 1920 AND 1921.

CRUDE OIL BALANCE SHEET. (U. S.)

	1919	1920	1921
Stocks on hand Jan	117,204,000	123,344,000	133,690,000
Crude oil produced during year	377,719,000	443,402,000	472,439,000
Crude oil imported...	52,822,000	106,175,000	125,307,000
	547,745,000	672,921,000	731,436,000
Stocks on hand December 31st.	123,344,000	133,690,000	197,089,000
Crude oil consumed during year	418,477,000	531,186,000	525,407,000
Crude oil exported.	5,924,000	8,045,000	8,940,000
	547,745,000	672,921,000	731,436,000

PRODUCTION BY STATES IN UNITED STATES.

	1919	1920	1921
Oklahoma	87,000,000	105,725,700	115,680,000
California	101,564,000	105,668,000	114,900,000
Texas	85,900,000	96,000,000	105,200,000
Kansas	30,000,000	38,501,000	35,750,000
Louisiana	14,853,000	35,649,000	25,835,000
Wyoming	13,000,000	17,071,000	19,550,000
Kentucky	9,346,700	8,680,000	8,975,000
Illinois	10,165,000	10,772,000	10,000,000
Pennsylvania	7,500,000	7,454,000	7,425,000
West Virginia.	7,900,000	8,173,000	7,990,000
Ohio.	7,300,000	7,412,000	7,275,000
Indiana	9000,00	932,000	1,155,000
New York.	890,000	906,000	970,000
Colorado.	120,000	110,000	109,000
Arkansas	0,000	0,000	9,850,000
Montana	297,300	348,700	1,775,000
Total	377,719,000	443,400,700	472,439,000

PRODUCTION BY DISTRICTS IN UNITED STATES.

Mid Continent
California
Central and North Texas
Gulf Coast
Appalachian
North Louisiana
Illinois
Lima-Indiana
Rocky Mountain
Total \qquad 377,919,000
115,897,000
67,419,000
20,568,000
29,232,000
13,575,000
12,436,000
3,444,000
13,584,000

443,402,700
258,885,000 105,668,000 114,709,000 70,952,000 26,801,000 30,511,000 33,896,000 10,772,000 3,059,000 17,517,000

Incl. Midco. 34,160,000 30,574,000 Incl. Midco. 10,935,000
2,411,000
20,765,000
472,439,000

WORLD'S PRODCCTION OF PETROLELM.

	1919	1920	1921
United States	3TT,919,000	443,402,700	472,439,000
Mexico	87,359,000	163,039,000	191,418,000
Russia	34,284,000	34,284,090*	34,284,000*
Dutch East Indies	15,780,000	15,780,000*	16,000,000*
India	8,453,000	8,453,000*	8,500,000*
Roumania	6,353,000	7,200,000	7,500,000*
Galicia.	6,255,000	6,255,000*	6,000,000*
Trinidad	2,780,000	2,780,000*	$3,000,000$ *
Peru.	2,561,000	2,561,000*	3,600,000
Japan.	2,120,000	2,120,000*	2,000,000*
Germany .	1,000,000	1,000,000*	$500,000^{*}$
Argentina, Egypt, Persia, Canada, Italy, etc.	14,028,000	14,028,000*	17,000,000
Total *Estimated	558,892,000	700,902,700	762,241,000

	1919	1920	1921
Total crude oil consumed (all purposes)	418,477,000 bbl.	531,186,000	525,407,000
Crude oil refined	361,520,000 bbl.	433,915,000	443,363,000
Gasoline produced	94,210,000 bbl.	116,250,000	120,939,000
Kerosene produced	อЈ, 740,000 bbl.	55,240,000	46,300,000
Lubricating oils	20,160,000 bbl.	$24,900,000$	20,900,000
Gas oil, fuel oils, distillates, road oils, flux oils.	181,540,000 bbl.	246,500,000	230,100,000
Crude oil used for fuel	56,957,000 bbl.	97,271,000	82,044,000
Wax	46T,235,000 lb.	541,404,000	433,887,000
Coke	603,460 ton	576,613	604,465
Asphalt	901,885 ton	1,290,614	1,214,536
Losses (cracking, etc.	15,000,000 bbl.	18,742,939	11,280,000

FIELD OPERATIONS.

Wells drilled during the
year.
28,512
7,833
$72.54{ }^{\circ} \mathrm{C}$
239,650
4.41 hbl.
4.60 bbl .

4: 63

Geographical Distribution of Petroleum.

(U. S. Geological Survey.)

United States-The oil pools of the United States are grouped in certain major areas or fields which originally were delimited according to their geographical position alone. As the fields have been extended areally, the geographic boundaries of some of them have become in places less distinct and the grouping has been determined more and more by commercial usage which in turn is in part determined by the quality of the oils.

The Appalachian field embraces all the oil pools that lie east of Central Ohio and north of Alabama, including those of New York, Pennsylvania, West Virginia, Eastern Ohio, Kentucky and Tennessee. Most of the strata that yield oil in this field are sandstones and conglomerates of Devonian and Carboniferous age. The typical oils are of paraffin base, are free from asphalt and objectionable sulphur, and yield by ordinary methods of refining, large percentages of gasoline and illuminating oil. They range in color from black to light amber, but most of them are of some shade of green. In gravity they range from 25° to 53° Baume' and average about $43^{\circ} \mathrm{Be}^{\prime}$.

The Lima-Indiana field embraces all the pools in Northwestern Ohio and most of those in Indiana. The oil-bearing beds in this field belong to the Ordovician, Silurian and Carboniferous systems, but the most productive are lenses of porous dolomitic rock in the "Trenton" limestone, a member of the Ordovician system and the oldest known oil-bearing rock in the United States. The oil obtained from the Carboniferous rocks in Southwestern Indiana properly belongs to the Illinois field, next to be considered, for the formations lie in the same structural basin and the two fields are continuous. The oil in the pre-Carboniferous rocks of the Lima-Indiana field is of lower grade than that from the pre-Carboniferous rocks of some parts of the Appalachian field and contains sulphur compounds that must be removed by special treatment. In color the oils obtained in this field range from green to brown and their average gravity is probably about 39° Baume', although some of them are much heavier.

The principal productive area in the Illinois field is in the southeastern part of the state, along the LaSalle anticlinal axis, but there are also small scattered pools in Central and Western Illinois. Most of the oil is obtained from beds of sandstone in the Pemnsylvania and Mississippian series of the Carboniferous system. The oils in the northern part of the field are heavy, have an asphaltic base and carry sulphur. The oils in the southern part of the field are of betier grade. In gravity the oils range from 27° to 37° Baume'.

The Mid-Continent field includes the oil-producing area in Kansas, Oklahoma, Northern and Central Texas and Northern Louisiana. Most of the oil produced in Kansas, Oklahoma and Northern Texas is obtained from beds of sandstone in formations of the Pennsylvania series (upper Carboniferous). The oil produced in Southern Oklahoma is obtained mainly from several pools in beds of sandstone of the Pennsylvania series, though some oil is found in the "Red Beds" of the Permian series (latest Carboniferous).

P"is 1-Mar of l!ae I'niter states Showins Refineris. Production Fiolds and Jain Trunk Pipe Lines of Petroleum.

The oil found in Northern Louisiana and Central Texas is obtained from sandstones or other porous rocks of the Cretaceous and Tertiary systems. In the Mid-Continent field the oil has accumulated in anticlines, domes and terraces throughout an extensive region where the strata have a general westerly dip. The oil grades in appearance and gravity from the thick, black oil of some of the Louisiana fields, which have a gravity of 21° Baume', to the almost colorless product of the so-called "gascline well" near Cushing, Okla.. which has a gravity that is reported to be above 55° Baume'. However, the average oil from the Mid-Continent field is light green and has a gravity of about 35° Baume'.

The Gulf Coast field includes that part of the Gulf Coastal Plain of Texas and Louisiana in which petroleum is associated with masses of rock salt and gypsum in domes. The age of the oil bearing strata ranges from Cretaceous to Quarternary, and the reservoir rock is generally either sandstone or porous dolomitic limestone. The field includes a great number of small, scattered pools, few of them more than three miles in diameter, which produce oil having an asphaltic base. The productivity of some of the wells is enormous but the production of most of the pools soon reaches a maximum and then steadily declines. The value of some of the oil is impaired by its high content of sulphur, which may be as much as 2.3 per cent. The gravity ranges from 15° to 30° Baume', and averages about 22° Be^{\prime}. Most of the oil is dark brown to black but some of it is green. There is no apparent relation between color, gravity and content of sulphur.

The Rocky Mountain field embraces all areas that produce petroleum in Colorado, Wyoming and Montana as well as some areas of prospective production in Utah and New Mexico. The petroleum now obtained in this field is derived from strata of Pennsylvanian, Permian, Triassic and Cretaceous age. Most of the oils from Paleozoic and Mesozoic strata are dark and heavy with gravities averaging about 23° Baume', although some of them have a gravity as low as 11° Baume'. The Cretaceous oils are remarkably light in color and their gravity ranges from 25° to 50° Baume'. The average gravity for the Rocky Mountain field is about 32° Baume'.

The California oil fields may be roughly divided into two geographic groups, one occupying two sides of San Joaquin Valley and commonly known as the Valley fields, and the other occupying a large area along the coast and commonly known as the Coastal fields. All the Valley fields, except one, lie on the west side of San Joaquin Valley and the oil in most of them is obtained from porous Tertiary sandstones that have been folded into anticlines and synclines. The conditions in the Coastal fields are in many respects similar to those in the Valley fields, but the structure is much more varied. A very small part of the oil produced in California is obtained from Cretaceous formations. The oils range in color from black to honey-yellow and in gravity from 9.9° to 54° Baume'. Heavy dark oils that contain little sulphur predominate. A fair average gravity is about $21^{\circ} \mathrm{Be}^{\prime}$.

Fig. : Map Showing Producing Sreas and Pipe Lines for Petroleum in the Mid Continent and Gulf Fields.

Nearly all the petroleum produced in the United States is carried to refineries through buried pipes. Some pipe lines extend from the fields in the interior of the country to the Gulf of Mexico and to the Atlantic seaboard for the distances of many hundreds of miles. The trunk pipe lines, that is, the main lines only, not the subsidiary branches, now cover more than 34,000 miles.

Canada-Indications of petroleum have been observed in many parts of Canada but no fields have been much exploited, except those in Ontario, where the oil occurs in sandstones and limestones of Silurian and Devonian age. Most of the Ontario oil has a paraffin base but contains large quantities of sulphur. The Calgary field in Alberta has produced only a small quantity of oil, but a field in Northern Alberta, where the famous Tar sands of early Cretaceous age occur, gives promise of commercial production

Mexico-The petroleum fields of Mexico that now seem to promise the greatest production are in the eastern part of the country in the Gulf Coastal Plain. There are two fields which are distinct geographically and geologically and which produce different kinds of petroleum.

The Tampico-Tuxpan field lies in the northern part of the State of Vera Cruz and the southern part of the State of Tamaulipas. In this field indications of oil are found in a region about 250 miles long and 40 miles wide. The Tehuantepec field forms a similar long, narrow area which extends along the Gulf coast from southern Vera Cruz about 200 miles eastward to the eastern limit of Tabasco.

Most of the oil in both fields is found in porous limestone of Cretaceous or Eocene age but some oil in the Tehvantepec field is found in later Tertiary rocks. In the Tampico-Tuxpan field, the oil accumulates either in anticlines or at underground dams formed by intrusive necks and dikes of igneous rocks by which the oil pushed up or along by salt water has been impounded. In the Tehuantepec field, the oil is associated with rock salt and gypsum in domes similar to the domes in the Coastal Plain of Texas and Louisiana. The oil generally becomes lighter from north to south through the two fields but nearly all of it should be classed as heavy. Its gravity ranges from about 10° to 43° Baume'.

Pronounced indications of oil are reported in western Mexico but no development has yet been undertaken there.

Mexico, which has furnished the largest gushers known, is now the second largest producer of petroleum in the world.

Central America-Oil seepages are reported to occur in Honduras, Costa Rica, Guatemala and Panama but no oil has been developed commercially in any of these countries.

South America-Much interest centers in the known and prospective oil fields in South America along the Caribbean Sea. Exudations and seepages of oil and deposits of asphalt are scattered through northern Columbia and Venezuela from the Gulf of Darien to the delta of the Orinoco. The oil is found in porous sandstones that afford good reservoirs at horizons extending through several thousand feet of Cretaceous and Tertiary beds which are both folded and faulted. Most of the oil has a heavy asphaltic base but some is lighter. The production has been small but development has been carried far enough to prove that both Colombia and Venezuela contain large reserves of petroleum.

Fig. 3-Map Showing Producing Areas and Pipe Lines for Petroleum in Eastern Urited States.

Peru is the only country on the Pacific coast of South America that has contributed much petroleum to the world's supply. Most of the indications of oil are found in the broad promontory at the north end of Peru in a belt that extends along the coast from the frontier of Ecuador southward for about 200 miles to a point south of Payta. The oil occurs at several horizons throughout 2,000 feet or more of folded and faulted beds of rather soft sandstone and shale of early Tertiary age. It escapes at numevous seeps and asphaltic outcrops and is an excellent refining oil.

Bolivia, Ecuador, Argentina and Chile appear to contain considerable reserves of petroleum which however are apparently not comparable in extent to those of Colombia and Venezuela. Argentina has produced oil since 1908 from the Comodoro Rivadavia field on the coast of Patagonia where oil occurs in nearly horizontal supposedly Cretaceous beds which are covered by Tertiary beds. The oil is heavy, black and of asphaltic base. Indications of oil have been found at intervals in a belt that extends along the eastern flanks of the Andes from Tierra del Fuego northward to Colombia. The whole belt has produced only a few thousand tons of oil but probably contains extensive reserves.

So far as known, Brazil contains no marked surface indications of petroleum but it does contain extensive deposits of oil shale.

West Indies-Traces of petroleum are scattered through Crba, Porto Rico, Santo Domingo, Trinidad and Barbados but Trinidad is the only one of these islands that has produced it in any considerable quantity. The oil fields of Trinidad are mainly in its southern part and the oil is obtained from lenses of sandstone of Tertiary age which are closely folded into a series of parallel synclines and anticlines. Trinidad gives promise of large future production.

Africa-In Africa, oil has so far been produced only in Egypt but Algeria contains encouraging prospects. The Egyptian oil fields lie along the Gulf of Suez. The oil occurs in sandstone and in cavernous dolomitic limestone associated with thick beds of gypsum in Miocene (Tertiary) age, accompanied in some places by thick beds of salt. The underlying Nubian (Cretaceous) sandstone also contains some oil. This field occupies a strategic position on a great trade route and shows promise of considerable production.

Little work has been done in Algeria but some oil has been obtained in the Cheliff River area, in the Oran province, northwestern Algeria. The oil bearing formation is probably upper Miocene, and its structure is complex.

Promising indications of petroleum have been reported in the Tertiary coastal plain formations in Angola and Ashanti (Gold Coast) and oil seepages are reported to extend over a large area in Western Madagascar.

figs. 4-Map Showing Protucing Areas and Pipe Lines for Petroleum in Wroming.

Europe - Most of the known deposits of oil in Europe are in its southeastern part. More than half of the oil thus far produced in Europe has been taken from an area of not more than 50 square miles in the Apsheron Peninsula, in southeastern Russia, on the Caspian Sea, and a large part of the remainder from Rumania and Galicia. A second reserve in the Caspian region, discovered only recently but undoubtedly very large, lies in the Ural-Caspian area along the north shore of the Caspian Sea east of the Volga. Most of this area appears to lie east of the political boundary between Asia and Europe but there is no insurmountable barrier to transportation to Europe and the oil there will doubtless become of great commercial value throughout southeastern Europe.

Probably more than 90 percent of the oil fornd in Europe occurs in highly disturbed formations of comparatively recent age (Tertiary) similar to those of California. Beds of this type offer great difficulties to the driller and the average wells make a high initial yield and decline rapidly in production.

The oil fields of Russia are scattered among ten provinces but the field in the province of Baku has been by far the most productive. This relatively smali area has produced more than a quarter of the world's total output of oil and though it reached a peak in its production in 1901 when Russia furnished more than half the world's output, its decline has been a decline in world rank rather than in actual quantity of oil produced. Other highly productive oil fields of Russia are the Grosny, Maikop, Ural-Caspian and Tcheleken fields. A number of smaller fields also have excellent prospects. The Grosny field lies on a sharp anticline of Miocene beds about 500 miles northwest of Baku, north of the Caucasus range. The Maikop field is in the province of Kuban, on the north flank of the Caucasus, northeast of the Black Sea. The cther fields of Russia have not produced large quantities of oil but extensive showings of oil are found in the UralCaspian and Tcheleken f^{\prime} elds of Asiatic Russia, the former covering a large area in the Emba-Uralsk region and around the north end of the Caspian Sea and the latter lying on the east shore of the Caspian Sea in the Trans-Caspian province.

The oil fields of both Galicia and Rumania le in a narrow belt that follows the northern, eastern and southern foothills of the Carpathian Mountains. Throughout this belt, oil is obtained from highly disturbed Tertiary strata. In Rumania most of the oil is obtained from Miocene and Pliocene beds but part of it is obtained from Eocene and Oligocene and possibly from Cretaceous beds. In Galicia, the largest output is obtained from Eocene beds The geology of this zone is very complex, the rocks being sharply folded and in some places faulted by overthrust In 1913 the chief producing area in Rumania was the Prahova, although Buzeu and Bacau also prodvced some oil. Promising indications of oil are also found in Bukowina, Hungary which also lies 'in this productive belt.

The oil produced in Germany is obtained largely from fields in Hanover where it occurs in domes associated with rock salt similar to those of the Gulf Coastal Plain of the United States. The rocks that contain it are chiefly limestones and sandstones of Upper Jurassic age. In Batavia some oil has been obtained from sandstone of Eocene age.

Fig. J- Mall Showing Producing Arnas and Pipe Lines for Petroleum in California,

In Alsace some oil has been produced from sandstone of Eocene and Oligocene age but the general structure is not such as would ordinarily be considered favorable.

In Italy oil occurs in the Emilia district, on the northeast slope of the Appenines in disturbed lenticular sandstones of Eocene and Miocene age. A small output of petroleum has been obtained in two other districts in Italy-in the Pescari Valley, central Italy and in the Liri Valley, midway between Naples and Rome.

Indications of petroleum are found at many places in Europe other than those described including England. In fact, practically every country in Europe contains some indications of petroleum. Intelligent and efficient search is likely to lead to further discoveries of oil in many areas, including some where the presence of oil is not now suspected.

Asia--The principal producing oil fields of Asia are in India, Persia and Japan. Almost the entire output of India is produced in Burma. The main oil field is in rocks of Miocene age along the Irrawaddy in Upper Burma about midway between Rangoon and Mandalay. In Assam and in Punjab, coal bearing rocks of Eocene age have yielded oil in small quantities.

The chief oil fields in Japan are on the island of Nippon, about 200 miles northwest of Tokyo but indications of petroleum have been found and a small output has been obtained at many other places in Japan as well as in Taiwan (Formosa). Most of the oil is obtained from loosely cemented sandstones that lie on the flanks of well developed closely folded anticlines.

In Persia and Mesopotamia, along the northeast side of the Persian Gulf and the Tigris-Euphrates basin, lies what is probably destined to be one of the large oil fields of the world. The indications of oil extend over an immense area and oil has been produced in small quantities here for many years. The only notable development however is in Persia, 150 miles north of the head of the Persian Gulf, where about $1,000,000$ metric tons of crude oil was produced in 1918.

Other promising oil fields lie in the Ural-Caspian and TransCaspian regions of Russia, in Ferghana (eastern Turkestan) in Chinca and on Sakhalin Island. In the Ferghana basin, oil occurs in Lower Tertiary beds in rather closely folded anticlines on the borders of the mountains around the basin. In China, small quantities of oil have been obtained for centuries in the Shensi province, from which large future production may be expected. The oil occurs in Carboniferous strata and the general geologic conditions are similar to those in the Appalachian and Mid-Continent fields of the United States. Indications of oil have been noted in other provinces. In Sakhalin (Saghalien) Island the oil is similar to that in Japan in quality and mode of occurrence. Oil springs and asphalt deposits are scattered through a belt that extends along the greater part of the eastern coast of the Russian part of the island. Pronounced indications of oil are also reported from Palestine and from the vicinity of Lake Baikal in Siberia.

Oceanica and the Malay Archipelago-The islands of Borneo, Sumatra and Java in the Dutch East Indies contain oil fields that may be of immense value and other neighboring islands show promising signs of productive fields. The oil is found in anticlinal folds that have sharply dipping flanks. Most of the oil bearing rocks are as-

loig. 6-Map Showing Producing Areas and Pipe Lines for Petroleum in Mexico.
sociated with beds of coal and lignite of Miocene age. In Borneo, oils of both asphaltic and paraffin base are found at different depths in the same fields. Sumatra produces some oils that are very rich in the lighter products and make a much larger output than the other two islands of the group.

Indications of oil are found at many places in the Philippine Islands and small quantities have been obtained there for nearly 50 years.

PRODUCTION AND PROSPECTS.

The most notable contributions to the world's supply of petroleum in the next decade will undoubtedly be made by the South American countries that border the Caribbean Sea, by Mexico and by Mesopotamia and Persia.

The annual production of petroleum in Mexico increased from $21,000,000$ barrels in 1913 to nearly $64,000,000$ barrels in 1918 and the future production in that country will certainly be very great. Exploratory work done in Venezuela and Colombia shows that both those countries may become large contributors to the world's supply of petroleum within the next decade. In Trinidad, the production of petroleum which for several years has exceeded $1,500,000$ barrels a year, has been doubled within the last four years and with the improved facilities for ocean transportation of oil that are now available will no doubt be further increased. Argentine and Bolivia give promise of considerable production. Cuba is not likely to become a large producer of petroleum and our present knowledge of the petroleum resources of the Central American countries is not sufficient to warrant the assertion that oil fields of great output will be developed in them.

The production of petroleum in the United States has probably nearly reached its maximum and is likely to decline slowly but rather steadily, though this country may remain the leading oil producer of the world for many years.

The oil fields of Persia produced about $7,000,000$ barrels of oil in 1918 and the wells already drilled are reported to be capable of producing five times that quantity. The capabilities of the field are practically undetermined. Difficulties of transportation have greatly retarded development but an enormous increase in production in the near future is predicted.

The petroleum resources of Russia are believed to be sufficient to make that country the leading producer of petroleum in the Eastern Hemisphere for a long time. The oil fields of both Rumania and Galicia are believed to have passed their maximum yield and valuable new fields will probably not be found in those countries.

The next decade will doubtless witness a steady increase in the production of oil in India and Persia and the development of one or more highly productive oil fields in Mesopotamia and possibly in Asia Minor, Ferghana and China. The same period will doubtless witness a material increase in the prodiction of petroleum in Taiwan (Formosa) and Sakhalin and in the Dutch East Indies and possibly also the opening of new fields in Papua (New Guinea). The oil resources of the Philippine Islands are untested. Africa, including Madagascar, will doubtless receive attention from oil operators during the next ten years, but the nutput there during that period will probably not be large enough to affect the world's petroleum market seriously.

Geologic Occurrence of Petroleum and Natural Cas.

Petroleum and natural gas are formed by the decomposition of organic matter of any kind under the proper conditions. Usually it originates from plant and animal remains that have been deposited with sediment in the sea. They are never found in commercial quantities in igneous rocks, in the metamorphosed rocks or in fresh water sediments not associated with marine formations. They generally originate in shales, marls or limestones. Petroleum cannot ordinarily accumulate in shales in large quantities because of their close texture. Sands or sandstone are distributed more or less through all shales and these sands as well as porous limestones offer adequate reservoirs for the accumulation of petroleum and gas.

Fig. T-Diagram Showing Accumulation of Oil ant Gas in Antichines
The following summarizes the geological conditions under which petroleum and natural gas occur:

1. They occur in sedimentary rocks of all geologic ages from Silurian upward. The most productive areas are the Paleozoic in North America and the Miocene in Russia.
2. There is no relation of the occurrence of petroleum to volcanic or igneous action. There seems to be some relation particularly in the Carboniferous and the Mississippian to the deposits of coal.
3. The most productive areas for oil in great quantity are where the strata are comparatively undisturbed. Oil frequently occurs where the strata are highly contorted and disturbed but in less abundance and gas is usually absent.
4. In comparatively undisturbed as well as in disturbed areas a folded or domed structure often favors the accumulation of oil and gas in the domes or anticlines.
5. Important requisites for a productive oil or gas field are an impervious cap rock or cover and a porous reservoir.
6. Salt water almost universally accompanies oil and gas in the same sand.

In the United States, oil is found most abundantly in the Tertiary rocks in California and the Gulf Coast, in upper Cretaceous in Wyoming, in Carboniferous locally known as the Cherokee Shales in the Mid-Continent field, in the sub-Carboniferous or Mississippian and the Upper Devonian in the Appalachian field and in Illinois, and in the Ordovician in Ohio and Indiana. The oils from the Tertiary are heary and of low grade, those from the Cretaceous, Carboniferous and sub-Carboniferous are light, high grade oils. The Mississippian in the Mid-Continent field is not believed to carry any oil and very little is known of it or deeper strata in this territory. It is assumed that the deeper strata have vanished west of the Ozark uplift.

Fig. S—Diagram Showing Accumulation of Oil in Synclines.
The accumulation of petroleum occurs in a pervious reservoir which ustally consists of a loose sand though it may be a coarse gravel or a disrupted shale or limestone. It is merely necessary that the rock should contain a considerable amount of voids. The ordinary sand will have from 15 to 35 percent of voids and the amount of oil contained and the ease with which it is discharged into a well vary greatly. As a general rule, one gallon of oil may be obtained from one cubic foot of oil sand. It is probable that never over 75 percent of the oil surrounding a well is discharged into it even with the lighter oils, and the percent abstracted is much lower with the heavier and more riscous oils. Porous sand and gravel and heavy gas pressure are conducive to rapid expulsion of oil. Fine sand and low pressure give stearlily producing wells of great longevity. The ultimate production of a well would be determined by the depth and extent of the sand, the physical character of the sand, the physical character of the oil and the pressure. Water is a very important element in the actual production of a well. It frequently causes very extensive subterranean oil movements destroying one productive structure and making new productive structures.

In nearly every oil sand there occur together, gas, oil and salt water. Salt water is believed to be sea water that filled the pores of the sand when it was deposited in the sea. Water from oil bearing strata differs from sea water in concentration and composition but changes might readily have taken place in the original sea water while stored in the rocks. In rare instances, oil bearing strata are associated with fresh water and in some cases there is no water at all. When these three substances are associated, the gas of course occupies the rppermost portion of the sand, the salt water the bottom, and the oil, the intermediate portion. The sand commonly lies at the same angle or dip as the stratum in which it is contained. This fact offers the basis to a great extent, of the engineer's work in locating the favorable formations. The strata that contain petro-

F'ig. 9-Diagram Showing Accumulation of Oil in Faults.
leum are folded. In some places, the folding is very slight, in others the strata are thrown into sharp folds, the beds dipping as much as 30°. In consolidated rocks such as shales, limestones and sandstone which have been intensely deformed by faulting and sharp folding, oil is generally not found in large amounts. In loose or uncompressed rocks such as clays, marls, sands and conglomerates, large accumulations are known in areas of highly complicated structures. The tops of the folds or the anticlines offer the cover for the principal accumulation of petroleum, particularly when water and gas are associated. The bottom of the folds or the synclines may carry oil when water is absent in the porous stratum. Many oil fields are on monoclines on which are developed secondary folds such as anticlines, domes and terraces. In rocks that are highly saturated with oil and in beds that dip very gently, the oil gathers in domes if these exist, but accumulation takes place also in gentle folds and in some structures such as terraces which are not completely closed. Surface topography as a general rule, baars no relation to the probable location of oil or the strike of the formation beneath the surface.

Asphalt exposures or oil springs are not usually good indications of oil in immediate vicinities. If oil is found in the immediate vicinity, it is likely to be of heavy asphaltic character.

Asphalt exposures, however, are of value in that they indicate that oil of good quality may be found where this same geologic structure is capped by an impervious cover. The depth at which oil is found of course varies greatly. Oil of good quality is usually found at sufficient depth that the lighter fractions have not evaporated, though some good wells are found at depths as shallow as 250 feet. The best wells of the Mid-Continent field vary from 1,000 to 3,500 feet in depth. The deepest well in the United States is the Lake Well in Harrison County, West Virginia, and is 7,579 feet deep. Wells at Ranger, Texas, are about 3,400 feet deep. A well in Banner County, Nebraska, is 5,600 feet deep. Named in order of depth the

Fig. 10-Diagram showing Theortical Salt Domes of Texas Coast District. (Oil and Gas Journal.)
three deepest wells in the world are the Lake; the Goff, West Virginia, 7,386 feet and a well at Czuchow, Germany, 7,348 feet. In comparison with these great depths, other depths reached by wells or mines sunk in the crust of the earth are rather insignificant. The deepest mine in the world is Shaft No. 3 of the Tamarack mine in Houghton County, Michigan, which has reached a depth of 5,200 feet.

The temperature at which oil issues from the ground depends more upon the depth than upon the latitude of the country in which the well is located. The temperature of the oil issuing from wells near the Arctic circle is very much the same as that from the Temperate zone. Gradients as to increase of temperature from the surface of the earth inward have very little bearing upon the average yearly air temperature. As a general rule, the temperature increases at the rate of about $1^{\circ} \mathrm{F}$. for each fifty feet in depth. On this basis, the temperature of the earth at a depth of ten miles would be $1000^{\circ} \mathrm{F}$. This is a far greater temperature than necessary for the decomposition of organic matter or heavy petroleums into light hydrocarbons. The record of a well in West Virginia as to increase in temperature is as follows:

100 feet	556°
1,000 feet	63.5°
2,000 feet	749°
3,000 feet	87.6°
5,000 feet	114.2°
6,000 feet	132.1°
7,000 feet	153.2°
7,310 feet	158.3°

Correlation of Oil Samos im Oklahoma Frytz Aurin Ot／anomo Geologic simey		Sance		$\stackrel{\rightharpoonup}{n}$	10	4	先	－	¢	$$	L	n	$$	W	N	4	\％
		TOWNSHID		$\begin{aligned} & 4 \\ & 0 \\ & 4 \\ & m \end{aligned}$	ぶ	ぶ	¢	ᄎ	ぶ	$\stackrel{\grave{2}}{2}$	$$	ふ	$\begin{aligned} & \frac{2}{8} \\ & \frac{8}{4} \end{aligned}$	k	\％	ざ	※
		Nameor shanode Horizor	Carearman w If OthE Nameo Samos	$\begin{aligned} & \text { K } \\ & 0 \\ & \text { 太 } \\ & \text { 太 } \end{aligned}$		$\begin{array}{\|c\|} \hline 5 \\ \hline \\ \hline \\ 5 \\ 0 \\ 5 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & 5 \\ & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \lambda \\ & \frac{1}{k} \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & \pm \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \vdots \\ & \vdots \\ & \text { ¿ } \end{aligned}$	2480555
NAM	ME OF FORMATIOM																
cerben	TRINITY	Sond															
$\begin{aligned} & k \\ & Q \\ & \text { Q } \\ & \text { Q } \end{aligned}$	Redbeas	Sand		4^{725}	${ }^{250}$												
		Sond		8^{788}													
		Sand		.820													
		Sand		． 828													
		Sand		5080													
		Sand		1073													
	$?$	Sond		2000													
	UnOESCPIBED SERES ABOL HREMGTONLS	Sand				－ $\begin{array}{r}350 \\ 0.25\end{array}$											
		Sand				－435											
	GARRISONFORMM．	Blockelll				＋2／35											
	Eskridge Shale	Sond				8220											
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 5 \\ & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		Sand															
	ELGIM SAMOSTONE	Newkirk	Elgin			1480											
	BUXTON FORMATION	Sand				1350											
		Sand				1800											
		Ponco				1080											
	$\begin{aligned} & \text { RAMOMA } \\ & \text { FORMATION } \end{aligned}$	Musselman					825	500 100									
		Sond										－					
		Sond					5280	1000									
	CURL FORM＇N	Layton				2655	－1880	＋400	1275								
	NOWATA SHALE	Wayside	Moones			$278{ }^{2}$	1730	1450									
	OOLOGAH FORI＇X	Big Lime				2980	1800		74885	615	450		750 7				
	Labette	Cleveland				3050	1920	1800									
	SHALES	Peru				3300					－ 90		－				
	FT SCOTT $\angle 5$.	OSmego	hweeter Sucnson			\％ 360	2250	2075	7672	815	685	${ }^{700}$	950				
		Squirrel					735 120 10		7700				1000				
		Skimer					2620	2220			． 880		1030				
	\％	Red Fore											［1400				
	21	Memire							1880								
		Sand	brempars														
		Bartessulle					． 270	24.38	1940	$\begin{aligned} & 785 \\ & 1850 \\ & \hline 15 \end{aligned}$	1083	［100．	15908		1530	700	
		Sond											（1050				
		Tucker	Meorows				2830	2700		1960	1760	1230	－1750	225		1700	
		Sond	Second											\＄20		1239	
	vis	Dufcher	colbert										7850		1880		
	＜${ }^{1}$	Sand															
	रोड	Mounds												1800	2120		
	¢ ¢	Sopulpa	Morris										${ }^{23} 25$	－159		${ }^{1625}$	
	200	Smenrof												1750		6739	
	－${ }^{\text {¢ }}$－	Leidecker													2310		
	＋40	Sand															
	＊	Mrskogee	Boynton												－	7860	－1959
		Miscelane－ ous Sond＇s	Sond nor Correlaled														
	MORROW FORMATION	Sand															
		Sond															
		Sand															
Mus．	PITKIM LS				Top	igure	Depts	orso	noso	arom	iguor	Thice	ness，	ofsom	dinf	ar	

Fig．11－Correlation Chart of Oil Sands of Oklahoma．

The rate of temperatu:e increase varies continuo: sly from $1^{\circ} \mathrm{F}$. in 97.5 feet at the surface to $1^{\circ} \mathrm{F}$. in 46.5 feet over the interval 6,000 to 7,000 feet. In the Texas and Oklahoma fields, temperatures at a given depth differ widely from those found in Pennsylvania and West Virginia. The temperature of the oil in two wells near Mannington, West Va., is $83.2^{\circ} \mathrm{F}$. at a depth of about 2,900 feet. In the Ranger field, Texas, the temperature of the oil at 3,400 feet is estimated from measurements at higher levels, to be about $135^{\circ} \mathrm{F}$. The average rate of temperature increase at the surface for thirteen wells in Texas and Oklahoma is about $1^{\circ} \mathrm{F}$. in 51 feet as compared with 1° in 91.5 feet for twelve wells in Pennsylvania and West Virginia. Mexican oil issues at an average temperature of $165^{\circ} \mathrm{F}$.
Salient Features of Certain Oil Fields (Emmons)
Surface Indications
of Oil or
Its Associates
Oil and gas seeps
Grahamite.
Gas seens at Find-
lay, Ohio.
Oil seeps rare or
Asphalt to East where oil bearing strata crop out.
Rare.
Mounds,acidwaters salt water, sul-
 Gas seeps, etc.
Some tar springs And gas seeps.
Asphalt, brea, tar Asphalt, brea, tar
springs, etc. springs, etc.
Oil seeps, asphalt-
um. Principal
Structural
Features
 Anticlines, domes, halfdomes and terraces
Arched monocline
Domes Domes Domes are typical; fracture zone at Florence,
Colo., fault traps...... Anticlines, domes plunging anticlines, fault zones fault traps, overturns,
monoclines. Anticlines, domes and dissnoәusit deau saวurq.m rocks
Cover
Shale. .
Shale. .
Shale. .
Shale. .
Shale. .
Clay or
shale.

RESERVOIR ROCKS	
Age	Kind

Pennsylvanian or
Devonian.....
Sandstone and
Limestone....
Porous dolomite. Pennsylvanian Sandstone and porous oolitic Limestone. Sandstone Limestone.

- әиотsриеs
Porous dolomitic limestone and sandstone
Sandstone
Sandstone
Sandstone
离孚

General Description of Oil Well Drilling.

The usual method of dr.lling for oil and gas is the cable system which depenus upon the weight of a heavy string of tools hung on a stretched rope ur cable. Kupe is more satisfactory than cable for shallow depths. Wire cable is satisfactory below 1,000 feet. The general equipment requised excepting the power plant is shown in tigure 12. A timber or metal derrick 60 to 100 feet high with a 16 to 20 foot base is mounted on heavy frame. On one side of the derrick, the rig is erected. The main drive is transmitted from the engine to a large wooden wheel known as the band wheel which is from 8 to 12 feet in diameter. The shaft of the band wheel at one end is attached to a crank that transmits through a connecting rod an oscillating movement to an overhead beam known as the walking beam. Holes are bored in the crank enabling the pin to be placed at varying distances from the center thus allowing an adjustment of the stroke of the walking beam to suit requirements. From the end of the walking beam just overlying the mouth of the well is hung a temper screw and rope clamp to which the cable is attached when the string of tools is lowered into the well. The string of tools is suspended from a cable which is coiled on the bull wheel shaft on the side of the derrick opposite the rig. The bull wheel is driven by a chain or crossed drive-ropes leading from a tug wheel on the side of the band wheel to a corresponding bull wheel about 8 feet in diameter on the end of the bull wheel shaft. Immediately behind the band wheel is the sand reel at the inner side of which is fitted a small pulley that can be drawn against the face of the revolving band wheel by levers thus causing its rapid rotation. The sand line is coiled on the sand reel and carries the bailer. The bailer is allowed to descend by gravity, its speed being regulated by forcing the lever backwards and bringing the friction pulley in contact with a stationary wood block brake. Many combinations of the bailer operation are used to facilitate and speed the operation of drilling.

The calf wheel is used for manipulating the line from the casing block. It is mounted on a shaft on the rig side of the framing and is operated by ropes from a groove or sprocket pulley on the end of the band wheel shaft.

Three pulleys are placed at the summit of the derrick over which pass respectively, the drilling cable, the sand line and the casing line. For cable drilling, a reversing engine is necessary, enabling the operator by means of a rope or rod to have full control from the derrick.

The string of tools is shown in fig. 14 and is about 40 feet long. It consists of a bit or drill, auger stem, jars, sinker and rope socket. When attached to the rope, they are suspended in the derrick and lowered into the well, a band brake on one end of the bull wheel shaft being used to retard the speed of descent. When the tools are at or near the bottom of the well, the temper screw is attached to the cable, the weight then being thrown onto the walking beam and the bull wheel shaft is released. Some slack cable is uncoiled from the

J゙ig. 12 -Standard Derrick and Equipment for Drilling Deep Oil Wrells.
bull wheel shaft. The engine is started and the speed is adjusted to correspond with the vibration of the drill rope. The temper screw is fed out a little at a time, lowering the bit until a blow is delivered on the bottom of the well. The tools are then fed out with the temper screw so that the bit strikes an effective blow. When the bit shows signs of not falling freely, the slack rope is taken up and the temper screw is relieved of weight, the connecting rod or pitman is disconnected from the crank pin, the beam is allowed to take an inclined position and the tools are raised to the surface. The bailer is now lowered and the well is cleaned out, sufficient water having previously been run into the well to make a thin mud such as can be taken up by the bailer.

In starting a well, it is not possible to operate with the cumbersome string of tools so that the first 100 to 150 feet are drilled by the method known as spudding. The method of spudding is shown in fig. 15. A special spudding shoe is connected by a rope to the roller, gripping the drilling cable near the bull wheel shaft. The figure clearly shows how the vertical motion is imparted to the tools.

The proper operation of a drill is a matter of expert manipulation as considerable judgment is needed to secure the full capacity of a cable drilling outfit. The speed of drilling must be carefully regulated to accord with the depth of the well, the nature of the formation and the amount of fluid in the well. Ordinarily, it is not necessary to rotate the rope to get equal distribution of the attrition of the bit as the changeable strains in the cable and beam take care of this.

Fig. 13-Individual Simplex Pumping Jack for Connection with Central I'owers.

Jig. 14-Standard String of Cable Drilling Tools.

Rotary or Flush Drilling.

Rotary flush drills are successfully used on a large scale particularly in Texas and Louisiana. They have the advantage that very rapid speed may be made, as much as 3,100 feet of hole being drilled in a month. Rotary drilling is not advisable nor is it used in wild cat or prospect work when it is necessary to know the character of all formations that are passed through. It is very easy for a rotary drill to pass through a rich formation without any evidence of its presence. This type of drilling then is used where the producing horizon is very definitely known and the well is drilled to within a hundred feet or so of this producing horizon and is finished with the ordinary cable tools.

The main feature of all rotary flush drills is a rotating table driven by a gear erected on one side of the derrick. The rotary motion is transferred by means of pipe to a special bit. A typical bit is a double cone shaped affair with numerous wedge shaped knives which turn with the bit. The circulating fluid for removing the cuttings is set over the bit under a pressure of about 150 to 200 pounds per square inch by pumps with a capacity of about 200 gallons per minute. For rotary drilling, derricks of 120 feet in height are desirable for convenience in withdrawing the drill pipe.

Percussion Drilling.

A system of drilling by percussion is used to a very limited extent. Very rapid blows at ths rate of 100 to 150 per minute are struck by using an eccentric instead of a walking beam.

Fishing Operations.

The most difficult features in drilling wells are those occasioned by the losing of tools, collapsing of casing or locking of tools by caving. These accidents occasion weeks and even months of delay and sometimes cause abandonment of the wells. To recover these tools or to proceed with the drilling it is necessary to clear the hole by means of special fishing tools. Almost every conceivable type of tool has been produced for this service.

Under-Reaming.

On the end of the casing is applied a special steel ring known as the casing shoe to protect the end of the casing from bending or distortion. The casing shoe is larger than the drill and when it is necessary to lower the casing, the hole below the casing shoe must be enlarged. This is done by under-reaming. Under-reamers are instruments provided with side cutters which are opened automatically when the under-reamers are lowered below the casing. Some underreamers provide for both drilling and under-reaming at the same time. Under-reamers are used whenever it is desirable to enlarge the hole at any point.

Portable Rigs.

When wells of slight depth are to be drilled, light portable rigs are used to avoid the expense of dismantling and re-erecting a derrick and rig at each well site. For depths less than 1,000 feet, portable rigs are satisfactory but are not ordinarily used for depths greater than 1,000 feet.

Fig. 15-Adaptation of Drilling Rig for Spurlding In.

Shooting of Wells.

When an oil well is drilled in, in some sections, the formation is so hard that it is necessary to break it up so that the oil will flow. In Oklahoma and Kansas, wells are nearly always shot soon after they are drilled in. The shooting consists in setting off a large charge of explosive placed in the well at the level of the oil sand. The explosive used is usually nitro-glycerin. The explosive is set in the bore of the well corresponding as nearly as possible to the producing sand. The amount of the charge depends upon the thickness of the producing sand. A sand 40 feet thick is usually given a charge of about 150 quarts of nitro-glycerin. The nitro-glycerin is introduced into the well by means of a shell containing 20 quarts. Whenever it is thought that the shooting may have a bad effect and cause a well to be flooded out with salt water or whenever any other damage may possibly result, shooting is eliminated. Hard compact sands are universally benefited by shooting. Some sands will not produce at all until they are shot. The action is to form cracks and crevices in the oil bearing formation for a considerable distance from the hole.

Sand Screens or Strainers.

In pumping the oil from the well, the fine sand cuts away the valves and plungers so rapidly that the plungers must be frequently removed and replaced. The sand also clogs up the well so that the flow of oil is considerably diminished. To overcome these difficulties, sand screens are set in the bottom of the well to keep out the sand. These screens consist of perforated brass cylinders wound with heavy copper or brass wirc. The screens are commonly used in the Gulf Coast territory but not in the Mid-Continent field. The screens themselves frequently clog up so that the production can often be much increased by removing them.

Bailers.

Bailers are long cylindrical vessels fitted on the bottom with a lift valve and of sufficient flexibility that they can be lowered to the bottom of a well. When the lift valve strikes the bottom of the well, fluid is admitted until the bailer is full. It is then withdrawn and emptied at the top of the well. Bailers are used particularly for cleaning out the well and sometimes for obtaining the actual oil production.

Swabbing.

The swab consists of a steel bar with an internal ball valve made to closely fit the casing by means of rubber rings. The swabbing consists in very rapidly pulling the swab upwards in the casing so that it suddenly creates diminished pressure with much agitation of the fluid contents of the well. It momentarily removes the pressure head due to the height of the fluid in the well as well as producing a partial vacuum beneath the swab. This causes the oil or gas in the formation to flow out readily and cleans off the wax, mud or other adherent matter on the exposed face of the sand. When there is a high pressure against the oil sand or a tendency for the well to wax up, swabbing is extensively used for obtaining the actual oil production of the well.

Fig. 16-Effect of Spacing Oil Wells on Their Ultimate Production.

Pumping of Oil.

The production of oil when there is no natural flow or the natural flow has subsided is obtained by the use of ordinary lifting pumps. The kind of pumps used are practically the same as those used for deep pumping of water. Some pumps are double acting in which each stroke lifts oil and balances against a counter stroke. In this case, a sucker rod operates on a piston which is inside of a pipe which operates the other piston. Oil is produced to a limited extent by the use of compressed air in the same manner that it is used for water. A very common method of lifting oil is by means of free air. In this case a double pipe is introduced into the oil in the bottom of the well, the inner pipe being perforated at the bottom with holes, the air being introduced in the annular space between the two pipes. The air in entering the inside pipe greatly diminishes the length of the column of oil so that it is raised in the well. This causes it to overflow at the top of the well. This operates on the same principle as the original gas found in the crude oil which is a frequent cause of the gushing of the oil.

Pump Equipment.

The pumping equipment above ground on a lease consists of a power plant which operates a horizontal spindle eccentrically attached to several wheels. On the periphery of each wheel are attached several pins on which are connected the wire jerker lines. These jerker lines radiate to the various wells where they are attached to the pumping jack which operates the pump.

Casinghead.

When a well is first brought in, the walking beam of the drilling rig is generally used for operating the pump. The casinghead is attached to the top of the casing and from it are side outlets, one at the top for conducting the gas and the other at the bottom for conducting the oil. The gas is usually conducted to the gas engine for the source of power and the oil is carried in pipes to the flow tank where the water is separated by a swing pipe on the outside. Oil flows from the top of the flow tank to another tank in which the gauging is done when the pipe line takes the oil. The flow of the oil into the flow tank usually does not correspond exactly with the stroke of the plunger. It is discharged at times more or less violently, usually with a slow expulsion of foam followed by rapid ejection of oil or oil and gas. This lack of uniformity of flow is caused chiefly by the expansion of the gas that is dissolved in the oil when the pressure is lowered as the oil reaches the surface.

Well Drilling by Motor.

A test by Empire Gas \& Fuel Co. at 2,500 feet in Kansas showed the following costs:

	Boiler and Engine	Motor	Loss	Saving
Initial cost	\$1,862.00	\$1,625.00		\$237.00
Cost of installation (including belts, etc.)	432.50	*768.03	\$335.53	
Estimated depreciation per well.	290.00	32.50		257.50
Cost of water	480.00	60.00		420.00
Estimated cost of fuel oil at $\$ 36$ per day	2,160.00			
Cost of electric power		574.93		
Saving in cost of power				1,585.07
Saving in installing pumping motor in same house on same foundation				186.16
Saving in oil production during change to pump				1,305.00
Total			\$335.00	,990.73

Net estimated saving of electric drilling over steam............. . . $\$ 3,955.20$

* The installation charge of the motor drilling equipment was high due to the fact that the equipment was new and changes had to be made which involved labor charges that will not be necessary in future outfits.
It also includes the cost of building the motor house.

Table Showing Price Per Foot for Drilling Oil and Gas Wells in Various Fields.
 (Oklahoma Geological Survey)

Feb. 22, 1916 June 23, 1917 July 27, 1917
To shallow sand in Bartlesville, Nowata and Tulsa districts...................
To Layton sand in Cushing field
To Bartlesville sand in Cushing feld, northwest.
To Bartlesville sand in Cushing field, southesat
$\$ 0.80$ to $\$ 1.00 \$ 1.00$ to $\$ 1.25 \quad \$ 1.25$

To shallow sand in Newkirk, Ponca City and Garber fields
To deeper sands in Newkirk and Ponca City fields (over 2,500 feet) 2.50
3.50
3.50-4.00

Healdton field
1.40-1.50 1.75
1.75

Electra and Burkburnett to 1200 feet depth
2.00

Electra and Burkburnett to 2100 feet depth
8.50

NOTE.-Price for rotary
$\$ 1.35 \quad \$ 1.50$
$\$ 2.50$
1.50
2.00
3.50
2.00
2.25
$\$ 3.50-\$ 4.00$

Electra and Burkburnett to more than $2,500 \mathrm{ft}$. depth.
5.00

The regular charge for work by the day Feb. 22, 1917, was $\$ 50.00$ fo r a double shift. This held good thorughout the above fields. All wildcat propositions some distance (50 miles or more) from any of the above mentioned fields demanded $\$ 3.00$ per foot. Contracts were let in 19181919, in Pine Island, La., at $\$ 11,000$ to $\$ 15,000$ per well.
from a recent issue of the Oil and Gas Journal, and shows advances in drilling and operating costs for oil wells and gas wells.

OKLAHOMA DRILLING AND OPERATING COSTS.
$12,000.00$
$11,826.0113,308.5413,558.0216,642.0521,447.37 \quad 24,576.20 \quad 31,500.00$

The Exploitation of Petroleum by Means of Pits and Galleries.

M. Couran, ex-engineer of the Corps des Mines and a former member of the French General Committee on Petroleum, calls attention to the exploitation of petroleum by means of pits and galleries in Technique des Petroles, according to L'Echo des Mines et de la Metallurgie. "The complete exploitation of a deposit," says M. Couran, "should logically pass through three distinct phases, whose abilities of extraction should correspond approximately to the following proportions of the total volume of oil originally contained by the sandstone: Drilling, 10% to 20%; drainage by means of subterranean galleries, 30% to 40%, and mining of the sandstones and washing with boiling water, 30% to 40%."

These figures given by Paul de Chambrier, director general of the Pechelbronn mines are not absolute and may vary from one deposit to another, but at least they give an idea of the order of magnitude of the phenomena involved. It is certainly true that the quantity of oil discharged through a boring that taps a petroleum deposit represents but a small fraction of the crude oil saturating it.

De Chambrier's method, which is described in a small publication, offers the following advantages over ordinary well drilling: It permits the recovery of two or three times as much oil as that already secured from the same deposit by means of boring; it increases to the above extent the value of a concession by permitting one to at least estimate with sufficient accuracy, if not to calculate precisely, the oil reserves still held in the ground; from the economic point of view it offers possibilities in countries where oil deposits appear to have reached the limits of their yield; from the scientific standpoint, it is destined to solve a multitude of problems that have remained obscure heretofore involving the origin of crude oil, its migration, its concentration in the lower strata, the behavior of the natural gas associated with the petroleum and the stratification of the porus rocks.

It is probably that the first mining of petroleum was by means of pits, even before the drilling of wells.

Oil Gushers.

In many cases wells drilled for oil penetrate porous reservoirs that yield at the outset large amounts of oil that flows strongly from the well and is often thrown under high pressure above the derrick floor. Such wells are termed "gushers" in the United States and "spouters" or "fountains" in Europe and Asia. This type of flow is characteristic of oil under high gas pressure. In some cases, the oil is forced out by hydrostatic pressure in the same manner as the flow of artesian water. The gas pressure may force the oil out without being itself discharged to any material extent. Usually both oil and gas come out, the oil being sprayed high into the air with the escape of the gas. When the formation is loosened, sand, gravel and mud are frequently thrown out. Some wells in Mexico throw out gravel particles weighing as much as 3 to 4 pounds. This blowing out of the sand often causes the well to "drill itself in." This is commonly attended by increased production in the early stages of the well's life.

Gushers usually very rapidly diminish in volume due to the decrease in gas pressure and to the rapid exhaustion of the sand in the immediate vicinity of the oil. Some wells that yield only gas at first, gradually are converted into oil wells. For this reason, the wasteful practice of allowing the gas to escape in order to get the oil is still carried out where it has not been made illegal.

The largest oil well in the world is one which came in near Tampico, Mexico, February 10, 1916. It was known as Cerro Azul No. 4 and was drilled by the Pan-American Petroleum and Transport Co. The first twenty-four hours of oil flow yielded 260,000 barrels. In two years it is said to have produced approximately 60 million barcels of oil or about one-half of the total production of oil from Mexico. Its initial pressure was 1,035 pounds per square inch and the gravity of the oil is 21° Baume' and without sediment or water. This well continued to produce at its usual rate during 1918.

In September, 1910, the Mexican Petroleum Co. brought in a well in the Juan Casiano field. It showed on a test that it was capable of giving a daily yield of something more than 100,000 barrels of oil. Pipeline connections were made, however, but not until more than $1,500,000$ barrels of the inflammable product had been burned in order to prevent it from flowing into Lake Tamaihua, thus endangering boats and other property. . It was throttled down to a flow of 20,000 barrels a day and for more than eight years it has been giving this yield. It has yielded, up to the present time, more than $65,-$ 000,000 barrels of crude petroleum. Accomparying this oil is a gas pressure of 265 pounds per square inch. This natural gas is piped to the top of a hill a mile and a half distant from the well and is there burned in twelve great flares day and night, lighting up the country for a long way around. On account of the lack of transportation facilities, it has not been allowed to flow at its maximum, being restrained to one million barrels per month at this time.

In June, 1921, the Mexican Petroleum Co. again brought in a well twenty-five miles south of the celebrated Cerro Azul No. 4 well above described, which started flowing at the rate of 15,000 barrels
per day and quickly increased to 75,000 or 100,000 barrels per day with a pressure of 500 pounds per square inch.

A number of wells in the Saboontchy-Romany oil fields of Russia have given daily yields of from 75,000 to 120,000 barrels for weeks and as much as $7,500,000$ barrels in a year.

Another Mexican well at Dos Bocas, south of Tampico, yielded approximately five million barrels within two months.

A well in the Jennings pool in Louisiana, in 1904, is reputed to be the largest gusher in the United States and gave 1,275,000 barrels of oil in four months.

Wells in Texas, California and Rumania have yielded 60,000 to 75,000 barrels of oil per day on the initial production.

The largest wells in the Mid-Continent field were in Butler County, Kansas, where, in the Towanda pool, gushers as large as 25,000 barrels per day, initial production, were struck in 1917.

Wells in the Homer, Louisiana, and El Dorado, Arkansas, district started in originally from 10,000 to 30,000 barrels per day but quickly dropped to 2,000 barrels or less of high grade oil.

PRODUCTION AND DECLINE OF INDIVIDUAL OIL WELLS.

Mid-Continent Field, 1916.
Total number of wells drilled during year 11,240
Total number of dry holes (including gas) 1,970
Total number with gas 475
Total production at end of year 9,270
Average production of this year's producing wells drilled during the year $26 \mathrm{bbls}$.
Average production of this year's producing wells, including dry holes 21.5 bbls.
Per cent producing at end of year 92.5%
Total number of wells drilled up to end of this year 81,150
Total number of wells drilled and producing at end of this year 43,420
Per cent of wells drilled now productive53.2%
Average production of all producing wells in field per day, in-cluding this year8 bbls.
Average production of all producing wells drilled, excluding thisyear
OIL WELLS DRILLED IN UNITED STATES IN 1917-1918.

DISTRICT	Completed		Dry	
	1917	1918	1917	1918
Pennsylvania	5,435	4,400	985	738
Lima-Indiana	800	793	140	140
Central Ohio.	582	605	139	159
Kentucky-Tennessee	1,651	2,191	411	360
Illinois .	647	396	151	108
Kansas.	3,469	4,671	547	925
Oklahoma-Arkansas .	6,717	8,381	1,334	2,116
Texas Panhandle.	1,020	,1140	262	625
North Louisiana.	472	534	110	105
Gulf Coast.	1,562	1,597	639	625
Total	22,355	24,708	4,718	5,901

OIL WELLS IN MEXICO, 1919.

Wells drilled during 1917 producing oil at end of year 70.11%
Wells drilled durign 1918 producing oil at end of year 76.12%
The total number of wells is 1,056 , as follows:
Wells located 131
Wells being driven 114
Wells in production 298
Wells not profitable 27
Wells exhausted 64
Wells not producing 422
Total 1,056

OIL WELLS IN MEXICO, 1919

The largest number of productive wells belong to the following companies:
Aguila Company (Lord Cowdray). 55
Mexican Petroleum Company of California. 33
The Corona Company . 10
Union Petroleum Company, Hispano-Americano 17
The Texas Company of Mexico . 10
Mexican Gulf Oil Company 8
Chicholes Oil Company, Lit.. . . 7
Mexican Combustible Co... . . 9
Penn. Mex. Fuel Oil Co ... 7
Freeport \& Mexican Fuel Oil Co 7
Transcontinental Petroleum Co. 12
Oil Fields of Mexico . 12

DAIL.Y PRODUCTION OF CRUDE OIL BY POOLS (JAN., 1922).

ARKANSAS-El Dorado.		$\begin{gathered} \text { Barrels } \\ 38,000 \end{gathered}$
CALIFORNIA		337,101
Coalinga	39,592	
Huntington Beach	5,397	
Kern River	21,155	
Lompoc and Santa Maria	14,663	
Los Angeles and Salt Lake.	4,065	
Lost Hills-Belridge	10,744	
McKittrick....	6,730	
Midway-Sunset, ${ }_{\text {Summerland, }}$ Watsonville. etc	138,773	
Summerland, Watsonville, etc.	213 6,249	
Whittier-Fullerton.	89,520	

ILLINOIS 30,000
INDIANA. 4,000
KANSAS . 109,4 12
$\begin{array}{ll}\text { Augusta . } & 12,968 \\ \text { Elbing. } \\ 9,965\end{array}$
El Dorado . $_{30,592}^{3,965}$
Covert-Sellers . 3,592
Florence .. 25,975
Greenwood County 4,200
Peabody
4,680
Southeastern Kansas and Miscel laneous.............. . . . 17,440
KENTUCKY
21,000
I.OUISIANA. 21,000

North Louisiana. 9993013010

DeSoto and Red River . $\quad 7,500$
Haynesville . 59,700
South Louisiana . 20,500
Edger !y. 500
Vinton and others. 3,500
Jennings
550
MONTANA
Winnett and Cat Creek..
NEW YORK

29,000

DAILY PRODUCTION OF CRUDE OIL BY POOLS (Concluded)

PRICES OF PETROLEUM AND ITS PRODUCTS

June i, 1921

Crude at Wells

The following prices are those paid by the pipe lines for crude as delivered from the wells, with a comparison for the corresponding period of 1920:

PENNSYLVANIA-OHIO-WEST VIRGINIA

Cabell, West Virginia Corning, Ohio . . . Lima. McKinney
Pennsylvania
Waterloo.
Wooster, Ohio

Per Barrel

INDIANA-ILLINOIS
Illinois
Indiana
Plymouth, Ill.
Princeton, Ind

2.02	3.77
2.13	3.63
1.15	3.63
1.77	3.77

loig. 15 -Chart Showing Principai Price Changes of Crude Oil in「wenty Years.

PRICES OF PETROLEUM AND ITS PRODUCTS (Continued)

Crude at Wells.

$\begin{array}{ccc} & \text { June 1st, } \\ \text { KENTUCKY-TENNESSEE } & 1921 & \\ & \end{array}$		
Ragland.	1.25	1.75
Somerset, light, 38 gravity and above	1.80	4.00
, 32 to 38 gravity	1.60	4.00
OKLAHOMA-KANSAS		
Healdton.	1.00	2.75
Mid-Continent.	1.50	3.50
Wlters and Beaver Creek	1.00	

WESTERN KENTUCKY

Wester Kentucky.	1.28	
LOUISIANA AND ARKANSAS		
Bull Bayou, 38 gravity and above	1.40	3.15
32 to 34.9° gravity.	1.25	3.00
35 to 37.9°.	1.30	3.05
heavy, below 32 .	25	2.00
Caddo, 38 gravity and above	1.75	3.50
35 to 37.9° gravity.	1.65	3.40
32 to 34.9° gravity	1. 60	3.35
heavy.	1.00	2.50
Crichton, light.	1.25	3.00
De Doto.............. 35 gravity and above	1.65	3.40
	0.70	
, 33 to 34.9° gravity.	0.60	
below 33° gravity	0.50	
Homer, 36 gravity and above.	1.50	3.25
. 35 to 35.9° gravity . .	1.40	3.15
32 to 34.9° gravity	1.35	3.10
below 32° gravity.		1.75
Pine Island.............		2.50

NORTH TEXAS AND NORTH CENTRAL TEXAS

gULF COAST

PRICES OF PETROLEUM AND ITS PRODUCTS (Continued)

Crude at Wells.			
		$\begin{aligned} & \text { June 1st, } \\ & 1921 \end{aligned}$	$\begin{gathered} \text { June 1st, } \\ 1920 \end{gathered}$
WYOMING			
Big Muddy		1.00	2.25
Elk Basin.		1.50	2.60
Grass Creek		1.50	2.60
Greybull....		1.50	2.85
Lance Creek		1.45	2.25
Mule Creek.		. 80	
Rock Creek.		1.10	
Salt Creek. .		1.10	2.50
Torchlight.		1.50	2.85

CALIFORNIA

San Joaquin Valley and Whittier-Fullerton Fields-

1.48
18° gravity
1.36
1.49
gravity
1.38
1.51
1.54
1.58
21° gravity
1.45
22° gravity
23° gravity
1.50
1.63
1.69
24° gravity
25° gravity
1.63
26° gravity
27° to and including 27.9° gravity
1.76
1.84
1.93
2.03
28° gravity to and including 28.9° gravity
29° gravity to and including 29.9° gravity
30° gravity to and including 30.9° gravity
31° to and including 31.9°
32° to and including $32.9^{\circ}{ }^{\circ}$
2.13
34° to and including 34.9°.
35° gravity and above.
1.71
2.33

Prices for each increase in gravity of 1 full degree above 26° gravity up to and including 34.9° gravity, 10 c per barrel additional.

Texas points	Mexican Crude	$12-14^{\circ}$	$19-21^{\circ}$
	CANADA		
Oil Springs .		\$2. 55	\$2.83

Add $521 \frac{12}{}$ c per harrel to each grade to include allowance by government to producers.

Road and Paving Materials

ROAD OILS.-Following are prices per gallon in tank cars 8,000 gallons minimum f. o. b. place named:

New York, 45\% asphalt (at terminal)	\$0.061/2	\$0.13
New York, 65% asphalt (at terminal).	06	. 13
New York, hinder (at terminal)	07	$131 / 2$
New York, flux (at terminal)	$061 / 2$	
New York, liquid asphalt (at terminal)	08	10
Chicago, 40-50 ${ }^{\text {cos asphalt }}$	06	08
Chicago, 60-70\% asphalt	$061 / 4$	081/2
Dallas, $40-50 \%$ asphalt	10	
Jallas, $60-70 \%$ asphalt		
Dallas, $75-90 \%$ asphalt	13	10
San Francisco, binder, per ton	15.00	12.25

ASPHALT.-Price per ton in packages (350-1b. bbls. or $425-1 \mathrm{lb}$. drums) and in bulk, in carload lots:		
	Package	Bulk
New York (Bayonne, N. J.)	\$28.00	\$16.00
Boston.		
Chicago.	28.50	21.00
San Francisco	21.50	15.00
Dallas	35.00	27.00
Seattle	27.50	
Denver		50 (a) 70
Minneapolis		25.93
Baltimore	40.00	
Los Angeles at factory	22.15	15.00
Montreal.....	28.00	21.00
Atlanta	33.00	
Detroit (petroleum asphalt)	24.50	20.00
Cincinnati.	37.50	31.00
Maurer, N. J. (asphalt)	27 @ 38	
Maurer, N. J. (asphaltic cement)	29 (a) 36	25 (a) 31

Fig. 19--Chart Showing Price Changes of Gasoline, Crude Oil and Fuel Oils.

PRICES OF PETROLEUM AND ITS PRODUCTS January 3, 1922
 REFINED PRODUCTS. (Tank Car Quotations at Refineries)

Gasoline and Naphtha

Fuel and Gas Oil

BAYONNE

18-20 degrees $51 / 4$
14 plus 4

NORTH TEXAS

$34-36$ gas oil.24-28 fuel, per bbl80

Fuel and Gas Oil

Neutral Oils

OKLAHOMA
100 visc., No. 2 color. $51 / 2$
200 visc., No. 3 color 14
160 visc., No. 4 color $101 / 2$
200 visc., No. 4 color $123 / 4$
200 visc., No. 5 color 12
PENNSYLVANIA
o. 3 color................ $181 / 2$
200 visc., No. 3 color $181 / 1 / 2$
180 visc., No. 3 color $14^{1 / 1 / 2}$
150 visc., No. 3 color
75 visc., No. 2 color, unfil. pale . . 4
100 visc., No. 2 color, unfil. pale . . 5
150 visc., No. $2 \frac{1}{2}$ color, unfil. pale . . 10
200 visc., No. 3 color, unfil. pale. . 18
300 visc., No. 3 color, unfil. pale . . 19
500 visc., No. 4 color, unfil. pale. . 20
750 visc., No. 4 color, unfil. pale. . 25
70 visc., No. $11 / 2$ color, filtered pale.
100 visc., No. $11 / 2$ color, filtered pale.
150 visc., No. $11 / 2$ color, filtered pale.
200 visc., No. 2 color, filtered pale.
300 visc., No. 2 color, filtered pale.
500 visc., No. $21 / 2$ color, filtered pale.
750 visc., No. $21 / 2$ color, filtered pale.
200 visc., No. $51 / 2$ color, red oil. 12
300 visc., No. $51 / 2$ color, red oil. 14
500 visc., No. 6 color, red oil. 19
Natural
WEST VIRGINIA
30 degrees, carloads.................. . . 24
29 degrees, carloads. 25
28 degrees, carloads. 26

Cylinder Stocks
 PENNSYLVANIA

600 steam refined. 10
650 steam refined . 15
600 filtered E. 15
600 filtered D......................... . . 18
OKLAHOMA
600 steam refined 4
650 steam refined
Wax
OKLAHOMA
122-124 white cr. sc. N. Y., carloads. $21 / 2$
Oxidized Asphalt
Asphalt f. o. b. N. J. refinery $\$ 23.00$
F. a. s. New Orleans in cont 23.00

PRICES OF PETROLEUM AND ITS PRODUCTS
 June 1, 1921

Petrolatums
 (Prices Per Pound in Barrels, Carloads)

Snow White	12
Lily Cream.	7
Cream Petro	
Amber.	$41 / 2$
Dark Amber	
Veterinary.	$21 / 2$

Heavy White Mineral Medicinal Oil

	Gallon	
880-885 specific gravity.	\$1. 15	
$86 \overline{-180}$ specific gravity.	1.10	
Ex. Russian crude oil, $885-890$ sp. gr., in bbls. to		\$2.00

gasoline and kerosene service station Prices

	Gasoline	Kerosene	Place	Gasoline	Kerosene
Augusta, Maine.		17 c	Little Rock, Ark.	18	8
Bartlesville, Okla	21.4	9.8	Memphis, Tenn	25	14
l3eaumont, Tex..	23	13	Miami, Fla.	28	17
Bufalo, N. Y	28	15	New Orleans, La	23.5	14
Butte, Mont.	30	15	New York City.	29	14
Calgary, Canada.	41.5	26	Oklahoma City, Okla	18	8
Montreal, Canada	38	21.5	Omaha, Neb.	22.5	111/4
Toronto, Canada.	40	23	Philadelphia, Pa	27	13
Winnjpeg, Can.	42	24	Pittsburgh, Pa	27	14
Casper, Wyo	23	14.5	Portland, Ore.	28	17.5
Chicago, III.	22	10.5	Portland, Me		15
Cincinnati, Ohio	25	14	Providence, R. I		15
Columbus, Ohio	$25^{3 / 4}$	14	St. Louis, Mo.	20.1	10.2
i) allas, Tex.	18	8	Salt Lake City, Utah	29	16.5
I)enver, Col	24	17	Seattle, Wash. . .	28	17.5
Harrisburg, I'a			Topeka, Kan.	20.4	9.8
llouston, Tex.	18	8	Tulsa, Okla.	18	8
Joplin, Mo.	18	12.3	Washington, D. C	25	11
Kansas City, Mo.	18	9.5	Wichita, Kan....	21.5	10

PRICE SCHEDULE FOR CALIFORNIA CRUDE OIL 1919

HIGHEST AND LOWEST PRICES OF CRUDE PETROLEUM OF PENNSYLVANIA GRADE, 1859-1918, PER BARREL

	HIGHEST	
Year	Month	Price
1859	September	\$20.00
1860	January..	20.00
1861	January	1.75
1862	December	2.50
1863	December.	4.00
1864	July.	14.00
1865	January.	10.00
1866	January.	5.50
1867	October	4.00
1868	July.	5.75
1869	January	7.00
1870	January	4.90
1871	June.	5.25
1872	October	4.55
1873	January	2.75
1874	February.	2.25
1875	February	$1.821 / 2$
1876	December	$4.233 / 4$
1877	January.	3.693
1878	February.	$1.871 / 2$
1879	December	$1.283 / 4$
1880	June.	$1.243 / 8$
1881	September	1.011/4
1882	November.	1.37
1883	June.	$1.243 / 4$
1884	January.	$1.15 \frac{5}{8}$
1885	October	$1.125 / 8$
1886	January.	921/4
1887	December	90^{*}
1888	March.	1.00
1889	November	$1.121 / 2$
1890	January.	$1.075 / 8$
1891	February	. $813 / 8$
1892	January..	. $6411 / 8$
1893	December	. 80
1894	December	. $953 / 4$
1895	April.	2.60
1896	January	1.50
1897	March.	. 96
1898	December	1.19
1899	December.	1.66
1900	January.	1.68
1901	January, September	1.45
1902	December. .	1.54
1903	December.	1.90
1904	January..	1.85
1905	October..	1.61
1906	April, May, June, July	1.64
1907	March to December, incl	1.78
1908	No change.	1.78
1909	January, February, March	1.78
1910	January................. .	1.43
1911	December.	1.35
1912	December.	2.00
1913	March to December, incl	2.50
1914	January to March, inclusive.	2.50
1915	December.	2.25
1916	Decermber.	2.85
1917	August 22, December 30	3.75
1918	February 8, December 31, incl	1.00

LOWEST

Month	Price
December	\$20.00
December	2.00
December	10
January.	10
January	2.00
February.	3.75
August..	4.00
December	1.35
June.	1.50
January.	1.70
December	4.25
August	2.75
January	3.25
December	$2.671 /$
November.	821
November.	621
January.	75
January.	1.471/2
June.	$1.533 / 4$
September.	. 78
June.... . .	. 621
April.	711
July	721
July	491
January.	831
June.	$511 / 4$
January.	68
August.	5931
July	54
June.	713
April.	791
December	$603 / 4$
August.	. 50
October	50
January	527
January.	781
January.	951/4
December	90
October	65
January	65
February.	1.13
November	1.05
May.	80
January, February, March	1.15
Jan., Feb., Mar., Apr., June, July.	1.50
July, December	1. 50
May.	1.27
Jan., Feb., Mch., Apr., Au Sept., Oct, Nov., Dec.	1.58
January.	1.58
No change	1.78
December.	1.43
June to Decermber, incl	1.30
January to December. .	1.30
January.	1.35
January	2.00
September to December, incl	1.45
Apill to August, incl.	1.35
January....	2.25
January 2 to 5, incl.	2.85
January 1 to February 8, inc	3.75

MID-CONTINENT CRUDE OIL MARKET

Date	Field	Price	Date	Field 190.1	Plice
Date	1902			190.4	
Dec.	Neodesha.	\$1.12	Mch. 1	South Neodesha. North Neodesha.	1.28 1.08
	1903			Bartlesville....	1.12
Jan.	South Neodesha.	1.15 1.16		Corsicana light. .	99
Apr.	South Neodesha. .	1.16	Mch. 4	South Neodesha.	1.25
Juy 1	South Neodesha.	1.16		North Neodesha	1.05
July 1	South Neodesha.	1.16		Bartlesville	1.09
	North Neodesha Bartlesville	. 96		Corsicana light	. 96
	Corsicana light	1.10	M ch. 12	South Neodesha.	1.22
	Corsicana heavy.	60		South Neodesha.	1.02
July 23	South Neodesha.	1.18		Bartlesville	1.06
	North Neodesha	98		Corsicana light..	93
	Bartlesville	96	Mch.	South Neodesha	9
	Corsicana light	1.12		North Neodesha.	99
Sep. 28	South Neodesha	1.20		Bartlesville	. 03
	North Neodesha	1.00		Corsicana light..	90
	Bartlesville	98	Apr. 8	South Neodesha.	1.16
	Corsicana light	1.14		North Neodesha	1.96
Sep. 30	South Neodesha.	1.22		Bartlesville	1.00
	North Neodesha	1.02		Corsicana light. South Neodesha.	1.87
	Bartlesville	1.00	Apr. 29	South Neodesha.	1.13
	Corsicana light. .	1.16		North Neodesha.	7
Oct. 8	South Neodesha.	1.24		Bartlesville	97
	North Neodesha.	1.04		Corsicana light. South Neodesha	1.08
	Bartlesville	1.02	June 7		1.88
	Corsicana light.	1.18		North Neodesha	. 82
Oct. 11	South Neodesha.	1.26		Bartlesville Corsicana light	. 81
	North Neodesha ${ }^{\text {Kansas Humboldt }}$	1. 06	June 17	Couth Neodesha	1.81
	Bartlesville. . .	1.04		North Neodesha.	83
	Corsicana light.	1.20		Bartlesville	87
()ct. 26	South Neodesha.	1.30		Corsicana light	78
	North Neodesha	1. 10	July 9	South Neodesha	95
	Bartlesville	1.08		North Neodesha	75
	Corsicana light.	1.26		Bartlesville	95
Nov. 20	South Neodesha	1.35		Kansas heavy.	50
	North Neodesha	1.15		Corsicana light.	73
	Bartlesville	1.13	July 13	South Neodesha.	88
	Corsicana lighe	1.29		North Neodesha	68
Iec. 2	South Neodesha	1.37		Bartlesville.	. 88
	North Neodesha	1.17		Kansas heavy	47
	Bartlesville	1.15		Corsicana light	70
	('orsicana light	1.31	Aug. 12	Corsicana light	80
I) rec. 9	South Neodesha	1.38		Corsicana heavy	. 45
	North Neodesha	1.18	Sep. 1	South Neodesha	90
	Kansas Humboldt, heavy.	. 60		North Neodesh	70
	lartlosville	1.16		Bartlesville.	90
	('orsicana light	1.32		Kansas heavy	49
	Cursicana heavy	. 60		Corsicana light	85
1).e. 29	South Neodresha	1.36		Corsicana heavy	50
	North Neodesha	1.16	Oet. 18	South Neodesha	87
	Kanmas llumboldt heavy	. 60		North Neodesha	67
	Corsimana light..	1.27		Bartlesville	87
	Corsirana llay	. 55		Kansas heavy	46
	Hartheyvill.	1.14	Dec. 16	South Neodesha	82
				North Neodesha	67
Jan. 1	South Noodersha			Bartlesville.	82
	North Nrodrsha	\$1.36		Kansas heavy. .	41
	Bartlewvills	1.16	Dec. 29	South Neod sha	80
	Kınses heravy	1. 60		Bartlesville	80
	Corsimana light	1.27		Corsicana light..	80
	Corsicana hravy	1.27		Corsicana heavy	50
Frat. 12	Seruth Airondraha	1.31		1905	
	North Niferlmalia	1.11			
	Hartle vills.	115	Jan. 1	Kansas heavy..	41
	Kanmas hravy	. 55		South Neodesha	80
	Cortieana light	102		Bartlesville.	80
	('s,ruicsas hoave.	1.10		Corsicana light..	80
				Corsicana heavy.	50

MID-CONTINENT CRUDE OIL MARKET (Continued)

Date Field Price
1905
Jan. 5 Kansas heavy. 36
South Neodesha 77
Bartlesville 77
Corsicana light 82
Jan. 11 Kansas heavy. 31
South Neodesha 72
Bartlesville 74
Corsicana heavy 45
Jan. 31 Kansas heavy 50
South Neodesha 70
Corsicana heavy 50
Mch. 25 South Neodesha 68
Apr. 12 South Neodesha 66
Apr. 18 South Neodesha 61
Apr. 25 South Neodesha 57
May 27 South Neodesha 53
Corsicana light. 81
June 17 South Neodesha 50
Sep. 12 Corsicana light 83
Corsicana heavy 50
Sep. 16 Corsicana light 85
Sep. 19 Corsicana light 87
Sep. 28 Kansas heavy. 35
South Neodesha 51
Corsicana light 89
Oct. 20 South Neodesha 52
Corsicana light 91
Nov. 11 Kansas heavy. 35
South Neodesha 52
Corsicana light 89
Corsicana heavy 501906
Jan. 1 Kansas... 52
Corsicana light 89
Corsicana heavy 50
Apr. 25 Kansas fuel 35
Corsicana light 91
Corsicana heavy 52
July 28 Kansas 50
Corsicana light 89
Corsicana heavy 50
Aug. 2 Kansas 48
Corsicana light 87
Corsicana heavy 48
Aug. 9 Kansas fuel 32
Kansas 45
Aug. 15 Kansas fuel 29
Kansas 42
Corsicana light 89
Corsicana heavy 50
Aug. 28 Kansas... ${ }_{1907}^{907}$
Jan. 1 Kansas 32° 39
Kansas heavy 26
Corsicana light 1.00
Corsicana heavy
60
60
Henrietta 60
Feb. 11 Kansas 32° 40
Kansas heavy 27
Corsicana light 1.02
Feb. 26 Corsicana heavy 65
Mch. 9 Kansas 32° 41
Kansas heavy 28
Mch. 21 Corsicana heavy 70
Dec. 1 Corsicana light 1.00
1908
Jan. 1 Kansas 42° 41
Corsicana light 1.00
Corsicana heavy 70
Date Field Price
Mch. 30 Henrietta 75
Corsicana light 85
Corsicana heavy 65
Apr. 24 Henrietta 70
Corsicana light 82
Corsicana heavy 60
June 1 Henrietta 65
Corsicana light. 75
Corsicana heavy 55
June 10 Henrietta 60
Corsicana light 72
Corsicana heavy 50 50
Jan. 1 Kansas 41
Kansas heavy 28
Corsicana light 01
Corsicana heavy 47
Henrietta 89
Mch. 13 Corsicana heavy 50
Henrietta 50
Apr. 27 Cossicana heavy 53
Henrietta 53
July 22 Kansas. 35
1910
Jan. 1 Kansas light 35
Kansas heavy 28
Mch. 17 Kansas light. 38
Kansas heavy 30
May 23 Corsicana light 60
Sep. 2 Corsicana light 58
Corsicana heavy 53
Caddo light 40
Kansas light 40
Sep. 20 Kansas heavy. 40
Nov. 14 Kansas heavy. 42
Corsicana light 55
Corsicana heavy 50
1911
Jan. 2 Kansas 44
Caddolight 44
Cadds heavy 44
Corsicana light 55
Corsicana heavy 50
Mch. 14 Caddo light 50
May 2 Kansas 46
Caddo light 55
Caddo heavy 50
June 14 Kansas 48
Caddo light 60
Aug. 9 Caddo heavy 40
Sep. 15 Kansas. 50
Caddo light. 62
1912
Jan. 1 Kansas-Oklahoma 53
Caddo light 62
Caddo heavy 40
Corsicana light 55
Corsicana heavy 50
Jan. 15 Kansas -Oklahoma 55
Jan. 18 Caddo light 65
Jan. 18 Caddo light 65
Jan. 26 Kansas-Oklahoma 57
Jan. 27 Caddo light 69

MID-CONTINENT CRUDE OIL MARKET (Continued)

Date Field
1913
Price
Aug. 21 Caddo 38° up 1.05
1912
Dに? Fisld p-icz
Mch. 20 Corsicana light 65
Corsicana heavy 55
Apr. 9 Kansas-Oklahoma 63
Apr. 16 Kansas -Oklahoma 64 64
Electra-Henrietta 65
May 7 Kansas-Oklahoma 66
May 17 Kansas-Oklahoma 68
May 20 Caddo light 77 77
Corsicana light 70
Electra-Henrietta. 70 70
June 17 Kansas-Oklahoma 70
Caddo light 80
Electra-Henrietta 70
June 17 Kansas-Oklahoma 70
Caddo light 80
Caddo heavy 60
Corsicana light. 75
Electra-Henri etta 75
Sep. 10 Corsicana heavy. 60
Oct. 25 Corsicana heavy 65
Nov. 7 Kansas-Oklahoma 73
Nov. 9 Caddo light 83
Caddo heavy 68
Nov. 14 Corsi cana light 80
Electra-Henrietta 80
Nov. 27 Kansas-Oklahoma 76
Dec. 12 Kansas-Oklahoma 78
Caddo light 88
I)ec. 14 Corsicana light 85
Corsicana heavy 70
Flectra-Henrietta 85
1)fe. 16 Kansas-Oklahoma 80
1)re. 17 Caddo light 91
Caddo heavy 81
I)ec. 24 Kansas-Oklahoma 83
Hec. 26 Corsicana light. 88
Electra-Henrietta 88
1913
Jan. 1 Kansas-Oklahoma 83
C'addo 38° up 91
Caddo 35-37.9 ${ }^{\circ}$ 81
Caddo 32-34.9 ${ }^{\circ}$ 76
Caddo heavy 70
Corsicana light 88
Corsicana heavy 70
Electra 88
Henrietta 88
Jan. 7 Caddo 38° up 93
('addo 35-37.9 ${ }^{\circ}$ 83
(axldo-32-34. 9° 78
Jan. 9 Corsicana light 90
Electra... 90
Henricta
Henricta 90
Jan. 29 rorsicana light 95
Filletra 95
Henricta.
95
95
Foh. 1 Caddo 38 up 98
(arddo 35-37.9 88
Cartho 3:3-3.4. 3° 83
Apr. 7 Corsuicana light 80
July 7 Kansas -()klahoma 93
July 10) (addo 38° up
July 10) (addo 38° up
1.05
1.05 95
(addo) 35-37.9
(addo) 35-37.9
(addu 32-34.9 9°
90
90
Corsicana light. 85
July 24 Fileetra
1.00
1.00
Honricta
I. 05
I. 05
July 21 Kansat-(1)kahoma 98
July 1!! Кanmя-()klihoma 1.03
Caddo 35-37.9 ${ }^{\circ}$ 95
Caddo 32-34.9 ${ }^{\circ}$ 90
Aug. 25 Corsicana light 1.05
Electra 1.05
Henrietta 1.05
1914
Jan. 1 Kansas-OkJahoma 1.03
Caddo 38 1.05
Caddo 35-37.9 ${ }^{\circ}$ 95
Caddo 32-34.9 ${ }^{\circ}$ 95
Caddo heavy. 70
Electra heavy 1.05
Henrietta 1.05
Corsicana light 1.05
Corsicana heavy 80
Feb. 2 Kansas-Oklahoma 1.05
Mch. 2 Corsicana heavy 70
Mch. 26 Healdton 70
Apr. 4 Caddo heavy 60
Apr. 8 Kansas-Oklahoma 1.00
Corsicana heavy. 65
Apr. 10 Kansas-Oklahoma 95
Apr. 13 Kansas-Oklahoma 90
Electra 95
Henrietta 95
Corsicana light 95
Corsicana heavy 60
Healdton 60
Apr. 15 Kansas-Oklahoma 85
Apr. 16 Caddo heavy 60
Apr. 20 Electra 85
Henrietta 85
Corsicana light 85
Corsicana heavy 50
Healdton 50
Apr. 27 Kansas-Oklahoma 80
Apr. 30 Kansas-Oklahoma 75
May 5 Corsicana 75
Electra 75
Henrietta 75
July 9 Caddo 38° 1.00
Caddo $35-37.9^{\circ}$ 90
Caddo 32-34.9 ${ }^{\circ}$ 85
July 15 DeSoto 95
Aug. 8 Caddo 38° 95
Caddo $35-37.9^{\circ}$ 85
Caddo $32-34.9^{\circ}$ 80
Caddo heavy 45
Aug. 12 DeSoto 85
Aug. 13 Caddo 38° 85
Caddo 35-37.9 ${ }^{\circ}$ 75
Caddo 32-34.9${ }^{\circ}$ 70
Sep. 12 Kansas-Oklahoma 65
Sep. 14 Caddo 38° 80
Caddo 35-37.9 70
Caddo 32-34.9 ${ }^{\circ}$ 65
DeSoto 80

MID-CONTINENT CRUDE OIL MARKET (Continued)

Date Field Price
1915
Jan. 1 Kansas-Oklahoma 55 55
Caddo 38° up 80
Caddo 34-37.9 ${ }^{\circ}$ 70
Caddo 32-34.9 ${ }^{\circ}$ 65
Caddo heavy 45
DeSoto 80
Electra 55
Henrietta 55
Corsicana 55
Healdton 50
Feb. 8 Healdton 30
Feb. 16 Electra 45
Henrietta 45
Corsicana light 45
Corsicana heavy 40
Feb. 18 Kansas-Oklahoma 40
Caddo 38° up 70
Caddo 34-37.9 ${ }^{\circ}$ 60
Caddo 32-34.9 ${ }^{\circ}$ 55
DeSoto 70
Mch. 3 DeSoto 60
Mch. 24 Caddo 38° up 60
Caddo 34-37.9 ${ }^{\circ}$ 50
Caddo 34-32.9 ${ }^{\circ}$ 45
Caddo heavy 35
DeSoto 70
Aug. 2 Kansas-Oklahoma 50
Aug. 4 Kansas 55
Electra 55
Henrietta 55
Corsicana light 55
Aug. 6 Electra 60
Henrietta 60
Corsicana light 60
Corsicana light 60
Thrall. 55
Strawn 55
Aug. 11 Kansas-Oklahoma 60
Aug. 11 Kansas-Oklahoma 60
Aug. 13 Electra 65
Henrietta 65
Corsicana light 65
Thrall 60
Strawn 60
Aug. 19 Kansas-Oklahoma 65
Aug. 21 Kansas-Oklahoma 75
Electra 70
Henrietta 70
Corsicana light 70
Aug. 26 Electra 75
Henrietta 75
Corsicana light 75
Thrall 65
Strawn 65
Aug. 27 Caddo 38° up 65
Caddo 34-37.9 ${ }^{\circ}$ 55
Caddo 34-32.9 ${ }^{\circ}$ 50
Caddo heavy. 45
DeSoto 55
Crichton 45
Sep. 11 Kansas-Oklahoma 80
Thrall 70
Strawn 70
Sep. 15 Caddo 38° up 70
Caddo 34-37.9 ${ }^{\circ}$ 60
Caddo 32-34.9 ${ }^{\circ}$ 55
Caddo heavy 45
DeSoto 60
Electra 80
Date Field Pice1915
Sep. 15 Henrietta 80
Corsicana light 80
Crichton 50
Thrall 75
Strawn 75
Sep. 23 Caddo 38° up 75
Caddo 34-37.9 ${ }^{\circ}$ 65
Caddo 32-34.9 ${ }^{\circ}$ 60
Caddo heavy 50
DeSoto 65
Sep. 28 Healdton 35
Crichton 55
Oct. 6 Caddo 38° up 80
Caddo 34-37.9 ${ }^{\circ}$ 70
Caddo 32-34.9 ${ }^{\circ}$ 65
Caddo heavy 55
DeSoto 70
Crichton 60
Oct. 11 Healdton 40
Oct. 13 Kansas-Oklahoma 90
Nov. 13 Kansas-Oklahoma 1.00
Nov. 15 Electra 1. 00
Henrietta 1.00
Corsicana light 1.00
Corsicana heavy 55
Healdton. 55
Thrall 95
Strawn 95
Moran 95
Nov. 18 Caddo 38° up 90
Caddo 34-37.9 ${ }^{\circ}$ 80
Caddo 32-34.9 ${ }^{\circ}$ 75
Caddo heavy 65
DeSoto 80
Crichton 70
Nov. 20 Caddo 38° up 1.00
Caddo 34-37.9 ${ }^{\circ}$ 90
Caddo 32-34.9 ${ }^{\circ}$ 85
Caddo heavy 75
DeSoto 90
Crichton 80
Dec. 14 Kansas-Oklahoma 1.20
Henrietta 1.20
Corsicana light 1.20
Corsicana heavy 60
Healdton. 60
Thrall 1.05
Strawn 1.05
Moran. 1.05
Dec. 17 Caddo 38° up 10
Caddo 34-37.9 ${ }^{\circ}$ 1.00
Caddo 32-34.9 ${ }^{\circ}$ 95
DeSoto 1. 00
Caddo heavy 80
Crichton 85
Dec. 28 Caddo 38° up 1.20
Caddo 34-37.9 ${ }^{\circ}$ 1.10
Caddo 32-34.9 ${ }^{\circ}$ 1.00

MID-CONTINENT CRUDE OIL MARKET (Continued)

MID-CONTINENT CRUDE OIL MARKET (Continued)

Date Field 1916		Price
Aug. 12	Caddo 32-34.9 ${ }^{\circ}$	90
	Caddo 35-37.9 ${ }^{\circ}$	95
Aug. 15	Kansas-Oklahoma	85
	DeSoto.	1.05
	Caddo 32-34.9 ${ }^{\circ}$. 80
	Caddo 35-37.9 ${ }^{\circ}$	85
Aug. 16	Corsicana heavy.	30
	Corsicana light..	80
	Electra.......	80
	Henrietta	80
Aug. 16	Thrall.	80
	Strawn.	80
	Moran.	80
Aug. 17	Kansas-Oklahoma	75
	Corsicana light..	75
	Electra........	75
	Henrietta	75
	Thrall.	75
	Strawn.	. 75
	Moran.	75
	DeSoto..	95
	Caddo 32-34.9 ${ }^{\circ}$	70
	Caddo 35-37.9 ${ }^{\circ}$	75
	Caddo heavy.	65
Aug. 26	Crichton.	60
	DeSoto.	90
	Caddo 32-34.9 ${ }^{\circ}$	60
	Caddo 35-37.9 ${ }^{\circ}$	65
Aug. 29	Crichton	55
	DeSoto.	85
	Caddo 32-34.9 ${ }^{\circ}$	55
	Caddo 35-37.9 ${ }^{\circ}$	60
Dec. 2	Kansas-Oklahoma	00
	Healdton.	45
	Corsicana heavy.	45
	Corsicana light..	1.00
	Electra.	1.00
	Henrietta	1.00
	Thrall.	1.00
	Strawn	1.00
	Moran.	1.00
	Caddo 32-34.9 ${ }^{\circ}$. 85
	Caddo 35-37.9 ${ }^{\circ}$	90
	Caddo 38° up.	1.00
	Caddo heavy.	63
Dec. 4	Crichton...	90
Dec. 12	Kansas-Oklahoma	1.10
Dec. 13	Healdton. 50
	Corsicana heavy.	50
	Corsicana light..	1.10
	Electra...	1.10
	Henrjetta	1.10
	Thrall.	1.10
	Strawn.	1.10
	Moran.	1.10
	Crichton	1.00
	DeSoto.	1.00
	Caddo 35-37.9 ${ }^{\circ}$	1.00
	Caddo 38° up.	1.10
Dec. 14	Crichton. . . .	1.10
	Caddo 32-34.9 ${ }^{\circ}$. 95
	Caddo 35-37.9 ${ }^{\circ}$	1.10
	Caddo 38° up	1.20
	Caddo heavy.	73
Dec. 18	Kansas-Oklahoma	1.20
Dec. 19	Healdton.	. 60
	Corsicana heavy.	. 55
	Corsicana light..	1.20
	Electra.......	1.20

| Date Field 1916 | Price |
| :---: | :---: | ---: |
| Dec. 19 Henrietta....... | 1.20 |

Thrall. 1.20
Strawn........... . . 1.20
1.20Crichton
1.20
DeSoto..
Caddo heavy 1.20
Dec. 23 Kansas-Oklahoma 1.4078
Healdton 70
Corsicana heavy. 63
Corsicana light. 1.30
Electra 1.30
Henrietta 1.30
Thrall 1.30
Strawn 1.30
Moran 1.30
Dec. 27 Crichton 1.20
Caddo $32-34.9^{\circ}$ 1.15
Caddo 35-37.9 ${ }^{\circ}$ 1.20
Caddo 38° up 1.30
Caddo heavy 88
Dec. 28 Kansas-Oklahoma 1.50
Dec. 29 Healdton 75
Corsicana heavy 70
Corsicana light 1.40
Electra.... 1.40
Henrietta 1.40
Thrall 1.40
Strawn 1.40
Moran 1.40
Crichton 30
DeSoto 30
Caddo 32-34.9 ${ }^{\circ}$ 25
Caddo 35-37.9 ${ }^{\circ}$ 1.30
Caddo 38° up 1.40
1917
Jan. 3 Kansas-Oklahoma 1.60
Corsicana light 1. 50
DeSoto 1.40
Jan. 4 Healdton. 80
Corsicana light 1.60
Corsicana heavy 75
Electra 1.50
Thrall. 1.50
Strawn 50
Moran 1.50
DeSoto 5
Caddo 32-34.9 ${ }^{\circ}$ 1.35
Caddo 35-37.9 ${ }^{\circ}$ 1.40
Caddo 38° up 1. 50
Caddo heavy 98
Jan. 6 Kansas-Oklahoma 1.30
Corsicana light 1.70
Caddo 32-34.9 ${ }^{\circ}$ 1.45
Caddo 35-37.9 ${ }^{\circ}$. 1. 50
Caddo 38° up. 1.60
Caddo heavy 1.08
Jan. 8 Healdton 85
Corsicana heavy 80
Corsicana light. 1.80
Electra. 1. 50
Henrietta 1.60
Thrall 1.60
Strawn 1.60
Moran 1.60
Jan. 12 Kansas-Oklahoma 1.40
Jan. 13 Corsicana light... 1.90
Healdton 90
Electra 1.70

[^0]

020

-
|

PETROLEUM PRODUCTION CONDITIONS IN MEXICO.

(Roy H. Flamm in U. S. Commerce Reports.)

Mexico's Increasing Contribution to World's Oil Supply.

A comparison of the following figures of oil production in Mexico, in the United States and in the world since 1901 indicates the phenomenal growth of this industry in Mexico. While in 1913, Mexico furnished but one-fifteenth of the world's supply of oil, in 1920 it furnished nearly one-fourth. The production in the table below is given in barrels of 42 gallons each:

Production of Oil Since 1901.

Years	Mexico	United States	Total World Production
1901.	10,345	69,620,529	167,434,434
1902	40,200	88,766,916	182,006,076
1903	75,375	100,461,337	194,879,669
1904	125,625	117,080,960	218,204,391
1905	251,250	134,717,580	215,292,167
1906.	502,500	126,493,936	213,415,360
1907.	1,005,000	166,095,335	264,245,419
1908	3,932,900	178,527,355	285,552,746
$19 \mathrm{C9}$	2,713,500	183,170,874	298,616,405
1910	3,634,080	209,557,248	327,937,629
1911.	12,552,798	220,449,391	344,174,355
1912	16,558,215	222,935,044	352,446,598
1913.	25,696,291	248,446,230	383,547,399
1914.	26,235,403	265,762,535	403,745,342
1915.	32,910,508	281,104,104	427,740,129
1916.	40,545,712	300,767,158	461,493,226
1917.	55,292,770	335,315,601	506,702,902
1918.	63,828,326	355,927,716	514,729,354
1919	87,072,955	377,719,000	544,885,000
1920.	163,540,000	443,402,000	688,474,251

Potential and Actual Production of Oil.

The above statistics show the world's actual production of oil in 1920 to have been approximately $688,000,000$ barrels. The potential production in Mexico during 1920, according to Mexican official figures, was nearly $800,000,000$ barrels. By the term "potential production" is meant the amount of oil that would be produced if each well were permitted to flow without restraint. This estimate of the Mexican government is undoubtedly too high, as it fails to take into consideration the failing wells and has been based on the initial production of large gushers which quickly settle down to a flow of only one-half or two-thirds of their initial production. Conservative estimates as of August, 1, 1921, give about 1,500,000 barrels as the daily potential capacity of existing wells. The actual production, based on statistics of the oil movement, amounts to 600,000 barrels daily. The daily potential production of the fields fluctuates greatly, as new wells are being constantly developed and salt water encroachments show up frequently without warning.

The Mexican wells flow continuously under their own pressure, wells often coming in with an initial flow of more than 100,000 barrels daily, under a water and gas pressure as high as 1,085 pounds to the square inch, but averaging between 300 and 800 pounds. Pumps are never required as the wells produce under their own pressure until exhausted. There is no "oil sand" (in our use of the term) found in the producing fields of Mexico, although recent borings in the "Tehuantepec-Tabasco" region indicate the presence of oil-bearing sands. A notable characteristic of Mexican oil is the great leat of the oil produced, the temperature ranging from 90° to $181^{\circ} \mathrm{F}$ (32° to $83^{\circ} \mathrm{C}$). The average temperature at the Ebano fields is $105^{\circ} \mathrm{F}$ and that of the salt water and oil of the Dos Bocas is $165^{\circ} \mathrm{F}$. The temperature of the oil is of great importance from an economic viewpoint, in that it decreases the viscosity of the oil and permits it to flow more freely. Since viscosity retards the movement of oil in the containing formation, the heat is of importance as a factor in determining the rate of daily production. In most of the producing fields of Mexico large amounts of gas are present under considerable pressure, but very little attempt has been made to divert the gas to economic usefulness.

Mexican oil, because of its low gravity, is of low gasoline content, averaging from 5% to 16%. American oil, averaging a higher gravity, produces 20% to 40% gasoline, besides kerosene, lubricating oils, paraffin, etc. One authority averages Mexican oil as composed of about 9% naphtha, 10% illuminants, 50% to 75% fuel and the remainder lubricants, paraffin, asphalt, etc.

An average of 300 wells produced in Mexico during 1920 approximately $164,000,000$ barrels of oil, or an average actual daily production of 1,800 barrels per well. From January 1 to May 1, 1921, the Mexican Government reports 42 new wells completed with a daily potential production of 828,728 barrels. During the week ending September 4, 1921, nine wells were completed in Mexico with a daily actual production of 140,000 barrels.

Geographical Division and Production of American Wells.

The oil wells of the United States may be geographically divided into the following fields:

Appatachran Number of producing wells.
lima-Indiana \quad..009,00

Sid-Continent …... 16,800
Ciulf Coast

The approximate daily production per well averages 4.9 barrels. With but few excentions the wells in the United States must be pumperl from the time they are "brought in."

Oil Producing Areas of Mexico.

The known oil-producing areas of Mexico may be divided into three main regions, as follows: Panuco River region, TampicoTuxpan or "South Fields" region, and the Tehuantepec-Tabasco region.

In the Panuco River region the Ebano field is situated 40 miles west of Tampico. The oil from this field has a very high percentage of asphaltum and averages about $12^{\circ} \mathrm{Be}^{\prime}$ (0.986 specific gravity). The Panuco field, comprising the productive areas between the Tamesi and Panuco rivers, is 20 to 30 miles southwest of Tampico and the Topila field is situated a few miles east of the Panuco. Both the Panuco and Topila production is a heavy viscous oil of from 10° to $15^{\circ} \mathrm{Be}^{\prime}$, the deposits being found at approximately 2,200 feet. These fields have been noted for the relatively few failures in drilling. From the east end of the Topila field to the west end of the Panuco field (a distance of 17 miles) is an undrilled gap of nearly 3 miles, which is being closed by exploitation. From this Panuco-Topila district there has been produced to date $130,000,000$ barrels of oil, or 20% of Mexico's total output and there is a present daily production of 130,000 barrels. From the Ebano field there has been produced to date $24,000,000$ barrels of oil, or $31 / 2 \%$ of Mexico's total output. Today there is a daily production of 4,000 barrels. While there is a general salt water table below which no oil will be found, neither of these fields has been finally delineated by dry holes and there is good reason to believe that they will be extended.

Developments in the 'Campico-Tuxpan or "South Fields" region have been made upon a long, narrow strip of productive territory running in a north and south direction from Dos Bocas to Alamo. This strip has been developed to a length of about 40 miles and to a width of about 1 mile. Local elevations and variations in structure make some portions of the strip more productive than others, but over the entire 40 miles it is remarkably uniform. The oil from this territory averages from 19° to $21^{\circ} \mathrm{Be}^{\prime}$ (0.9395 to 09271 specific gravity). This region has produced $492,446,170 \mathrm{bbls}$ of oil or 75% of Mexico's output and is now producing daily at the rate of nearly 400,000 bbls. The various sectors or pools of the "South Fields" regions have been given various names. A short description of each of the various sectors or pools of this region follows:

Dos Bocas-This is the most northern pool of the area. The first large well was brought in in 1908 with an initial flow according to its owners of more than 100,000 bbls. daily. After catching fire and running wild for three months, the well turned to hot salt water and is not now productive. Many well versed oil men believe Dos Bocas was a "gasser" as it burned without smoke.

Tepetate-Chinampa-This pool has produced more than 100,000 ,000 bbls. of oil, but production is only obtained from this pool at this time by stripping. The salt water table started at 2,175 feet and rapidly rose to 1,800 feet. The average depth of the wells was 2,000 feet.

Casiano Pool-The famous Juan Casiano well No. 7 was completed in this pool in 1910, flowing continuously for 10 years and produced $85,000,000$ bbls. of oil. Contrary to a popular belief this pool
is not a part of the Chinampa pool from which it is separated by volcanic dikes.

Amatlan-Naranjos-Zacamixtle-This district has produced nearly $120,000,000$ bbls. of oil up to July 1, 1921, at which time it was estimated to contain a reserve of $50,000,000$ bbls. The salt water table began at 2,150 feet at the northern end and rose to 1,660 while on the southern end in Lower Amatlan the salt water has reached the 1,800 foot level. Amatlan is being intensely developed by a score of opcrators, both old line companies and independents and will probably not have a long life. The average depth of wells in this area is 1,900 feet.

Toteco-This pool was not drilled until early in 1921. The fee title to the pool is held partly by the Huasteca Petroleum Co. The International and Mexican Gulf Companies hold leasehold rights on the remainder. The average depth of wells is 1,800 feet.

Cerro Azul and Juan Felipe-The most famous well in this area is the Huasteca Petroleum Co.'s No. 4 brought in in 1916, and which has produced $60,000,000$ bbls. The Juan Felipe area is held by some authorities to be separate from Cerro Azul, being cut off by a well defined basalt dike. One well in the Juan Felipe boundaries now shows the extraordinary pressure of 1,080 pounds, and has not been exploited due to the more convenient location of the Cerro Azul wells belonging to the same American company.

Potrero del Llano and Atazan--The Potrero del Llano well was completed in 1910 and produced $94,000,000$ bbls. of oil before it went to salt water in 1918. By strategic drilling and pinching in oil wells a considerable production has been developed since 1918 and it is being maintained. The average depth of wells in this district is 2,000 feet.

Cerro-Viejo-This large property, lying south of Cerro Azul and adjoining Potrero del Llano, is just beginning to be drilled. It belongs to the Huasteca Petroleum Co. and the Aguila Co. Indications point to its overlying a separate pool which, judged by surface indications, will equal any of the larger pools. It contains a small well at a shallow depth which was drilled in 1878. The recent drilling has encountered oil at the 1,600 -foot level.

Tierra Blanca and Chapapote Nuenz-This is a non-competitive pool controlled by the Huasteca Petroleum Co., the first well having been completed in May, 1921, with a potential production of 75,000 barrels per day.

Tanhuijo and Tierra Amarilla-Drilling has been deferred in this district because of the greater production of wells to the west, which produce lighter oils.

Molino Pool-One well has been drilled in this pool at 2,710 feet, producing a heavy viscous oil of $11^{\circ} \mathrm{Be}^{\prime}$. While exceptionally heavy, the oil from this well has been discharged successfully under the well pressure through a pipe line to a pumping station at a distance of 20 kilometers.

Alamo-This pool is controlled by the Penn.-Mex. Fuel Co. Approximately $35,000,000$ barrels of oil have been produced, consisting
of two distinct grades. Salt water has seriously invaded the pool and stripping has been resorted to.

Furbrero-This area is located about 40 miles southwest of Tuxpan. The oil found is of very high grade, being $24^{\circ} \mathrm{Be}^{\prime}$, but the yield has not been large and the district is not now producing. Between Alamo and Furbrero are some of the best indications of oil pools in Mexico on lands which are largely taken up by American companies. South of Furbrero, at Pahuatatempa and Vega, are extensive seepages, although no development has yet been undertaken in this region.

In the Tehuantepec-Tabasco region, the Tabasco-Chiapas field is noted for the quality of its oil, which has a paraffin base, is very light, and contains a large proportion of illuminating oils. Exploitation of this field promises to become active after having been dormant since 1917. The Isthmus of Tehuantepec field produces an oil of from 25 to $32^{\circ} \mathrm{Be}^{\prime}$ and is characterized by the short productivity and the shallow depth to oil. Operations in this field have not been of great importance in the past few years. Oil is found at a depth of 500 to 600 feet.

The following table shows all of the Mexican oil fields discovered up to June 1, 1921, with the date of discovery, number of wells drilled number of productive wells and the production of these wells:

Number and Production of Wells in Mexican Oil Fields.
Production

REGION AND FIELDS Panuco, Topila, Ebano fields:	$\begin{gathered} \text { Year } \\ \text { Dis- } \\ \text { covered } \end{gathered}$	No. of Wells Drilled tive		Production	
				Total	Present Averages Average Daily
Panuco .	1910	218	112	121,000,000	127,000
Topila	1910	75	18	8,539,000	3,500
Ebano.	1910	71	38	22,400,000	4,000
Total		364	168	151,939,000	134,500
South Fields:					
Tepetate and Upper Chinampa	1910	28	17	126,874,000	
Lower Chinampa and Amatlan.	1913	89	43	141,566,000	240,000
Zacamixtle.	1920	10	8	12,039,000	50,000
Toteco.	1921	3	3	1,000,000	30,000
Cerro Azul	1916	6	2	59,002,364	60,000
Potrero del Llano \& Alazan	1910	21	11	115,650,000	(o)
Tanhuijo \& Tierra Amarilla	1919	39	21	500,000	
Alamo.	1913	9	6	35,803,806	15,000
Molino.	1917	2	1	11,000	500
Total.		207	112	492,446,170	395,500
Tehauntepec region	1904	220	54	7,000,000	
Miscellaneous				500,000	200
Grand total.		791	334	651,885,170	530,200

oSa t water.
vabandoned.

Explanation of Mexican Gushers.

Mr. E. de Golyer, geologist, in a paper read before the Society of Automotive Engineers is quoted as follows:
"We have been so impressed with the unprecedented size of some of the Mexican gushers and by their continued production of large quantities of petroleum over long periods of time without any appreciable decline in the amount of production, that we have perhaps overestimated the total amount of petroleum to be accrued from any single pool. The explanation of the great gashers seems to lie in the very great porosity of the rock in which the petroleum occurs. It collects in a network of caves and channels previously dissolved out of a bed of thick limestone. This condition allows the petroleum to move about very freely while still underground. Furthermore, the petroleum generally lies over water under an artesian head, and as a consequence the field pressure is largely hydrostatic rather than gas pressure, which, in most fields is the expulsive force causing the oil to flow. The result of these conditions is deposits of petroleum which can be exhausted with a single well, whereas a deposit of the same size under different conditions of occurrence would require hundreds if not thousands of wells to exhaust it."

Salt Water Invasion.

No salt water lias yet appeared in the Cerro Azul and Toteco fields. In all other fields some of the wells have been damaged or destroyed by the encroachment of salt water. An unwarranted impression as to the significance of the invasion of salt water in the rarious Mexican fields has recently been created by articles appearing in the press. The wells now producing oil in Mexico are doing so under a great hydrostatic pressure, the flow of oil continuing until exhausted, and the salt water then following the oil to the surface. The "salt water menace" so-called, does not usually appear until after vast quantities of oil have been taken from a pool and the exhaustion of one pool has no more bearing on an unconnected virgin pool than does the exhaustion of a sector in the United States conlemn a sector not yet developed.

The other fields of Mexico will continue to give oil for a considerable time to come, but such production probably will be increasingly smaller from the peak of 1920-21. Many of the wells now being developed in the Amatlan pool show tendencies to develop salt water more rapidly than heretofore. This condition may be accountel for, in a measure, because the producers in competing pools have been forcing production to the limit in order to get out as much oil as possible hefore a rival concern drains the pool. The extensively developed pools in the South fields region have been pulled on by every pipe line and storage available in the region in a wild soramble to get the oil to the surface and they are now witnessing the inevitable result-a rapid exhaustion of the pools and the early ippearapce of salt water. Even after a pool has apparently been daincol. sulstantial amounts of oil may be produced by "pinching in" the wills. This ronsists in closing the flow valve, creating a back pressure and permitting the oil to flow through a smaller aperature; the water, as the heavier material, going to the bottom. This process
is repeated so long as clear oil can be made to flow. Pinching in or stripping was resorted to after the Chinampa pool was drained and is now being done to Alamo and Potrero and will be resorted to in Zacamixtle and Amatlan.

Estimation of Mexican Fields.

The following recent estimate of the Mexican fields has been made by Messrs. L. G. Huntley and Stirling Huntley, prominent American geologists:

Estimating the life of Cerro Azul and Tierra Blanca, with an estimated reserve of $200,000,000$ bbls. at 1,000 days (on the assumption that they produce at the combined rate of $200,000 \mathrm{bbls}$. per day after the Amatlan pool is drained) at the time of their being finally flooded, they in their turn should strip 10,000 bbls. or more per day each from wells on the crests. This reserve will be partly sold to other companies and therefore will probably be pulled on much faster than this. While it is impossibie to say how long this stripping can go on, there is good evidence that such wells will be long lived, as they are probably fed by oil working up the flanks of the structure over the entire former producing area. Much of this oil must have been cut off by the sudden flooding of the pools and will now be largely available to such strategic wells as those mentioned. This will allow one to estimate that after all the Southern pools have been flooded there will still be a production in the Mexican fields of 250,000 hbls. per day at the end of 1,000 days from July 1, 1921 (December 1,1924) on the assumption that the new drilling in the Panuco River field increases production.

This alone is sufficient to be a considerable factor in the oil market, particularly the fuel oil market. Meanwhile it can be assumed that the prospecting will have probably extended the producing areas in the Panuco River district and those to the south and west of the Alamo. In the latter region there are good indications that there will be found pools of relatively light oil in sand and limestone formations above the Tamasopa, as well as in the latter formation itself. In the case of the probable pools yielding from reservoirs above the Tamasopa, these will undoubtedly have smaller wells producing over a longer period of time in comparison with the large Tamasopa wells to the north. It is even possible, if later and higher prices warrant it, that th:s regicn will see pumps installed for the first time in Mexico.
"The present resezves in producing pools may be shown as follows: Barrels
Amatlan Zacamixtle .. 50,000,000
Cerro Azul-Toteco .. $150,000,000$
Tierra Blanca .. 50,000,000
Total
$250,000,000$
"In addition to the above reserves are the Panuco River pools which have not been limited and seem capable of considerable extension.
"These amounts disregard later recoveries from the same areas through stripping wells. as the factor used in the calculations was
derived from the data in the Tepetate-Chinampa area, which excludes later recoveries. Early in 1921, before the market decline, the daily production was: Barrels 145,000
Panuco River fields

Cerro Azul and Toteco

10,000
Alamo

Total ...000 185,000
"But this disregards oil reserves from various sources, which may therefore be added and summarized, giving the following estimated possible production by fields after Amatlan goes to sea water:

	Barrels
Panuco River fields.	145,000
Tepetate-Chinampa (stripping)	10,000
Naranjos-Amatlan-Zacamixtle (stripping)	20,000
Cerro Azul (3 companies)	140,000*
Tierra Amarilla (stripping)	10,000
Potrero Alazon (stripping)	10,000
Alamo (stripping)	7,000
Tierra Blanca (noncompetitive)	60,000**
Total	402,000

*Probably greater on account of the sales to other companies.
**Depending on company's. policy.

Operations in Panuco and Topila.

The American consul at Tampico has observed that production operations in the Panuco and Topila fields are somewhat different in character than in the Southern fields, in that part of them are conducted by individuals and small companies or aggregations of individuals; whereas the major part of development work in the Southern fields is conducted by large corporations which not only drill the wells but construct refineries, pipe line, pumping stations, and loading terminals, and ship the oil by their own tank steamers. Thus they conduct all the operations of production and marketing and the matter of cost price or value at the well concerns them but little. Many of these companies also have valuable properties in the Panuco district. Shipments of Panuco oil have been practically confined to such companies. Lately much activity has been noted among independent producers (confined largely to the Panuco field) finding outlets for their product through brokers and as a result, something rescmbling a trating market has been formed and a value for the diffrerent oils ristablished.

Formerly the big producing pools of Mexico were controlled in most cases lyy a single company and neither fear of having their property drained by a rival nor competition operated to force production by the individual companies. From the standpoint of conservation of the oil supply, such an arrangement was desirable for a minimum amount of oil was wasted through over-production and in-
sufficient storage. At the present time, the heavy producing pools, particularly in the South fields region, are in most instances being pulled on by competing companies with little regard to conservation of the supply.

Exploration of New Fields.

George Otis Smith, director of the United States Geological Survey, puts the proved area of Mexican oil lands at about 10,000 square miles, with resources of $4.500,000,000 \mathrm{bbls}$. and the potential output of unproved territory at $1.250,000,000 \mathrm{bbls}$.; a total estimate of $5,750,000,000 \mathrm{bbls}$. or a supply adequate for 45 years at the 1920 rate of exports. A greater part of the unproven territory in the known oil zones is already in the hands of the large corporations. The exhaustion of the Amatlan pool will mark the passing of the independent operator in the South fields region to a considerable extent. The Panuco River region has always been essentially a small man's field: The enormous reserves of petroleum lands situated in the producing regions held by the Mexican Petroleum Co. (Doheny) and the Aguila Co. (British) allow these companies to regard the intrusion of salt water in their present wells with a certain degree of equanimity. The Royal Dutch Shell interests control nearly 400 square miles of valuable fee-simple and leasehold oil lands. The Mexican Petroleum Co. has obtained a 40 year lease on nearly 800,000 acres in the Tampico district on land which shows extensive oil seepages. This addition increases greatily the life of the extensive properties already owned by this company. The Marland Oil Co. of Mexico has extensive holdings of undeveloped lands in Mexico, including 280,000 acres in the Tuxpan-Tampico area, 65,000 acres in the TabascoChiapas region and large concessions in Lower California and Sonora.

Increasing attention is now being given to exploration or "wildcatting" in various parts of Mexico for the discovery of oil. Geological conditions indicate that other petroleum fields of great importance will be discovered in Mexico, and that such discoveries will be of a petroleum of a much better quality than that now being produced. A report of the Mexican Petroleum Section of the Department of Commerce, Industry and Labor, places the zone of possible production in the Gulf States at more than $80,000,000$ acres and in Lower California at about $18.000,000$ acres. Of this immense area, only about $10,000,000$ acres have been investigated which illustrates the scope offered for wildcat operations in Mexico. The combined area of the fields now being exploited in Mexico does not exceed 1,200 square miles.

Exploitation has now extended into the districts of Tlacalulu and Cobos. The Tlacalulu district is in an oil bearing formation, situated in the extreme southeast corner of the State of San Luis Potosi, 50 miles southwest of Tampico. The Cobos district lies directly across the Gonzales River from Tuxpan and extends southwest for 50 miles. It is regarded as a determined field and exploitation is going on. Exploration is particularly active in the Isthmus of Tehuantepec and in the region south of Vera Cruz. Many seepages occur in this region. The Tabasco district is the oldest oil field in Mexico, the oil produced being of $32^{\circ} \mathrm{Be}^{\prime}$ but former production was in such small
amounts that competition with the richer Panuco and South fields was impossible. Extensive leasing is under way and actual development again in progress, principally by the Royal Dutch-Shell interests, althorgh the Standard Oil and Mexican Gulf companies are active. The Grijalva River is being deepened at Frontera, which city is to be the port of the Tabasco field.

Possibilities in Scattered Regions.

The discovery of what is believed to be extensive petroleum deposits on some islands in the Gulf of California has been announced. These islands are close to the shore of Sinaloa, due west of Hermosillo, and the deposit is thought to extend to the mainland of Lower California. The proximity of these areas to the producing areas of the State of California, the probability that portions of Lower California and Sonora are underlaid by a counterpart of the producing horizon of the California fields in the United States, the evidence of petroleum on the surrounding waters and the continued extension of the California fields southward leads to the belief that these areas on the west coast will yet produce petroleum in commercial quantities.

Explorations are being carried on in other parts of Mexico as follows: Durango, in the neighborhood of Mapimi; Oaxaxa, near Puerto Angel; Colima, in the vicinity of Santa Rosalia and of Manzanillo; Chihuahua, in the vicinity of Casas Grandes, Guzman, Trinidad, Santa Maria, and southwest of Ojinaja; Coahuila, at Ubalde, near Piedras Negras, and Nuevo Laredo; Chiapas, in the Departments of Palenque and Mezcalapa; San Luis Potosi in the Valles district; Jalisco in the vicinity of Lake Chapala, and in various parts of Yucatan. On September 1, 1921, there were 240 strings of drilling tools in operation throughout Mexico as follows:

FIELSS	Dlg.	Der.	Loc.	Ttl.
Panuco.	24	10	11	45
Topila	3	2	5	10
South Ficlds	64	19	48	131
Wildcat	19	11	24	54
Total	110	42	88	240

While the cost of drilling wells in Mexico is high, there are other costs which precede drilling and which amounts to a considerable figure. These include the cost of prospecting by highly-paid geologists, the expenses of negotiating the purchase and lease of oil territory, the amount paid for the properties if purchased, or the rentals if leased, the very substantial recording and stamp fees encountered in Mexicc), the expense of perfecting title (which is considerable, due to the sucerssive divisions of the land) the cost of clearing the land, the construction of roads and water lines, materials for transporting supplies throurh the jungles, and many other items of expense peculiar to operations in Mexico.

ACTUAL PRODUCTION BY COMPANIES IN MEXICO.

COMPANIES

Cia. Pet. La Victoria		1,574
Topila Petroleum Company		
Cia. Mex. Pet. del Golfo		29,993
National Oil Company		753,589
Panuco Petro. Maat. (Royal Dutch)	2,748	
Cia. Exp. de Pet. La Universal	3,075	
Hispano Mexicana (Tex. Mex. Fuel)	4,226	
Mexico y Espana	5,459	29,625
Mexican Oil Company	3,490	288,770
Cia. Pet. Monterrey.	25,021	24,958
Chijoles Oil Ltd. (R. Dutch)	25,266	1,515
Oil Fields of Mexico	29,906	34,689
Vera Cruz Mexico (S. O. N. J.)	51,716	360,258
La Petrolera Poblana	91,311	32,871
Cia. Mex. de Combustible (Pierce O	300,064	60,852
La Corona (Royal Dutch)	337,603	740,576
Transcontinental de Petroleo (S. O. N. J.)	382,029	119,315
Panuco Bost. Oil (Atlan. Ref.)	531,511	828,067
Tampascas Oil Company	578,478	174,924
Internat. Pet. (J. H. Hamm'd	609,733	619,828
Cia. Pet. Tal. Vez. (So. O. \& T	1,152,063	989,561
Tex. Co. of Mex. (Texas Co.)	1,279,746	2,315,433
Cia. Mex. de Petroleo (Mex. Pet. of Calif.)	1,445,976	1,125,702
Cia. Mex. de Pet. La Libertad (Island O. \&	1,550,869	
Mex. Gulf Oil (Gulf Oil Co.)	1,728,190	1,160,794
Cortez Oil Corp. (Port Lobos Pet. Corp.)	2,161,775	
East Coast Oil (So. Pac. Co.)........	3,457,235	3,143,220
Freeport \& Mex. F. O. Corp. (Sinclair Gulf)	4,119,654	4,076,982
Penn. Mex. Fuel Co. (South Penn. Oil)	6,854,080	4,129,296
Cia. Mex. de Pet. El Aguila (Mex. Eagle Oil)	16,910,646	16,922,322
Huasteca Pet. Co. (Mex. Pet. of Delaware).	20,186,459	17,325,171
Totals	63,828,329	55,292,758

PIPE LINES IN MEXICO.

The pipe lines in Mexico on November 30, 1919, with the name of the owners and the capacity of the pipe lines are as follows: Daily

OWNERS

Freeport \& Mexican Fuel Oil Corporation. 3
Cia. Transcontinental de Patroleo. 11

National Petroleum Corporation . $\quad 1$
National Oil Co.........
Oil Fjelds of Mexico Co
New England Fuel Oil Co.
Standard Oil Co.
Cortez Oil Corporation
Cia. de Petrolio La Corona.
Mexican Gulf Oil Co
East Coast Oil
Texas Co. of Mexico
Mexican Oil Co.
Cia. Mexicana de Combustible
El Aguila S. A.
Cia. Mexicana de Petroleo
Huasteca Petroleum Co.
Tampico Oil Ltd.
Penn. Mex. Fuel Co
Panuco Boston Oil
Cia. Regiones Pet. Mexicanas
Cia. Terminal de Lobos.
Pierce Oil Corporation.
Cia. Mex. de Oleoductos Imperio
La Atlantica Cia.
Cia. Terminal Union S. A
Cia. de Fomento del Sureste
Cia. Metrolopitana de Oleoductos.
Total
113

Tota] Lengths, Meters 4,750 1,470 350 10,985 88,950 2,276 8,953 78,603 68,188

113,276

44,843

49,534	17,195
2,707	1,590

6,499 3,338
421,498 79,876

11,260	138
362,724	7,950

8,500 318
$\begin{array}{rr}62,367 & 41,657 \\ 1,380 & 1,145\end{array}$

1,357	4,190

$812 \quad 11.400$
$2,463 \quad 1,590$
$\begin{array}{ll}1,213 & \mathbf{5 , 5 4 0} \\ 2,674 & 9,000\end{array}$
$875 \quad 10,000$
$1,100 \quad 1,000$
$40.570 \quad \frac{19,302}{377,169}$

20,743 . $\quad 70,950$

Capacity,
Cubic
Meters
40,131
1,590
5,724
2,880
1,590
14,000
6,930
48,472
9,641
11,144
11,888
1,590
79,876
7,950

4,190
11.400
1,590

377,169

The number of storage tanks in Mexico January 1, 1920, with the name of the owners, the capacity of the tanks, are as follows:

	TO	$\begin{gathered} \text { TO } \\ \text { DEC. } 31,1919 \end{gathered}$	$\begin{gathered} \text { CONS } \\ \text { DUR } \end{gathered}$	$\begin{aligned} & \text { RUCTED } \\ & \text { ING } 1919 \end{aligned}$
	No.	Capacity, Cubic Meters	No.	Capacity Cubic Meters
Freeport \& Mexican Oil Corp	4	26,234	1	5,962
Cia. Transcont. de Pet. S. A.	20	153,420	2	17,598
English Oil Co		1,590		
Tampaseas Oil Co.	1	3,180		
National Petrol. Corp	1	8,745		
Interocean Oil Co.		17,488		
Hispana Mex. S. A.	1	8,745	1	5,961
Cia. Pet. Tal. Vez.	1	3,180		
National Oil Co.	4	34,980		
Oil Fields of Mexico	9	28,303		
New England Fuel Oil Co	4	35,980	1	8,744
Standard Oil Co.....	23	212,800		
Cortez Oil Corporation	37	52,470	4	33,980
Topila Pet. Co.......	18 1	345,467 5,962		21,218
Mexican Gulf Oil Co	76	91,031	5	31,409
Chijoles Oil (Ltd.)	3	3,180		
Producers Terminal Corp	4	34,976		
East Coast Oil Co	18	129,572		
Felix de Martino Diaz	1	8,745	I	
Texas Co. of Mexico. Mexican Oil Co.	17	118,400	12	20,150
Cia. Mex. de Combustible	${ }_{8}$	4,212 41,914		
El Aguila S. A.	374	4,501,900	2	11,925
Cia. Mexicana de Pet	16	1,96,089		11,02
Huasteca Pet. Co	129	1,169,951	.	
Penn. Mex. Fuel Co	5 17	12,918	.	
Eureka 'et. Co. S. A.		148,665	3	3,968
Panuco Boston Oil Co	5	17,806		3,968
lia. Terminalde de Lobos	5 114	43,720	3	25,232
La Atlantica Cia.....	114	111,722	5	42,533
North Amurican Dredging Co	1	8,745		
'ia. do Fomento del Sureste.		5,962		
(ia. Metrop. de Oleoductos.	4	$\begin{aligned} & 17,490 \\ & 34,980 \end{aligned}$	4	34,980
	915	$\overline{7,540,531}$	48	272,406

OIL TANKERS IN USE JUNE, 1921, HANDLING MEXICAN PETROLEUM.

Name of Tanker BarrelsCapacity
HUASTECA PETROLEUA CO
La Habra 6S,200
I. C. White 54,000
E. L. Doheny 61,200
C. E. Harwood 30,500
Sunshine 67,100
Solana 63,200
C. Anderson 79,500
San Joaquin 60,600
Tamaha 72,100
G. G. Henry 64,100
Caloric 58,600
Franklin K. Lane 66,900
E. Walker 66,400
Montana 64,300
G. W. Barnes 60,600
C. A. Canfield 61,400
Cerro Ebano 74,000
H. G. Wylie 39,700
Mendocino 54,300
J. Macy 77,400
J. M. Danziger 61,300
Norman Bridge 39,600
Mantilla 53,100
Wm. Green 66,400
Wyneric 38,700
Nora 95, S00
Oyleric 53,500
Ario 73,200
MENICAN GULF OIL CO
Gulf Oil 50,400
Shenango 25,300
Gulf Trade 65,700
Currier 46,000
Gulfstar 72,900
Gulflight 32,200
Ligonier 30,000
Oural 19,500
Agwisea $7 \mathrm{~S}, 700$
FREEPORT \& MENICAN FUEL OIL CORP.
Darden 53,200
Farnum 32,100
Tamesi 20,400
Madrone 55,400
Panuco 25,800
J. M. Cudahy 69,200
E. R. Kemp 44,500
Hardcastle 34,200
Hugenot 61,600
A. E. Watts 64,800
Name of Tanker BarrelsCapacity,
MENICAN EAGLE OIL CO., LTD
War Shikari 49,000
War Begum 49,100
War Rance 52,200
San Florentine 67,600
San Lenn 50,500
San Dunstano $6 \mathrm{~S}, 800$
Canıden 60,900
Anomia 41,400
San Lorenzo 81,S00
San Narario \$2,500
British Maple 58,600
San Tiburcio 62,000
War Glackwar 49,500
Bloomfield 43,300
El Cano 45,700
San Silvestro 7,500
San Zotico 49,600
San Úbaldo 46,500
Grenella 46,200
San Teodore 57,4.00
San Fernando 18,300
Kekoskee 47,600
San Geronimo 108,200
San Ricardo 49,100
Borgestad 36,600
San Patricio 107,500
TRANSCONTINENTAL PETROLEUM CO.
Comet \& Brg. 82. 47,200
Princeton 19,500
If. H. Rogers 51,600
Caloria 37,200
Gedania 31,900
Corning 20,300
H. M. Flagler 23,300
Glenpool 4S, 000
Baytown 20,700
C. M. Everest 53,100
Geo. H. Jones 61,000
Baton Rouge 46,500
James McGee 68,400
Sandtows 1-2 38,200
W'm. G. Warden 51,900
F. W. Weller 41,200
W. Jennings 37,500
F. Q. Barstow 103,700
Zoppot 106,000
Bradford 5S,200
Chinampa 63,600
Richconcal 62,900
Bostwick 77,300
J. D. Rockefeller 72.500

OIL TANKERS IN USE JUNE，1921，HANDLING MEXICAN PETROLEUM（Concluded）

Name of Tanker
Barrels Capacity

LA CORONA PETROLEUKI CO．
L゙tararhon ．．．．．．．．．．．．．．．．．．．．．53，000
Alabama ．．．．．．．．．．．．．．．．．．．．．．．26，600
H：lliam lsom ．．．．．．．．．．．．．．．．．2S， 500

1．urtllum ．．．．．．．．．．．．．．．．．．．．．．．42，100
Ar．Von Gwinner．．．．．．．．．．．．．2S， 800
NATIONAL OII，CO．
ぶathrドト ．．．．．．．．．．．．．．．．．．．．17，300
W：A．Ibsen．．．．．．．．．．．．．．．． 31,200
I．J．lı－illy．．．．．．．．．．．．．．．．．．．．．．．．．27，100
1）augherty ．．．．．．．．．．．．．．．．．．．．．．26．200
TEXAS COMPANY
I＇пинs 小ania ．．．．．．．．．．．．．56， 300

（1）（114．ntal ．．．．．．．．．．．．．．．．5s，900）
11 11 ． 4 ．sto．．．．．．．．．．．．．．．．．．60，500
Sucrust ．．．．．．．．．．．．．．．．．．．．52，300

M．arlıия ．．．．．．．．．．．．．．．．．．．．．．．35，000
B／bl．1 I．Inilas ．．．．．．．．．．．．．．66，2110

1．（11）｜リ1 ．．．．．．．．．．．．．．．．．．．．．．．．25，900
1：11 11 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．300

1．111 11 111．0 ．．．．．．．．．．．．．．．．．．．19．100

[^1]
RECORD OF ALL MENICAN OPERATIONS TO DATE-1919

Prepared by Mexican Petroleum Department, Secretary of Industry.

 1 Cubic Meter $=629$ Barrels.| DRILLED BY | Locations | Drilling Feb. 28, 1919 | Pro-ducing | Potential Daily Production in Cubic Meters | Abandoned | Total No. of Wells |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| La Universal. | | 1 | 1 | 511.00 | | 2 |
| Mexico y Espana. | . | | 1 | 626.00 | | 1 |
| La Libertad. | | | 1 | 8,000.00 | | 1 |
| Cantabros en Panuco | | 1 | | | 1 | 2 |
| La Nacional. | | 1 | | | | 1 |
| Panuco Tamesi | 1 | | | | | 1 |
| Alamo de Panuco. | 1 | | | | 1 | 2 |
| Tux. Ozuluama. | | 2 | | | | 2 |
| Pet. Maritima | | | | | 1 | 1 |
| Preeport \& Mex. | 1 | 4 | 7 | 5,794.90 | 2 | 14 |
| Esfuerzo Tampiqueno | | | | | 1 | 1 |
| El Caiman. | | | | | 1 | 1 |
| Panuco Valley | 2 | | 1 | 66.77 | | 3 |
| Southern Co... | | | 1 | 800.00 | | 1 |
| Expl. Topila. | | | 1 | 160.00 | | 1 |
| La Transatlantica. | 1 | | | | | 1 |
| Panuco Mahuaves. | | | | | 1 | 1 |
| Lluvia de Oro. | | 1 | | | | 1 |
| Esfuerzo Nacional | 1 | | | | 1 | 2 |
| Vado Oil Fields . | | | | | 1 | 1 |
| La Victoria..... | | | 1 | 6.00 | | 1 |
| Transcontinental. | 3 | 3 | 12 | 15,804.04 | 7 | 24 |
| R. A. Mestres. | 3 | | | | | 3 |
| English Oil Co. | | 2 | 4 | 1,444.00 | 4 | 10 |
| El Espino. | | 1 | | | | 1 |
| Pedro Irisari. | | | 1 | 8.00 | | 1 |
| Tampascas Oil | | 1 | 5 | 713.00 | 1 | 7 |
| National Pet. | | 1 | | | | 1 |
| Gulf Coast Corp | 1 | | 4 | 22.96 | 1 | 6 |
| Los Perforadores. | | | 2 | 319.00 | | 2 |
| Hispana Mexicana | | | 1 | 1,600.00 | 2 | 3 |
| Tal Vez, S. A.... | 1 | | 2 | 1,155.00 | | 3 |
| Monterrey, S. A | | | 1 | 16.00 | | 1 |
| International Pet | 2 | 4 | 3 | 6,661.22 | 8 | 17 |
| Orbananos et al. | 1 | | | | | 1 |
| Margenes del Pam | | 1 | | | | 1 |
| Panuco Topila. | | | 1 | 80.00 | | 1 |
| EI Fenix, S. A | | | | | 1 | 1 |
| Las Dos Estrellas. | 1 | | | | | 1 |
| Productora de Pet. | | 1 | 1 | 238.50 | 1 | 3 |
| National Oil Co... | 1 | | 4 | 598.90 | 1 | 6 |
| Mex. National Oil. | 1 | | . . | | 2 | 3 |
| Zaleta Mar Oil Co | | | . . | | 1 | 1 |
| La Herradura. | | | | | 1 | 1 |
| Continental Mex. | | | 1 | 1,500.00 | 1 | 2 |
| EI Indio. . . . | | 1 | | 1,500.00 | | 1 |
| La Oaxaquena. | | | | | 1 | 1 |
| Oil Fields of Mex | 1 | 1 | 12 | 60.37 | 23 | 37 |
| New England Fuel | | | 4 | 3,900.02 | | 4 |
| La Oriental Mex. . | i | | | | | 1 |
| La Esperanza. | | 1 | | | | 1 |
| Abastecedora. | 1 | 1 | | | 1 | 3 |
| Panuco Excelsior. | | | 1 | 190.00 | | 1 |
| Adrian Petroleum | 1 | 2 | 1 | 5,000.00 | | 4 |
| Cortez Oil Corp. | 2 | | 2 | 804.38 | 1 | 5 |
| Inglesa Explot.. | | 1 | | | 1 | 2 |
| Tantoyuca y Anexas. | | 2 | | | | 2 |
| A. P. Wiechers...... | 5 | | | | | 5 |
| Mex. Pet. del Golfo . | | | 1 | 95.45 | 1 | 2 |
| La Corona S. A. | | 4 | 10 | 8,095.42 | 12 | 26 |
| Byrd et al... | | 2 | | | | 2 |
| Oro Mexicano | | | | | 1 | 1 |
| La Bonanza. | | | 1 | 16.00 | | 1 |
| Am. Fuel Oil . | | . . . | 2 | 802.95 | . . | 2 |

RECORD OF ALL MEXICAN OPERATIONS TO DATE-1919— Continued.

DRILLED BY

Topila Petroleum.
Rexican Gulf....
Chijoles Oil....
East Coast Oil.
Soria y Socios....
Texas Co. of Mex
Mexican Oil Co.
Smith's Oil Co.
Pan American Oil
Orillas de Panuco.
Nuevo Leon.....
Miedras Devel. Co
Lt Seventeen Co....
Comercio de Peubla
La Argentina.
Mexico Fuel Oil
Hidalgo Oil Co
El Nayarit.
Financiera de Pet
Mex. Development
El Azadon, S. A
La Concordia
Nueva Bonanza
El Aguila, S. A
Aamiahua Pet
Mex. Pet. Co. Cal
Iluasteca l'et. Co
Tuxpam Pet. Co
Mundacadiz, S. A
Juan Casiana Tux.
Harry Hummel
I.a Tolteca

Tampico Oil Led
Tampico Oil Co.
jrung. Mex. Fuel
1.a Vifuidarl

Espana, S. A
I'et. de Tropetate
Consolidata de Pet.
Furnonio ド, Ruiz.
S.x.guranza, S. A.
la firalia
IA Mrridional
Tampirurena-San Javier
Trex. Mex. Juel (Jil
Narional dre Petr.
Mleximan I'rumier..
Eurctha
I'anurn Tuxpan
Sun (lil ro
g'arolara poblana.
Ian formorrial
Panuer Ifoxton
Itoreirnem Irot vex
l'urbln en j’anuco
Allimon W. Smith
Rodalfo II. Barlo.r.

foomenter fle Chaprala

Locations	Drilling Feb. 28, 1919	Pro-ducing	Potential Daily Production in Cubic Meters	Abandoned	Tota No. Well
		1	63.60		1
2	$\dot{2}$	8	22,370.50	8	20
3	2			3	8
	.	7	154.33		
	.	1	4.77	7	8
1					97
	1	17	4,561.06	9	27
	1				1
$\dot{2}$	3	10	17,072.19	2	17
1		3	639.98		4
				1	
.	1	2	875.00		3
.	1				1
	1	1	15.90		2
1		9	5,051.62	6	16
		1	397.00		1
	. . .	2	22.25		2
				1	
1		2	6.40		3
	1	1
				1	1
1				1	2
1	1	5	367.13	2	9
	1				
		1	2,000.00		1
1			1
	i			1	1
		1			1
				1	1
32	18	55	20,590.18	284	389
2	1			4	7
21	1	33	2,497.65	36	91
3	11	4	48,553.70	19	36
	1			. .	1
	1				1
1	.				1
1	\cdots	4	47.00	4	1
				1	1
4	22	7	13,969.35	13	26
1	1				1
6		2	21,462.86	1	1
	1				1
	1				1
	2			i	3
	.	2	160.05		2
1		1	494.52		2
	1				1
		1	400.00		1
.	1				1
	1				1
1	.	1	1,072.00		2
1	-	1	223.00		1
		1	127.20		2
2		1	2,400.00		1
.		2	1,113.00		3
		4	3,465.10		4
1	2			i	4
1	\cdots				1
	1			1	1
1		\ldots			1

RECORD OF ALL MEXICAN OPERATIONS TO DATE—1919— (Concluded)

DRILLED BY

Mexican Sinclair.
Pet. Agric. Mex.
Scottish Mex. Oil
Los Brujos.Mexican Sinclair. . . . J....

Dos Banderas Oi	
Clipton \& Smith	1
Freggs Oil Co.	

Hidalgo Petrol. Co 1
Catopico Oil Co.W. H. Miliken.
Ohio Mex. Oil.Producers Oil Co
Rio Vista
Sims \& Bowser
Spanish Mex. Oil... 1
J. 1J. R. Sharp......
Tampico Fuel OilBoston Mex. Leasing.H. McKeever.Mex. Tex. PetTamesi Pet. \& AsphGobiorno de la FedFom. del Sureste.Totals
.te.

	Drilling	Pro-	Potential Daily		Total
Locations	Feb. 28, 1919	ducing	Production in Cubic Meters	Abandoned	No. of Wells
1	5	4	2,951.00	1	11
1	1				2
				5	5
				2	2

1
1
1919 duc-Potential DailyTotalin Cubic Meters doned Wells
-
$\begin{array}{ll}\cdots & \cdots \\ \cdots & \cdots\end{array}$
i
3.18
795.00
1,224.30
$\begin{array}{rrr}1,224.30 & \cdots & 4 \\ \cdots \cdots i 9.50 & 1 & 1 \\ 2\end{array}$
$\begin{array}{rrr}1,224.30 & \cdots & 4 \\ \cdots \cdots i 9.50 & 1 & 1 \\ 2\end{array}$
$\begin{array}{rrr}1,224.30 & \cdots & 4 \\ \ldots-99.50 & 1 & 1 \\ 2 \\ \cdots & & 1\end{array}$

i
- i
3.18
795.00
$1,224.30$
$\ldots .79 .50$
$\ldots . . .$.
39.75
2.242
127.20111
4
LARGE PRODUCERS OF KANSAS—WITH PRODUCTION.DAILY PRODUCTION IN 1918

NAME	Augusta, Barrels	El Dorado, Barrels	Outside, Barrels	Total, Barrels
Carter Oil Co.	154	6,799		6,945
Carter \& S. W. Oil Co		9,445		9,426
Magnolia Petrol. Co..	3,126			3,108
Mid-Kansas Oil Co.	2,108			2,196
Prairie Oil \& Gas Co	747	47		773
Tidal Oil Co.		1,073		1,027
Cosden Oil \& Gas Co	1,562			1,562
Empire Gas \& Fuel Co	12,041	31,376		43419
Gypsy Oil Co.........		18,812		18,811
Monitor Oil \& Gas Co	1,539			1,535
Oklahoma Prod. \& Ref. Co.	220	31		253
Producers Oil Co..	83			80
C. B. Shaffer		1,502		1,594
Sinclair Oil \& Gas Co.		1,940		1,320
Totals.	21,580	71,025		92,607
All other companies	1,613	14,643	13,000	29,256
	23,193	85,668	13,000	121,863

LARGE PRODUCERS IN CALIFORNIA.

Per Cent Proved Land, No.
OPERATOR

CASINGHEAD GASOLINE MANUFACTURERS.

Name

American Gas Co
Calumet Oil Co
Fellows Gasoline Co
Gilmore, A. F. Co
Hurley Smith Co
Hurley Smith Co.
La Habra Gasoline Co.
La Habra Gasoline Co
La Habra Gasoline Co.
Olig Crude Oil Co.
Olinda Gasoline Co
Pacific Gascline Co
Purity Gasoline Co
Rancho La Brea Oil Co.
Richfield Oil Co
Sunset Gasoline Co
Union Oil Co. of California
Union Cil Co. of California
Union Oil Co. of California
Union ()il Co. of California
Union Oil Co. of California
Union Oil Co. of California
Ventura Refining Co.......
Wilshire Oil Co
Honolulu Consol. Oil Co
New Pa. Petroleum Co

Midwest Refining Co

Leonard Oil Co

Vacuum Oil Co
Atlas (iil Co
Aclas Oil Co.
Royalties Corporation
Crintral Refining Co

Continental Oil \& Ref. Co LaJunr Oil \& Gas Co
Roth Gasoline Co
(ollior (ill \& Gas Co

Stantard (oil ('o. of Louisiana Asmor. I'rod. \& Ref. Corp
Assuc. l'roml. \& lief. Corp
('ontral ()il \& Casoline Co

Cabot, (iorlerey l.
Ajax Fiasoline ('o
Atan I'rimoleum ('o)
lowers p'artand ('rment ("o tiamond (insoline ('0)
Iharmond (iasoline ('o lake l'urk IC.fining ('U
later l'irk It-fining ('o

l.stle. Sioux (), ('0)
(Bay, Cia=) line (${ }^{\circ}$)
Ti= (10110
rartarer col
Jotrar fian 1%

CALIFORNIA
1005 Central Bldg., Los Angeles. . . . 517 I. W. Hellman Bldg.
Los Angeles
700 Van Nuys Bldg., Los Angeles
339 Consol. Realty Bldg., Los Angeles
339 Consol. Realty Bldg., Lcs Angeles
339 Central Realty Bldg., Los Angeles
339 Central Realty Bldg., Los Angeles
339 Central Realty Bldg., Los Angeles
2827 LaSalle Ave., Los Angeles.
Van Nuys Bldg., Los Angeles
501 I. W. Hellman Bldg., Los Angeles
339 Consol. Realty Bldg., Los Angeles
908 Merch. Natl. Bank Bidg., Los Angele
933 Van Nuys Bldg., Los Angeles.
932 Van Nuys Bldg., Los Angeles
Union Oil Bldg., Los Angeles Avit
Union Oil Bldg., Los Angeles Brea
Union Oil Bldg., Los Angeles Maltha
Union Oil Bldg., Los Angeles
Union Oil Bldg., Los Angeles
Union Oil Bldg., Los Angeles 458 S. Spring St., Los Angeles 2455 E. Market St., Los Angeles 120 Market St., San Francisco Santa Maria

COLORADO

First National Bank Bldg., Denver
DELAWARE
901 Market St., Wilmington
ILLINOIS
West Chestnut St., Bridgeport
144 S. Wabash Ave., Chicago
144 S. Wabash Ave., Chiacgo
140 S. Dearborn St., Chicago
Lawrenceville.

KANSAS

Independence
Independence
P. O. Box 392, Independence

KENTUCKY
West Liberty.

LOUISIANA

Baton Rouge
Shreveport Commercial Bank Bldg Shreveport Commercial Bank Bldg Shreveport

MASSACHUSETTS

Boston
MISSOURI
1012 Baltimore Ave., Kansas City
1012 ISaltimore Ave., Kansas City .
Mutual Bldg., Kansas City
1012 Baltimore Ave., Kansas City
1012 13altimore Ave., Kansas City
324 Rialto Bldg., Kansas City
32.1 Rialto Bldg., Kansas City

921 Commerce Bldg., Kansas City
421 Commerce Blig., Kansas City
1012 13altimore Ave., Kansas City.

NFW Y(IRK

(i7 I'rory St., Buffalo
2413 roadway, New York ('ity.
21 Fi. 10th Sit., New York City

Plant
Santa Maria
Fillmore
Fellows
Los Angeles
Brea
near Sherman Jet.
Brea
Maricopa
Tait
Fellows
Olinda, Orange Co.
Brea
Bicknell
Los Angeles
Maricopa
Taft
Brea
Oleum
Santa Paula
San Pedro
Fillmore
Fellows
Kern Co.
Santa Maria

Salt Creek, Wyo.

Cherry Grove, Pa.

Shreveport, La.
Monroe, La.
Lenapah, Okla.
Lawrenceville, Ill.

Independence
Independence
Elgin, Kan.

Cannel City, Ky.

Northern Louisiana
Mansfield, La.
Monroe, La.
Vivian, La.
West Va. and La.
Delaware, Okla.
Jennings, Okla.
Dewey, Okla.
Jenks, Okla.
Nowata, Okla.
Bixby, Okla.
(2) Sapulpa, Okla.

Neodesha, Kas.
Creek Co., Okla.
Ochelata, Okla.
Dewey, Okla.
Shinglehouse, Pa.

CASINGHEAD GASOIINE MANUFACTURERS—Continued.

CASINGHEAD GASOLINE MANUFACTURERS (Continued)

Name

Hygrade Pet. \& Gasoline Co.
Indian Gasoline Co
Jefferson Gasoline Co.
Kadashen Gasoline Co
Liquefied Petroleum Gas Co
Livingston Refiners Corp
McMan Oil \& Gas Co
Magna Oil \& Ref. Co
Midco Gasoline Co.
Midco Gasoline Co.
Midco Gasoline Co.

Address

OKLAHOMA

1005-13 Kennedy Bldg., Tulsa. Sedan, Kas.
538-9 Kennedy Bldg., Tulsa Osage Co., Okla.
Tulsa
501 Palace Bldg., Tulsa
10th floor Kennedy Bldg., Tulsa........... Chelsea, Okla. (3)
Tulsa
Drew Bldg., Tulsa
Bixby
Kennedy Bldg., Tulsa
Midco Bldg., Tulsa
Burkburnett, Tex.

Midco Bldg., Tulsa
Adair, Okla.
Midco Bldg., Tulsa
Midco Bldg., Tulsa
Dewey
Oilton
Plant

Mileage Gasoline Co
Moon Gasoline Co
Nowata Oil \& Ref. Co
Oil State Gasoline Co
Oklahoma Central Oil Co
Okla. Petrol. \& Gasoline Co.
201-2 Kennedy Bldg., Tulsa
Tulsa
206-8 Cheyenne Ave., Tulsa
407 Kennedy Bldg., Tulsa
Tulsa
Tulsa National Bank Bldg., Tulsa........ Bixby, Broken Ar-
Red Fork
Bixby field
Jenks \& Beggs row, Chelsea, Cleveland, Glenn pool, Haywood, Spur, Jenks, Mohawk, Wateva, Standard Spur, Stone Bluff.
Okla. Prod. \& Ref. Corp Old Dominion Oil Co.. ()lsan Bros Pleasant Hill Oil Co Revere Oil Co., Ltd. Samallen Oil Co

Sapulpa Refining Co...
Scaw Oil Co
Sinclair Oil \& Gas Co. Stehbins Oil \& Gasoline Co T. B. Gasoline Co Tidal Gasoline Co

Totrm Gasoline Co
Triangle Pet. \& Gas. Co
Tulsa Gasoline Co.
V'ictor Gasoline Co
Walker, P. G., Jr Wistern Oil Corporation Harris, W. A. and J. A

Mradford ()il \& Gasoline Co (iilmorr Casoline Co
(illmorr (iasoline Co Jufforson Casoline ('O
Kane (;asoline C'o Punnylvania (;ayoline Co. P'annsylvania Casoline Co
Slonan \& Yorok Cro. of Ohio
Sirinul, 13. Is. ("o
Warren (iasus)line ("O)
Vospı, (`. J
Johnmon \& l lunlap
Hikhlame (1) $6^{\circ} 0$
Horne (iam ("o
Jann (引)
Harte of Sincow
'rawfort ()it \& (inas Co
('annstheal Cias ('o)
Sun Company

O. P. \& R. Bldg., Tuisa

810-13 Mayo Bldg., Tulsa
Tulsa
318-9 Cent. Natl. Bank Bldg., Tulsa
$2131 / 2$ S. Boston St., Tulsa.
502 Exchg. Natl. Bank Bldg., Tulsa
Sapulpa
Tulsa
Sinclair Bldg., Tulsa
Box 1970, Tulsa
First National Bank Biddg., Tulsa
602 S. Cheyenne S7., Tulsa

Tulsa
Tulsa
Bank of Commerce Bjdg., Tulsa
Tulsa.
307 Cosden Bldg., Tulsa
.504 Cosden Bldg., Tulsa
Wagoner, Okla
PENNSYLVANIA
287 Congress St., Bradford
Bradford
Bradford
43 Main St., Bradford
101 Main St., Bradford
9 Main St., Bradford
9 Main St., Bradford
101 Main St., Bradford
130 Main St., Bradford
101 Min St., Bradford
Bruin, Pa
Chicora, Pa
Clarion, Pa
Clarion, Pa
Emlenton, ja
Karns C'ity, Pa
Meadville
Oil ("ity
Finance Bldg., Philadelphia.
Union Banis Bldg., Pittsburgh.

Yale, Okla.
Broken Arrow
Drumright
Bixby Dewey, Bartlesville
Drumright
Tulsa field
Inola and Boynton
Nowata field
Delaware, Nowata Ochelata, Drumright
Jenks
near Bixby
Glen Pool
Cushing field
Boynton
Burkburnett, Tex.
Wagoner
Bell's Camp
Gilmore, Pa.
Wafferty Hollow
Limestone, Ohio
Kane, Pa.
Bradiord, Pa.
Bolivar, B. Y
Carrollton, Ohio
Coleville, Pa.
Eldred, Pa.
Bruin, Pa.
Chicora, Pa.

Emlenton, Pa.
Butler Co. Pa.
Friendly, W. Va.
Oil City
Billings, Okla.

CASINGHEAD GASOLINE MANUFACTURERS (Concluded)

Name	Address	Plant
PENNSYLVANIA		
Hope Natural Gas Co	. 424 Sixth Ave., Pittsburgh	West Virginia
Imperial Oil \& Gas Prod. Co	. 1106 Union Bank Bldg., Pittsburg	
Laughner, E. E.	1107 Standard Life Bldg., Pittsburg	near Ambridge, Pa.
Manufacturers Ligh	. 248 Fourth Ave., Pittsburgh	West Virginia
Ohio Fuel Oil Co.	2017 Farmers Bank Bldg., Pittsb	West Virginia
Penn. Mex. Fuel	. 424 Sixth Ave., Pittsburgh	Tuxpan, Mex.
Showalter, J. B	Pittsburgh	Butler Co., Pa.
Transcontinental Oil	Benedum-Trees Bldg., Pittsburgh	Waynesburg, Pa
Wayne Naphtba Co	308 Columbia Bk. Bldg., Pittsburg	
Haskell, H. H .	. Pleasantville	Venango and Warren County, Pa.
Deerlick Oil Co	. Russel	nglehouse, Pa.
Wolcott Gas Co	Sbinglehouse	
Tidioute Refining Co	Tidioute.	Warren Co., Pa.
Warren Oil Co., of Pa	Warren, Pa	Henrys Mills, Pa.
Henry Farm Oil Co	Warren, Pa	
Pavania Oil Co	Warren, Pa	Forest Co., Pa.
Sayre, J. J	West Sunbu	
	TEXAS	
DeSoto Gasoline Co	P. O. Box 929, Beaumont	Goss, La., Muskogee and Wann, Okla.
Higgins Oil \& Fuel	Beaumont	Caddo, La.
Lone Star Gas Co.	Fallas	
Panhandle Refining Co	1412 Royal St., Dallas	Petrolia, Tex.
Phoenix Oil Co.....	411 F. \& M. Bank Bldg., Ft.	Erath Co., Tex. Daddo Field, La.
Higgins Oil \& Fuel Co	Scanlan Bldg., Houston	
Humble Oil \& Ref. Co	. Coggan Bldg., Houston	$\begin{aligned} & \text { Iowa Park, } \\ & \text { Healdton, Okla. } \end{aligned}$
Bartles \& Jones.	P. O. Box 84, Ranger	Ranger District
Ranger Gulf Corp	Ranger	Burkburnett, Tex. Somerset, Tex. White Point, Tex.
Grayburg Oil Co.	Box 1097, San Antonio	
Internat'] Petroleum Co	234 Bedell Bldg., San Antonio	
	UTAH	. Byron, Wyo.
Utah-Wyoming Consol. Oil	.McIntyre Bldg., Salt Lake City	
	WEST VIRGINIA	
Transylvania Oil \& Gas Corp	. Day and Night Bldg., Huntington.	Lawrence Co.
O'Brien, Wm.	New Cumberland-same	Elizabeth, W.Va.
Petterson Bros. Co.	. Parkersburg	
Robert Bros.	Parkersburg	Burning Spring, W. Va.
		West Virginia
$\xrightarrow[\text { Penn.-Ky. Oil } \& \text { Gas Ref. Co }]{ }$. 9 ity Bank Bldg., Wheeling	Jefferson Co. Hancock Co., W.Va.
WYOMING		
Enalpac Oil \& Gsa Co	Casper	Mineral Wells, Desdemona and Burkburnett, Tex.

STANDARD OIL CO. (N. J.) AND SUBSIDIARIES CONSOLIDATED GENERAL BAIANCE SHEET.

DEC. 31, 19 :8.
Assets.
Total value of plant, stable and floating equipment (less depreciation)
\$249,827,931.92
Stock in other companies
23,009:449.64
Govermment bonds and other investment

securities	93,452,369.77
Inventories of merchandise.	160,505,280.15
Accounts receivable	151,320,085.90
Cash	$13201,851.66$

418,479,587.48

Total assets
$\$ 691,316,969.04$
Iess accounts payable
\$116,816,714 77
Marine insurance reserves....................... 11, ©57,228.46
128,773,943.23
Net value
$\$ 562$ 543,025.81

Nominal Liabilities.
Capital stock
\$ 98,358,300 00
Reserve for annuities 492,315.84
Surplus including reserve for working capital 463,712,409.97
$\$ 552,543,02581$

STATEMENT OF EARNINGS AND DIVIDENDS FOR THE YEARS 1912-1918 INCLUSIVE, WITH INCOME AND WAR TAXES川EDLCTED FROM THE EARNINGS OF THE YEAR ON WHICH SAME WERE CALCULATED. (S. O. Co.)

	Earnings Before D) ducting	Federal Taxes paid and	Earnings After Deducting	Lividends Paid
Yiar	Federal Taxes	Accrued	Federal Taxes	
1612	S,35,397,717.37	289,830.33	\$35, 107, 887. 04	19,667,660
1413	16,1 ¢8, 95506	7,085 . 57	45,691,869.49	*59,002,980
1911	31,898,819 62	341,215.45	31,457,634.17	19,667,660
111\%	611,396,922 .73	619,679.39	60,777,243.34	19,667,660
1116	72,126,692 . 36	1,634,633. 19	70,792,059.17	19,667,660
1417	105, 785,85891	25,019,916.97	80,765,941.94	19,667,660
111	101,611,113 8t	$\dagger+4,330,359.15$	57,283,784.69	19,667,660

"Under "ibividends paid" for the rear 1913 there is included the distrihution of $\$ 10$ per share marle from repayments by former subidiarias of cash which had previously been advanced by this company.
+1918 taxes subject to adjustments.

BY-PRODUCT COKE PLANTS IN UNITED STATES AND CANADA (BENZOL PRODUCERS).

OWNER OR OPERATOR	LOCATION	Coal Used	Coke Made
Calhoun Gas Co	. Battle Creek, Mich	36,000	25,300
Ford Motor Co	Detroit, Mijch.....	864,000	622,000
Semet-Solvay Co	Detroit, Mich	1,343,300	1,009,000
Michigan Light Co	Flint, Mich	96,400	67,500
Michigan Light Co	Kalamazoo, Mich	43,800	30,700
Michigan Alkali Co	Wyandotte, Mich	94,000	65,800
Minnesota Steel Co	Duluth, Mich	600,000	450,000
Zenith Furnace Co	Duluth, Minn	200,000	144,000
Minnesota By-Products	St. Paul, Minn	380,000	273,600
Laclede Gas Light Co	St. Louis, Mo	320,000	240,000
Camden Coke Co	Camden, N. J	360,000	252,000
Seaboard By-Product Coke C	Jersey City, N.	340,500	255,350
Seaboard By-Product Coke Co	Jersey City, N.	681,000	510,700
Semet-Solvay Co........ . . .	Buffalo, N. Y	386,000	289,500
Empire Coke Co	Geneva	146,000	102,200
Solvay Process Co	Syracuse	65,000	45,000
Dominjon Iron \& Steel Co	Sydney, N. S	720,000	518,400
Dominion Iron \& Steel Co	Sydney, N. S	1,664,000	1,198,080
Nova Scotia Steel \& Coal	Sydney Mines	159,000	110,000
Dover By-Products Coke Co	Canal Dover, Ohio	120,000	87,600
United Furnace Co.	Canton, Ohio	280,000	204,400
Cleveland Furnace	Cleveland, Ohio	450,000	337,500
River Furnace Co	Cleveland, Ohio	1,300,000	949,000
American Steel \& Wire C	Cleveland, Ohio	1,150,000	839,500
Hamilton Otto Coke Co	Hamilton, Ohio	240,000	168,000
Ironton Solvay Coke	Ironton, Ohio	432,000	270,000
National Tube Co.	Lorain, Ohio.	1,320,000	963,600
Portsmouth Solvay Coke	Portsmouth, Ohi	770,000	559,900
Toledo Furnace Co	Toledo, Ohio.	560,000	408,800
Brier Hill Steel Co	Youngstown, O	520,000	397,600
Republic Iron \& Steel Co	Youngstown, Ohio	1,020,000	744,600
Youngstown Sheet \& Tube Co	Youngstown, Ohio	1,300,000	949,000
Youngstown Sheet \& Tube	Youngstown, O	650,000	474,500
Steel Co. of Canada	Hamilton, Ont	342,000	260,400
Algoma Steel Co	Sault Ste. Marie, Ont	285,000	217,000
Algoma Steel Co	Sault Ste. Marie, Ont	681,000	510,700
Philadelphia Snburban Gas \& E	Chester, Pa.	125,000	87,500
Carnegie Steel Co	Clairton, Pa	4,000,000	2,800,000
Carnegie Steel Co	Clairton, Pa	800,000	560,000
Semet-Solvay Co.	Dunbar, Pa	280,000	173,600
Carnegie Steel Co	Farrell, Pa	830,000	581,000
Allegheny By-Products Coke Co	Glassport, Pa	260,000	195,000
Jones \& Laughlin Steel Co	Hazelwood, Pa	2,000,000	1,300,000
Cambria Steel Co	Johnstown, Pa	529,200	338,888
Cambria Steel Co	Johnstown, Pa	1,529,500	1,223,700
Bethlehem Steel Co	Lebanon, Pa	887,000	638,000
Bethlehem Steel Co	Steelton, Pa	375,000	270,000
Bethlehem Steel Co	Steelton, Pa	516,000	371,500
Lehigh Coke Co.	South Bethlehem, Pa	2,400,000	1,920,000
Providence Gas Co	Providence Gas C	240,000	172,800
Memphis Gas \& Electric Co	Memphis, Tenn.	59,000	41,300
Seattle Lighting Co	Seattle, Wash	48,600	29,200
Fairmount By-Products Co	Fairmount, W. Va		
LaBelle Iron Works	Follansbee, W. Va	610,000	445,300
National Tube Co.	Benwood, W. Va	270,000	189,000
Northwestern Iron Co	Mayville, Wis	320,000	230,400
Milwaukee Coke \& Gas Co	Milwaukee, Wis	732,000	549,000
Northwestern Iron Co	Mayville, Wis.	197,000	147,000
Chattanooga Coke \& Gas Co	Chattanooga, Tenn	173,000	124,000

PETROLEUM PRODUCING COMPANIES OF TEXAS FOR 1921.

The following producing compunies, partnerships and individuals operating in the state of Texas, by their sworn statements have reported to the Oil \& Gas Department of the Railroad Commission, their gross oil production and value of same for the months of January, February and March, 1921.

Total production was $22,693,414.47$ bbls. and the sales value of same, $\$ 48,032,959.11$.

Number of companies, partnerships and individuals that have reported to date 680 as against 709 for the last quarter of 1920.

The Humble Oil \& Refining Co. of Houston for the first quarter of 1921 was first in production, $3,766,622$ bbls., value $\$ 6,943,956$. The Texas Co. was second in value, $\$ 5,404,692$ and third in production, $2,608,512 \mathrm{bbls}$. The Gulf Production Co. third in value, $\$ 5,026,-$ 030 and second in production, 2,783:376 bbls.

For the last quarter 1920, the Texas Co. was first in production, $4,072,104$ bbls, value $\$ 12,805,648$. Gulf Production Co. was second, $2,742,108$ bbls., value $\$ 8,661,216$. Humble Oil \& Refining Co. was third with $2,954,747$ bbls., value $\$ 8,213,768$.

Total production in the last quarter of 1920 was $23,689,504$ bbls. valued at $\$ 76,168,108$.

Company	Location
¢	
arnett-Yan Cleare Oil Co.....Wichita Falls	
Bartl	
11 Bros. \&	
keland,	
aker Oil Co. of	
adley Co....................... Fort Worth	
rack Lundy	
Buchanan, S. R........................ Ba	
allington,	
ll Burke Oi] Co....................... Waco	
rooks of Strong. Breckenridge	
ass Petroleum Co................. Houston	
irkeland. K. B.	apolis, Minn.
uffalo-Texas Oil Co........Buffalo, N. Y.	
rk Noel Oil	Fa
11 Burke Oil Co..................... Waco	
Four	Fa
ISelen Oil Co.................. Belen, N゙. M.	
Burkburnett Oil Co........Custer City, Oila.	
Geo. Beggs Oil	
Beverly Oil Co................ Wichita Falls	
ryan Oil Corporation.......... Wichita Falls	
Big Pool Oil Co............... Wichita FallsBailey-Winkler Oil \& Gas Co...Breckenridge	
ark-Mack Oil Co............ Sheridan, Ind.	
13reckenridge Production Co...... Brerkenridge 131 re Bonnet Petroleum Co......San Antonio	
131 re Bonnet Petroleum Co......San Antonio Brinkley Petroleum \& Refining Co.	
Bigms nil \& Gas Co................. Mckinney	
lass de Dillard................... Wichita Falls lexata nil co.	
Bowen Olympic Oil Co..New York City, N. Y. 13. I3. Oil Co.................................Electra Ifessley, Liricoln \& McDonald.........Elertra	

PETROLEUM PRODUCING COMPANIES OF TEXAS FOR 1921. (Continued)

Company Lucation	Company Location
Irown \& Co., Inc..................... ${ }^{\text {D }}$ Dallas	1)eibel Oil Co............................. Thrall
B. O. O. G. Oil Co................ Iowa Park	Dale, E. A. (Perkins lease)........... Electra
Barkley, T. G....................... Sour Lake	Dominion Oil Co.............. Wichita Falls
Bankers \& Merchants Petroleum Co.	Danciger, M. O............... Wichita Falls
Fort Worth	D)uble standard Oil Co........ Wichita Falls
Belle City Oil Co.............. Wirlita Falls	Daytun Oil Co................. Dayton, Ohio
13ig \& Cousolidated Oil Co............El Paso	Dennie Roberts Oil Co......... Wichita Falls
Big John Oil Co................... Beaumont	Dugueane Oil Co.................. Eastland
Bower \& Dillard............... Wichita Falls	Heep Sand Oil \& (ias Co..........Corsicana
Brown, Geo. I................. San Antonio	Deshler Oil \& Kefining Co...... Brerkenridge
Buckeye Development Co...... Columbus, Ohio	Denver Petroleum Co........... Denver, Colo.
Burney, I. H.................... San Antonio	Halso Oil Co.................... Mineral Wells
Castles Oil Co...................... Corsieana	Duodlebug Oil Co................... Sour Lake
Chapman, 0. H................. Waxahatchie	Elmi llill Oil Co.................... Corsicana
Caldwell Oil Co.........Oklahoma City, Okla	Ellis \& Anderson...............San Antonio
Commereial Petrolcum Co........San Antonio	Emmis Oil \& Development Cu......... Ennis
Castell Oil Co....................... Houston	Fenomy Oil Co................Fort Worth
Cooper, Menderson \& Martin.... Breckenridge	Erie Gas \& Oil Co...........Iluntington. Ind.
Continental Oil \& Refining Co..Tulsa, Okla.	Eddy Oil Co............................Guffey
Cactus Oil Co.................... Fort Worth	Hagle Petrolcum Co................ ${ }^{\text {Houston }}$
Crown Oil \& Kefining Co............ ${ }^{\text {IIouston }}$	Eaton, E. E........................... Electra
Corsieana Oil \& Refining Co......Corstcana	Emerick Oil Co............... Wirhita Falls
Clara Oil Co.................. Wichita Falls	Empire Texas Oil Co.......... brorton, N. Y.
Cornucopia Oil Co..............Fort Worth	Ellis, Thos S..................... San Antonio
Centerfield Oil Co............. Wichita Falls	East Batson Oil Co.................. Batson
C. A. L. Oil Co................... Eastland	Eldorado Oil \& Gas Co..............Ranger
Connell, W. E....................Fort Worth	Empire Gas \& Fuel Co.... Bartlesville, Okla.
Cohen \& Lebow............... . ${ }^{\text {Vichith }}$ Falls	Erangeline Oil Co.......... Brockton, N. Y.
Christian, W. G..................... Houston $^{\text {a }}$	Elliott, Jones \& Co., Ine..... San Antonio
Cresrent Oil Co................ Wirhita Falls	Foster, H. V., et al...............Bartlesville
Cezreaux \& Martin....................IIumble	Fensland Oil Co.................Fort Worth
Craven Oil \& Refining Co.........Jakehamon	Ferris-Seay Co................. Wichita Falls
Clint Woorls Oil Corporation... Wichita Falls	Fisher \& Gilliland............. Wichita Falls
Consolidated Oil Co..................... Cisco	Flynn-Tuttle Oil Co.................. Electra
Crosbie, T. S.................... San $^{\text {Antonio }}$	Fern Glen Oil Co............St. Louis, Mo.
Crystal Oil Corporation.......... Denver, Colo.	Frontitr Oil Co............... San Antonio
(rosbie. J. E................... . Tulsa, Okla.	Fisher-Parker Oil Co.......... Wiehita Falls
Comancle Northern Oil Co....... Fort Worth	Four \& Four Oil Co................... Dallas
Chappell Oil Co................ Denser. Colo.	Franklin. J. M., et al.......... Wichita Falls
Champlin \& Winkler (T. \& P. Co.). .Thurber	Fox \& Lamb Drilling Co........... Brownwood
Cheley, W. J.................. . Denver, Colo.	Fidelity Oil Corporation...... Louisrille, Ky.
Continental Petroleum Co............. Dallas	Freedman, Alex.................... Corsicana
Considine-Martin Oil Co.San Francisco, Calif.	Fowler, M..................... Wichita Falls
Central Texas Oil \& Gas Association....	Ferguson Wells No. 1 and No.
eon	
Crowell. L. R......................... Dallas	Forest Oil Co..................Wichita Falls
Carteret Oil Co...................Fort Worth	Fisher. Gates \& Co............. Wichita Falls
Carcline Oil Co................Nacogdoches	Firer Rivers Oil \& Gas Co...... Wichita Falls
Central Oil Development Co............. Cisco	Franklin, Wirt................Ardmore, Okla.
Chapman, P. A., Jr................Eastland	Farish \& Ireland lease..............Houston
Consolidated Producing Co......Fort Wortl	Farmer, Robt.................. Wichita Falls
C. H. R. C. Oil Co...............ireckenridge	Ferguson, C. I................. Wichita Falls
Cooper-Henderson Oil Co........ Brerkenridge	Foster \& Allen lease...........Wichita Falls
Cline Oil Co................... Wichita Falls	Foster \& Watson.............. Wichita Falls
Camp Oil \& Gas Co.............. Fort Wortlı	Federal Oil Co............... Clereland, Ohio
Chenault, N. B................ Wichita Falls	Freene Oil Co................ Wirhita Falls
Crosbie, J. E...................Tulsa, Okla.	Farquherson Oil ro............Wichita Falls
Cabiness, C. C................. Wichita Falls	Findley-Mimiek Oil \& Gas Co.... Benjamin
Canadian Park Oil Co.............. Canadian	Forty-One Oil Co.............. Whehita Falls
C. Y. T. Oil Co...................Beaumont	Fleteher Oil Co................ Wichita Falls
redar Creek Oil Co................... Houston	Gulf Production Co.................. ${ }^{\text {Mouston }}$
Clem Oil Co., Inc....................Houston	Gabler \& Brannon.................. . Eastland
Colorado Oil \& Gas Co...... Denser, Colo.	Gladstone Oil \& Refining Co....Fort Worth
Comanche Duke Oil Co..........Fort Worth	Galsez Oil rorporation........ New York City
W. F. Corts Drilling Co... Columbus, Ohio	(ialloway Consolidated Oil Co....Fort Worth
Cosden Oil \& Gas Co..........Tulsa, Okla.	fwrmn. O. F'. (trustee)........... Iowa Park
Cosa, Aubrey N................. Corsicana	rillbert Co......................... . . ${ }^{\text {ceaumont }}$
Dale-Knotts Oil Co............ Wichita Falls	Folconda Oil Co.. No. 2........ Wichita Falls
Duggan Oil Co......................... Dallas	Gonzales Creek Oil Co................ITouston
Duke of Dublin Oil Co..........Fort Worth	Goosc Creek Oil Corporation......... ${ }^{\text {Clouston }}$
Daniel, W.................... . Wichita Falls	Gotham Oil Association..........Fort Worth
Developers Oil \& Gas Co........ Wichita Falls	Gatewood Oil Co.......................Ennis
Davis, L. R.,...................Tulsa, Okla,	(ilenridge Oil Corporation....st. Louls. Mo.

PETROLELM PRODUCING COMPANIES OF TEXAS FOR 1921. （Continued）
 （＇ompany
 Location

Company
Grisulale，J．A． filasscork Lpasing symdicate friswolel Oil Co． Colden Cycle Uil Co． Gatewome Oil Co． Galrez－liurk I＇etroleum Co． €iulf l＇uast（lil Corporation． Ciates llil Co． \qquad Ginlllke A Gerard． ．．．．．．．．．．．．．Irhita Fats Creat States Petrol．Co．of Texas．．．．．．Dallas （it Lzior，WV：F Crailiolus oil Co． gorll d Jlavis Tract Sio．L．．．．lawton，Okla． Bond d Havis Tract No．2．．．．Lawton，Okla． （iuffey－1）illespie Oil Co．．．．．．Dittsburgh．Pa． （Bulernmla（Iil Co．No．I．．．．．．．．Wichita Falls （iilliland oil Co．

Tu＇sa．Okla．
（Bmirey，F．I．
Enisl，Okla．
cileuriclge w：l rurnoration．
sic．Louis，Mo．
（iallather \＆lawson
Mesdemona
fila lya lielie Oil c＇u．
Tulsa，Okla．
liraylurs（all fo．．．
San Antonio
1：rathl lubk lif Co．
Furt lVorth fi kater l3rerkenritge wil Co．．．．Breckenriage fialena K ginal bil fo．of Houstun．．．．Ilouston fintarer di liutinglam．．．．．．．．．Ibluffion，Ind． （iatna．T．N．．．．．．．．．．．．．．．．．．．．．．．Wichita Falls
libaranty bil de Gas lo．．．．．．．．．．．．Breckentidge

Electra
Hnusion d Wel－lı． Abilena
I1 \％1 lese wil（\％
l：urkburnett IIrrron．II．II．．．．．．．．．．．．．．．．．Jreckenridge Humble（1！A Itefining ro．．．．．．．．．Ilouston
 llarnes：K．（）．．．．．．．．．．．．．．．．．．．．．．IVichita Falls Harmey lil c＇o． Wichita Falls
Walls Hawkilv W：． 1. Wirhita Falls H．frivir el lepegans H111！．J．（＇ Dallas
llalmack vil fio．
Wichita Falls Hoリn＋ 11811 ｜1 ．．．．．．．．．．．．．．．．．．．．．．．．．．．Dallas
 Hyrlo．Vipers．
H111 se Jultes
11 1 loy d Y゙roxoman
llal bing \＆l＇alfell．

lly 5mbla louser oil ro lul | $1 / 1$ | 1 |
| :--- | :--- |

Hortill，Ias．（：（atcornay） Hurale II A Jialr．
11．1．Viekefa Trust

llı｜rertern．F゙ li
11 ｜1：$\%$
IVrelur Hil（\％，

ll＝t of hriligo

111 U11

1＂1aJnvew
Firt Wiurlla

Jones，Thos．II．
Japhet \＆Sutherland （ ）］－veland，Ohio
Japhet is Sutherland．．．．．．．．．．．．．．．．．．．．．．．IIouston
Jones Light Petroleum（＇o．．．．．．．．．．Pilot Point
John \＆Jeff Oil Co．．．．．．．．．．．．．．Wichita Falls
Julia Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Sour Lake
Jackson，J．Š．（trustee）．．．．．．．．．．．．．．．Sour Lake
Jackson Co．．．．．．．．．．．．．．．．．．．．．．．．San Antonio

Jefferson Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Jallas
Kemp－Dunger－Allen Oil（ro．．．Wiohita Falls
Kein，Frank J．．．．．．．．．．．．．．．．．．．．．．Wichita F゙alls
Iierr．T．P．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Corsicana
Koons Dell．．．．．．．．．．．．．．．．．．．．．．．．Tulsa，Okla．
King Petroleum（＂）．．．．．．．．．．．．．．．．Wirhita Falls
IVeoury Jike．．．．．．．．．．．．．．．．．．．．．．．．W＇Waro
Krotts，F．F．．．．．．．．．．．．．．．．．．．．．．Vichita Falls
Keen \＆Woolf Co．．．．．．．．．．．．．．．shrereport，La．
Kirly，JIarner R．．．．．．．．．．．．．．．．．．．．Austln
Kansas City Petroleum Co．．．．．Wichita Falls
Ken？ey \＆Bright．．．．．．．．．．．．．．．．．．Wichita Falls
Kavanaugh I＇etroleum Co．．．．．．．．．．．．．．．．Houston
に゙omp，G．G．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Vernon
Kentucky River Oil Co．．．．．．．．．．．．．．．．．Fort Worth
lievstone Drilling Ca．．．．．．．．．．．．．．．．．．．．De Leun
Tiauth Oil Co．．．．．．．．．．．．．．．．．．．．．．Wichita Falls
King Petroleum（＂o．．．．．．．．．．．lilwoud，West Va．
Keever \＆Gordon Oil Co．．．．．．．．．．．Sour Lake
liansas Gulf Co．．．．．．．．．．．．．．．．．．．Clicago，Ill．
Kiurz Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Somerset
Lincoln Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Electra
Terely－Maxwell Oil（＇o．．．．．．．．Wichita Falls
Leesh Bros．Oil Co．．．．．．．．．．．．．．．Virhita Falls
Lakue Oil Association ．．．．．．．．．．．．．．．．．．．Electra
Long．Taylor \＆Thomas．．．．．．．．．．．．．Houston
Lou Ellen Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．Denison
Lone Star Gas Co．．．．．．．．．．．．．．．．．．．．．．．．．．．Dallas
Lowe Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．De Leon
Little Wonder Oil Co．．．．Bowling Green，Ky．
P．J．Lee \＆Co．．．．．．．．．．．．．．．．．．．Wichita Falls
Le Sil Oil Corporation．．．．．．．．Wichita Falls
Lucky Seren Oil Co．．．．．．．．．．．．．Wichita Falls
Lorkhart，Parker \＆Glassrock．．．．．．．．．．Ranger
Landreth．E．A．Co．．．．．．．．．．．．．．．．Breckenridge
Lawtor Oil Co．．．．．．．．．．．．．．．．．．．．．．Iawton，Okla．
Lowry Oil Cornoration．．．．．．．Muskogee，Okla．
Liberty Petroleum Co．．．．．．．．．．．Wichita Falls
Lone Star Oil Co．．．．．．．．．．．．．．．．．．．．．．Burkburnett
Lake Oil Co．
Beaumont
Louisiana－sitephens Oil Corporation．
Fort Worth
Lake riew Uil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．Sour Lake
Lincoln MeDonald Oil Co．．．．．．．．．．．．．．．Electra
Mahon，P．J．（receirer）．．．．．．．．．．．．．Beaumont
Manhattan Oil \＆Rerining（vo．．V゙ichita Falls
Warathon Oil Co．．．．．．．．．．．．．．．．．San Antonlo
Martin Oil Co．
Beaumont
Mary D．Oil Co．．．．．．．．．．．．．．．．．．．．．．．．Sherman
Mermis，G．WV．．．．．．．．．．．．．．．．．．．．．．．．Vichita Falls
Minor Oil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Beaumont
Nontour Oil Co．．．．．．．．．．．．．．．．．．．．Pittsburgh．Pa．
Monney，L．E．（trustee）．．．．．．．．Wirhita Falls
Melonalrl Oil \＆Gas Co．New Midaleton，Ohio
Mi•lowell，II．L．．．．．．．．．．．．．．．．．．．．．．．．．．El Paso
Min－I゙ansas Oil \＆Gas Co．．．．．．Findlas．Ohio
Mnore \＆Mckinney． Houston．
Mutual Dil Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．LaPorte
Niller，Iferbert G．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Eastland
Mulina Oil \＆Fas Co．．．．．．．．．．．．．San Antonio
Mos）\＆Texas Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Fort Worth
Macr \＆Shappell．．．．．．．．．．．．．．．．．Wichita Falls
Meltorman，C．K．．．．．．．．．．．．．．．．．．．Ardmore，Okla．
Whatrose Oil Rer．Co．．．．．．．．．．．．．．．．．Fort Worth
Muntrose 0i］Ref．（＇o．．．．．．．．．．．．．．．Fort Worth

PETROLEUM PRODUCING COMPANIES OF TEXAS FOR 1921. (Continued)

Company Location	Company location
McMan (Bil \& Gas Co...........'Tulsa, Okla.	(il Derelomment Co.............st. Louis, Mo.
Margay Oil (orporation..........'l'ulsa, Okla.	Old Colony United Oil roo.... Wichita Falls
Mrlban (0il Co.................. Winhita Falls	Usaga l'roduction Co.......... Wichita Falls
M"Allister \& Brown............. Wichita Falls	(tex Oil Co...................Culumbus, Ohio
Mclienzie Oil Co..............Wichita Falls	Okla. l'rod. \& Kef. Cord. of America.
Monarch Oil \& Refining Co.......... Mouston	Tulsa, Okla.
Metronolitan Oil Co..................IIIouston	Okla. Petroleum \& Gas Co. of Texas
Maxon Oil Co.................Wichita Falls	Tulsa, Okla.
Mary Elizabeth Oil Co................... Uallas $^{\text {a }}$	Old Dominion Oil Co.......... Wichita l'alls
Morris \& White...................... Carbon	Dhio Fuel Oil Co.............. Pittsburgh, Pa.
Matador Oil \& Gas Co.............Quannah	Y'lateau dil Co...................Fort Worth
Murphy Oil Co. of P'a.................Thrall	Planet Petroleum Co..............Fort Worth
Mesquite Oil Co.................. Fort Worth	l'emmok Oil Co................. Tulsa, Okla.
Meyers, Green, Wilson \& lirannon.	l'erroleum Development Co.... Wichita Falls
ichita 1ralls	l'rimrase Oil Co.......................IIouston
Mitcham \& Morrison.............Fort Worth	1lacid Petroleum Co........... Wirhita Falls
Majestic Oil \& liefining Co... Wichita Falls	Powell, J. L................... Wichita Falls
Melain Oil \& Coal Co........ Columbus, Ohio	lerkins, J. J................... . Wichita Falls
McCamey, Geo. B................ Cross Plains	Pace, Geo. L........................... Dallas
Mildren Oil Co............... Lexington, Ky.	Palmer Oil Co....................... . Itenrietta
Marnet Oil \& Gas Co........ Pittsburgh, Pa.	Chas. l'aggi \& Co................... Saratoga
Moore, Elward T..................... Dallas	Portland-Texas Oil Co.......... Wichita Falls
Martin, G. A........................ . . Mumble	l'araffine Oil Co.................. Leaumont
Mann \& Ilseng (W. L. Mann). Wichita loalls	Pure Oil Co.................. . . ${ }^{\text {columbus. Ohio }}$
Mam-MrPahil Oil Co......... Wichita Falls	Plillips Bros.... leaumont
Mann-Power Oil Co............ Wichita Falls	Priddy, W. M................. . Wirhita Falls
Mann Oil Co................. Wichita Falls	Patton, H. H................... Fort Worth
M. \& P. Burke Extension Oil Co.	Pierce Oil Corporation........New York City
Lawrence, Kansas	Paratox Oil ro............... Wichita Falls
Moore, N. A......................... Eastland	Paine Oil \& Refining Co............ Houston
Moore, F. L...................... Tulsa. Okla.	Pioneer Oil Corparation........ Wichita Falls
Madden \& Madden...............Rising Star	Prairie Oil \& Gas Co..Indepentence, Kiansas
Mahlstedt-Mook Oil Co..........Fort Worth	Patton, H. H................... Fort Warth
MeNamara Oil Co.................. Beaumont	Panhandle Refining Co................Dallas
Minutex Oil Co...............Wichita Falls	Paris-W'ichita Oil Co.....................Paris
Mitchell Producing Co............Fort Worth	
Mackenzie Oil Co................Fort Worth	Pinto Oil Co.................. Mineral Wells
M \& V Tank Co.............. Wichita Falls	Parker, Arthur G................... Eastland
MaGoldrick, E. W. Batson	Pipuin Oil Co..................... Brownwood
Morrissey, Thos. \& Ileylrick, L. A....Dallas	P \& 11 Oil Co..................... Houston
Monarch Petroleum Co................ Dallas	Pilot Point Oil \& Gas Co........ Pilot Point
Mayfield, Jos. L. Oil Co...... Wichita Falls	lioncer Producing Co......... Wichita Falls
McQuail, M. W.................. Fort Worth	Porter, Works \& Ilicks........ Wichita Falls
Magnclia Petroleum Co................ Dallas	Southside Oil Co............... Wrichita Falls
Mack, Theodore................. Fort Worth	Staley, M. L.................. Wirhita Falls
Markham, John II., Jr. \& Tidal Oil Co.	shackelford, F. L. Wichita Falls
	Strawn Petroleum Co........... Denrer, Colo.
Nutt, Horace.... Austin	Silb-Erman Oil Co............ Wi Whita Falls
New Domain Oil \& Gas Co............ Dallas	Schlicher Oil Co................... Sour Lake
Northwest Dil \& Gas Co........ Wichita Falls	Stephens Oil Co..................sour Lake
Ninteen Oil Co.................... . Beaumont	San Dieqo Dil \& (${ }_{\text {das Co..............Alire }}$
Nortcx Dtilling \& Development co	Sankey,)ohn S................. Fort Worth
St. Louis, Mo.	Hpeed. C. I).........................carsicana
Necona Burk Oil Co............Burkburnett	Seibel Oil Co.................. Wichita Falls
North Ameriran Oil \& Ref. Cornoration.	Seaystone vil Cu.............. Wirhita Falls
Oklahoma City, Okla.	Stmms, 1. F. \& Co.................llouston
Nutt, Horace........................... Austin	Sink. Jeel.......................... Corsicana
North Texas Oil Co.................... Vernon	Southern Petroleum \& Refining Co...llouston
Norton \& Cline................ Wichita Falls	Standard Oil Land \& Leasing (o...Beaumont
Number 77 Oil Co.............W'irhita Falls	Sure Pop Oil Co....................... Dallas
Northwest Burk Oil \& Gas Co..Lawton, Okta.	Sterling Oil Co..................... Titusville
Noble, Chas. F................. Wichita Falls	States Oil Corporation.............. Eastland
Natural Oil Co................ Wichita Falls	Swensondale Oil Co..............Fort Worth
Nineteen Oil \& Gas Co........ Wichita Falls	Shawmut F'etroleum Cord., lnc...Fort Worth
Nortex Drilling Co............St. Louis, Mo.	Shappell. T. O................ Wichita Falls
Oil Jominion Oil Co.................Ilouston	Stump Oil \& Refining Co........Surkburnett
Oriental Oil Co.........................lyallas	Saxon Oil Co..................... Sour Lake
O'Neill, 11. A................... Wichita F'alls	Slaughter \& Mutchinson............... . Bowie
Olell Oil Co................... Wichita Falls	sinoat, Geo. A................ Wichita Falls
Oil In velopment Co.............st. Louis, Mo.	Stull, R. O..................... Wichita Falls
Oktaha Co........................Tulsa, Ok.	Shaffer-Mankin Dallas
Old Colony Oil Co.................... Dayton	Stella Oil Co....................... Beaumont
Owen, Burkett \& Wheeler.......Mineral wells	Stuencer Pelroleum Co.................... Cisco

PETROLEUM PRODUCING COMPANIES OF TEXAS FOR 1921. (Continued)

Company Location	
Geo.	
	Beaumont
tribling.	Ho
Star-Tex Petroleum Co........ Wichita Falls	
Sipe-Tex thil	
Securits Oil Co................Breckenridge	
Soltut, R	
Silirian Oil	
schram, J. F	
Simms Oil Co........................ Dallas	
\therefore macrset Oil	San Antonio
sinclair Oil Co.......................Houston	
stextette Oil Co	
Sixty-Sis Oil Co	
serenty-Two Oil	
*uperior (ill Co........superior, Wisc. scanlon \& MeCourtie................... Dallas	
Siuux Oil \& Relining Co........ Wichita Falls	
San leernard Oil	
Southrestern Oil Der	Co..Eastland
wastika (il Co	
Snowden \& MrSweenes Co....vew Fork City	
seaboard oil \& Gas ('o...	
silk, W: W1........................Wirhita Falls	
-treeter-Electra Oil	treeter, N. Dak.
snleler. C. W................. Wichita Falls	
Standiturl Bros....	
Suther!and. W. C. \& Cox. C. P. Wichita Falls	
Sun (\%) (North Texas D)	ion)...... Dallas
Stelly fil Co.................. Tulsa, Okla,	
s'esensun L'ase (.\}. J. Powell)......... Waco	
Shammek Oil ro.............. Wiehita Falls	
Sutherland Oil Co	
Skinncr, E. W. Oij Co............Saratoga	
ifrer Lake Co	
Staley, J. Wichita Falls	
Teras Southrm lij	
Texola P'etroleum Co.................Electra	
arser (0ll Co	Dallas
Tollerert. Iohn OHI Cu..............Midlothian	
cras- Virginla ofl	
Texas ull rorporation................. Dallas	
Trxas Wrinder Pouls Wichita Falls	
vmex (hll Co.	W Worth
Tharmas. Mapk Wichita Falls	
Teras Stamlaril bil ro............... Houston	
Tras lilue lbomme Oil .\|ssu... Wiehita Falls Tiaxforif. W: II................................	
Terre ull \& Driltug Co..............IIouston	
Trxas rı......................jususton	
Telna (111 Irponluetrog io....................) ballas	
Truar bil linIIthita Falls	
Tent ran 111 \& lifiming Co.... Wiflita Falls Tl-sp-11 a 3 lituris.	
Tixal liuffnle 1 bit 10an Sntonio 	
Tr an 11 lt to cis cislimbus, ohio	

Comyany Locatlon
Texas Amalgamated Oil Co......Fort Worth Thomas, Leou...................... Wichita Falls T. Y. Uil Co............................ Sour Lako

Texas operating syndicate...... Wichita Falls Taylor, T. . \& \& sibley, S. W.... Wichita Falls Texana l'roduction Co..............Fort Worth Tri-Mutual Oil Derelopment Co. Rapid City. S. Dak. Texas Southern Oil \& Devel. Co.San Antonlo L'nited Drilling d Derelop. Co..Wirhita Falls Cruity Oil co. .Beaumont Trited Jetroleum Co..............Chicago, Ill. Lnited Oil \& Fuel Co....Pliladelphla, Pa. Enion Natignal Oil Co................. Iouston I'nderwriters Prod. \& Ref. Co. Oklahoma Cles, Okla. Inderwod Drilling Co.........WlChita Falls T'niversal Drilling \& Develop. Co.

Wichita Falls Lniversal Texas Oil \& Gas Co........Dallas United Oil Co..................slireveport, La. Victors (Uil Producing Co..Little Rork, Ark. Vulean Oil Co...............................Tiffin Van Cleave Oil Trust.......... Wirlita Falls Volcanic Producing Co................ Urenham Val Verde Vil Co......................... Del Rlo Valley dil Co.............................. Petrolia Vat Oil \& Gas Co..........................Byers Volunteer Oil Co..................Nashville, Tenn. Venus Oil Co............................. Denison Virginia Oil Co........................... Wort Worth Vulcan Oil Co (T \& P).................Thurber Williams, J. L. Brownwood Western Prod. \& Drilling Co.... Wichita Falls Wagonner, R. M................... Wichita Falls Wood, Cranfield Wichita Falls
Western-Keoughhan-Hurst Syndicate.

Strawn

Wonder Oil Co........................... Houstou
Woods Oil Co............................ . Beaumont
Wood, C. C........................ Wichita Falls
Wirlsita Clay Oil Co............... Wichita Falls
Wichita Perroleum Co............Wichita Falls
Walker Consolidated Co................... Dallas
Wilson Brearh Co........................Beaumont
Walker, B. S........................ Breckenridge
Watkins Pool Oil Co...................... Dallas
Waseco Oil Co..........................Fort Worth Waggoner, A be W. (trustee 3)...... Houston Waggoner, the W: (trustee 4)....... Houston Wicber, Mark U....................Casper, Wyo. Weblb, W. G................................. Albany Wichita Burk Oil Co............ Wichita Falls Wimer Oil \& Gas Co........... Wisner, Nebr. Whodburn Oil Corporation.. Philadelphia, Pa. Witherspoon Oil Co................San Antonio Wilkoff, B. A. Syndicate.......Pittsburgh, Pa. White, s. V.......................Wichita Falls Walker. P. G., Jr......................Tulsa, Okla, Wehb Oil Co............................... Humble White \& scarbrough.. Woodrow-Lee Trust. Wichita Falls Wills \& Garity..

Corsicana Weona Oil Co............................ Burkburnett $^{\text {Wen }}$ Weitern Petraleum Co................... Vernon IVyatt oil Co............................ Sour Lake Webly, W. (: Albany West Tenmessee Lease..............Wichita Falls West Virginia Ranger Oil Co.

PETROLEUM PRODUCING COMPANIES OF TEXAS FOR 1921. (Concluded)

Company Location
Witcher, W. C.................... Wichita Falls
Westheimer \& Daube............Irdmore. Okla.
Welden Oil Co.......................... Houston
Walker Caldwell Producing Co.........Dallas
Weber, Howard.............. Bartlesville, Okla.

Combany
Young, Simmons Drilling Co.... Wichita Falls
York Production Co............. Wichita Falls
Fount-Lee Oil Co..
. Sour Lake
Young Bros. \& Kennedy...........ichita Falls
Y. M. C. A. Block...............Breckenridge

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921.

er Oil \& Gas	
Berry, R. H....................................... Tulsa	
Betty, G. Petroleum Co..............Cement	
Betty Ruth Oil Co............. Broken Arrow	
Benedum Trees Oil Co.........Pittsburgh, Pa. Big Sioux Oil \& Gas Co............Okmulgee	
Big Fift	
Bigheart Producing \& Ref. Co.........Tulsa	
le	
Bird Creek Oil \& Gas Co...............Tulsa	
Bird Creek Oil	.Tulsa
Bird, Gaffney \& Simons........sradford, Pa.	
Black, E. L. Henrsetta	
Blarkwell Oil \& Gas Co.......Blackwell, Kas.	
Blue Ridge Oil \& Gas Co......Oklahoma City	
Boesche, F. E. C.............Coffeyrille, Kas. Bolivar Run Oil Co...........................Tulsa	
Bole, Geo. Tulsa	
Bokma Oil Co.........................Chicago, Ill. Bradstreet, J. G. \& Co.....................Tulsa	
Bradley Oil Co...............................Tulsa Braik Oil \& Gas Co..................Henryetta	
Braley, C. A...............Kansas City, Mo.	
Breene, Frank	
Breener Oil Co...................... Pamhuska	
Breene, Mabel	
Bright, Samuel Okmulgee	
Brilling, Geo.	
Bridgman Oil Co.................... Nowata	
Bridgman, Welsh \& Haner......... Muskogee	
Briggs,Brown,F. B. \& W..	
Brown Oil \& Gas Co................... Tulsa	
Brundred Oil Cory. of.........Oil City, Pa. Bruner Oil Co.............Independence, Kan.	
Bucher Petroleum Co........... Bartlesrille	
Burket, J. G...............Mineral Wells, Tex. Burke Hoffeld Oil Co..........................Tulsa	
Bull-Head Oil Co................... Ardmore	
Bull Dog Oil Co....................... Tulsa	
Burwell, H. B................ . Broken Arrow	
Burt W'. \& Lyon M. J...........Joplin, Mo. Butler \& Lafferty...................... Muskogee	
Cabin Valley Mining Co.................Chelsea Cala-Belle Oil Co..........................Cement	
Cameron, Mrs. Lillian......................Tulsa	
Campbell, H. C....................... ${ }^{\text {Nowata }}$	
Campbell, A. P.................... Wichita. Kan.Campbell, II. B.............................eleh	
Canada Oil Co......................Nowata	
Canary \& Sinclair.............. Denver, Colo.Canary \& Canary.................Denver,Colo.	

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921 (Continued)

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921 (Continued)

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921 (Continued)

Cumbany Location	Company Lucatlon
Irwin, John S...................Bartlesrille	Lane E.Nowata
lron Mountain Oil Co...............Tulsa	Locol Oil Co..................Warren, Pa.
Jitney 0il Co........................Tulsa	Lucky Tiger Oil Co..........Oklahoma Cliy
Jenson, H. A.......................Red Fork	
Jollr, M. 「...................................tulsa	
Jane Gwinn Oil Co.....................tulsa Jennings, E. H. Brus. Co....Pitsburgh, Pa.	Lucapold \& Bretl Miuskogee
day Bee Oil Co................... Bartlestille	Lawrence Gas Co..............New York City
Juhnson Farm Oil Co............ Warren, Pa.	Larkin \& Reynolels............... Lartlesrille
Jameson. J. B............. Concord, N. H.	Lawton, E. B.........................Nowata
Jumack Oil Co...................... Bristow	Lawton, et al............................ewata
	Leahy Oil Co......................Pawhuska
Juhnson, Ike Bartlesrille	Link Oil Co..........................Tulsa
Joses Oil Co................ Oklahoma City	Lengfellow, J. M................... Bristow
Jennie Oil Co....................... Chelsea	Lasoya Oil Co.................. Ottawa, Pa.
Iulnson Oil Kefining Co.........Chicago, Ill.	Lewis Oil Co................. Pittsburgh, Pa.
Jennings K. G. \& Lawrence Gas Co	Loett Oil Co........................... Tulsa
ew Iork City	Loug Green Oil \& Gas Co. Kansas City, Mo.
Jarkon, Wise \& American Pet. Co...Sapulpa	Lone star Gas Co............ Dallas, Tex.
Jackson, Wise \& Boraird............Sapulpa	Lorber, C. C. Cleveland
Jackson, Wise \& Markham.........Sapulpa	Lebow, MaxTulsa
Ifinsun, IV. J................ Pittsburgh, Pa.	Lahoma Oil \& Gas Co......Oklahoma City
Kansas \& Gulf ('o..............Chicago, Inl.	Leunard, J. M................... Joplin, Mo.
Katheryme bil Co......................Tulsa	Lincoln Oil \& Gas Co.................Tulsa
Kent Oil Co....................... Dilworth	Lourain Oil Co................. Bartlesville
Kerstone Oil \& Gas r'o.. Indevendence. Kan.	Ludlow, LeoTulsa
Kingwood 0il Cou.................. Okmulgee	MacMullen, G. W, Co..................Tulsa
Knupp, W. J., et al.............Warren, Pa.	Magnolia Oil \& Refining Co..........Tulsa
Keeche Oil \& Gas Cu.........Oklahoma City	Mallory, J. F., et al..................Tulsa
Kınkaid, W. K...................... Delmare	Marland Refining Co.............Ponca City
King Carlie Oil \& Gas	Mason, D. B............................Tulsa
Kistler, R. P..........................Tulsa	McLaughlin \& Co......................Tulsa
Kraeer, 0. A.. \& ('0.............. Eartesrille $^{\text {a }}$	Melba Oil Co............................Tulsa
Karne. H. E.......... independence, Kan.	Minnelnoma Oil Co........Los Angeles, Cal.
Kay A Kiowa Oil ro..................Tulsa	Mitl-Co. Petroleum Co.................Tulsa
Karmes, II. E.......... independence, Kan.	Milliken, J. F. et al..................... Tulsa
king. Newbert, Shuffin, et al...... Nomata	Mitchell \& Marrow......Indenendence. Kan.
Kas-Wagoner Mil \& (ias C'u...Oklahoma City	Mitchell, Mark D. \& Co..Independence, Kan.
Kawfield 0il Co.......................Tulsa	Muran, M.Tulsa
	Montrose Uil \& Ref. Co...Fort Worth, Tex.
King. Frank	Mountain State Oil Co..........Bartlesville
Klstler. et al..................... Okroulgee	Mourison \& Jarkson.................Sapulpa
Kamela Mrl to Ibrising CO............Tulsa	Mudge Oil Co............... Pittsburgh, Pa.
Klefor. 13.	Magnolia Petroleum Co................. Dallas
Kırk. \& 1'...................... . Waoren, 0.	Midland ser. Co......................... . . Tulsa
Kırstnith Itelinlug 'ow................Tulsa	McClintock R. Otis......................... Tulsa
Komallme 111 \& lias (0)....... Titusrille, Pa.	Murray, Jas. M....................... . . ${ }^{\text {cereland }}$
hor kel, WV. A................ . 1 luffton, 1nd.	Moore Petroleum Co.......................Tulsa
fivert. K. K.Tulsa	Merrick F. W. ${ }^{\text {rdmore }}$
Riajupemerger. II. L..................Napulpa	Wid-southrestern Oil Co.............. ${ }^{\text {Cement }}$
Kernll 111 Pr......................... Tuisa	Midgert Oil \& Gas Co..........................
	Monarch Oil \& Gasoline Co.......................
	Mrkeys Oil \& Gas Co......................dmore
lamand (bll * (ias low................ Tulsa	
LIma 111 at lias co............ Bartlessille	
	McGrar, Henry ...
1.murthor. "t alTulsa	
,	Minshall Oil \& Gas Co................. Tulsa
mil. J A Marletta, 0.	MLodern Oil Co............vivelisville, N. I.
I.010 S Thas Marletta, O.	
	McCaskey, J. G. \& Wentz, Louis.........
Lafir oll r cok git is Cias fo. Wellswlle. Ky.	City
lant ir, (1)1	More, Clint Tulsa
l.mer all	Malsu Oil Co.................. Pittshurgh, Pa.
11110	Midwest \& Gulf Oil Corp............. Tulsa
	M'Clraw, J. J...................... Ponca Clty
	Mer'lelland Bros.................... . Okmulgee
11 1; Nirmly 1,	Mctonnell, J. V.......................Tulsa
l.akn Maratore inl de liny in.............aramera	Mcrann, Wh. L............. Oklahoma City

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921 (Continued)

Comner, Martin.............Purtville, N.	
nıa	
kliana Oil Co.	
Okla. Petroleum \& Gasoline Co.........Tulsa Oklahoma Natural (ias Cu.................Tulsa	
Oklarado Oil Co..................... Oknulgee	
sage Arrow	
Osage Nat'l Oil	
age Indian O	
Overton C. II	
ld Colony I'et	
ld Dominion Oil \&	
klavania Oil	
vens, B., Est	
kla. Natural	
aragon Oil Co	
Panama Oil Co. .Holdenville	
Patterson, M. P...................................... Pauline Oil \& Gas Co....................Duncan	
Pennhoma Oil Co............ Pittsburgh, Pa.	
Paraffine Oil Co...............Beaumont, Tex. Papoose Oil Co................................Tulsa	
Page Chas, Tr.................. Sand Springs	
ainter \& Stager	
ge, W. R. ..	
Pemn Osage Oil Co................ Bartlesville	
riscope	
Petroleum Co..	
Pennok Oil CoPet. Lock Oil	
Peters-Leahy Oil Co.................. Pawhuska	
Pennsylvania Oil Co.............. Warren, Pa.Peters, Clas. Bawhuska	
Phillips Petroleum Co.................Bartlesvill	
Phillins Pet. Co. \& Skelly Oil Co.Bartlesville	
Phillips Pet. Co. \& Gypsy Oil Co.Bartlesville	
I'hillips Pet. Co. \& Standish Oil Co........	
lips, W. G., et al................. Chelsea	
Phillips Oil Co.......................Chelsea	
Plillips \& Milam	
hillips, Waite	
Phillips, J. Sapulpa	
Phyems, Scott. Chelsea Phillip King Oil Co.....New Bedford, Mass.	
Pierce Oil Corp. New York City	
Pioneer Oil Co...	
Igrim Petroleum	
Pioneer Petroleum Co...................Tul	
Pine. W. H. Oknulgee	
Planet Petroleum Co........Fort Worth, Tex. Plover Drilling Co...................Bartlesville	
Plymouth l'etroleum Co.................Tulsa	
Plew, W. L. Gary Planters Oil Co..	
Polerat Oil Co.	

PRTROLEUM PRODUCING COMPANIES OF OKLAHOMA FOR 1921 (Continued)

llas, Geor.	
Shipley, J. 1	
Shaffer, Danner d Lawrence Gas Co....... shertzer Bros Dewey	
hear, 11	
hear d Marcus Oil Co........ Bradford,	
r.	
Shulthis, A. W\%.......... Intepentence, Kas.	
showalter d Cuthetl............. ..sapupa	
mrock oil	
heeters oil \& Gas Co..........) 1'awhusk	
haffer Oil \& Refining	
Sheridan Oil ${ }^{\text {co....................... Tulsa }}$	
shaffer- llarkin Oil Co............ Dallas, Tex.	
	. 0 km mulgee
silurian oil Co...................st. Louis,	
Sitrin, Sam........................... Tulsa	
mpson, B. A....................... Arimore	
sinelair Oil \& Gas Co.......................	
skely, \%. G.	
Skelly Oil Cu. et al..............	
skelly Oil Co. \& Gyisy Oil Co. et al...... Bartlesville	
Skelton-Mvore Oil (o....... Bartlesville	
Skiatouk Oil \& Gas Co................. Copan	
Smith, W. S., siperial................. Tulsa	
smith \& Cleage................ Tulsa	
Smith, H. E........... Marielta, Ohiu-Vinita	
smith (Oil syndicate...........................Tulsa smith \& Daugherty...............................	
smith \& Daugherty........................... south Dakuta Oil \& Gas Co......	
Southwestern Oil Fields Co...... . Sartlesrille $^{\text {a }}$	
Southwestern Oil \& Gas Co Independence, Kas.	
Southern Oil \& Gas Co......CoffeyVile, Kas. suring Oil Co.............. Indepmence, Kas. spangler, 1: W., et al.................................	
Suerata Oil Co........................ . . Ba .	
Stulebaker, E. H........... Suuth Bend, Ind. 	
itralem, © 1.................New Tork City	
Nteyner dil © ${ }_{\text {co. Bartlessille }}$	
stantish (i) Co..............................artlesville	
Stanfurd. If W. Nowata	
itates retruleum Co. \qquad Tulsa stobbins oil \& Gas \qquad Tulsa	
stake Oil lo................. Imlependenee, Kas.	
Stevens dil \& (ias Co....... P'ittsburgh, Pa.	
sterling oil \& (ias Co Stalıl, F\& s.	
Sum Gasuline (0.......................Tulsa	
Kurpass Petroleum l'o......... l'ittsburgh. Pa. summit 0il (*o.............................Bartlesville	
summers, lack . .1....................11askell	

PETROLEUM PRODUCING COMPANIES OF OKLAHOMA
 FOR 1921 (Concluded)

man	
canson et	
kes, C. E	
msor,	
stem	
Taft Oil Co............... Independence, Kia	
Is. G	
Terrell	
vas Co	
Terriokla Oil \& Gas Co.	
Texas-Oklahoma Invest. Co....................	
estlog Oil Co...........................Tul	
st Oil C	
Thefts, John ©............... Suffalo, ミ゙. Y.	
hompson, J.	
Thompson, Roy l3., et al............... Tulsa	
Thompson, J. L	
Thompson, Wm, O.............Gas C'ity, Ind.	
The Hefner Co.......................... . . Ardmore	
Thursan Oil Co.................. Bartlesville	
Thompson Oil \& Gas	
The Keno Oil Co........................ Tulsa	
Tidal Oil Co........................ . . Tulsa	
Titus, C. W	
Tibbens, C. G.... Tulsa	
Tittle, Mrs. Be	
Togo Oil Co........................... Tulsa	
m Games Oil	
Traders Oil Corporation............. Claremore	
Trumbo, A	
Travis, L. R........................... . Tulsa	
Transcontinental Oil Cu......Pittsburgh, Pa.	
Troy Oil \& Gas Co.......................Sapulpa 202 Oil Co................................. Bartlesrille	
Tuxedo Oil Co...........................Tulsa	
$31 \mathrm{Oil} \mathrm{Co........}. \mathrm{}. \mathrm{}$.	
Turman Oil Co.................... Okmulgee	
Twin States Oil Co...................... ${ }^{\text {Thelsa }}$	
Twin Hills Oil \& Gas ©o....................tulsa	
Two Rivers Oil \& Gas Co..........Bartlessille Twichel. J. A........................... . Okmulgee	
Tulsa Interstate Petroleum Co.........Tulsa	
Union Oil \& Gas Co.................... Tulsa	
Union Oil Co...........................Tulsa	
Vance, S. E.	
Victoria Oil Co........................ Tulsa	
Viwell Lease . Sapulpa	
Van Hay Oil Co....................... Tulsa	
Vesta Oil \& Gas Co.........Kansas City, Mo. Vensel, F. E...	
Van Nostrand, If.	

12.	
or	
Victor Oil	
Walker, J. W	
atki	
igwam Oil	
rightsman, C.	
Wrightsman Oil	
rightsman,	
Western American 0	
Cilcor Oswalt \& Wily	
Wilcox, H. E. Inclianapolis, Ind. Whittier, M. H...	
Wesely, C. 'T	
Wolverine Oil	
Warren Oil Co	
hite Rose Oil \& Gas Co.... Oklahoma Ci	
Ward Oil \& Gas	
Wright, J. H...	
Walsh Oil Co	
Wilcos. H. F.................... Tulsa	
Wileox Oil Co...........................Tulsa	
Warner-Caldwell	
Wagoner Oil \& Gas Co............. Wagoner	
Washington, J. E. Tulsa	
Walker, W'm.	
Warren Co..	
Woodward et	
Woodward \& Reed.Tulsa	
Woodward, Geo. E...................... Tulsa	
Woodward \& Crenslaw	
Whitehall, Donovan, et al. Whitehall, B. F. Wilkinsburg, Pa.	
West Hazlett Oil \& Gas Co.................	
alter Oil C	
Wah-Shah-She Oil	
Winona Oil Co.	
Wolf, F. ...	
Wall Oil Co... Tulsa Warren Petroleum Co.................Warren, Pa.	
Welsh, J. D. Kıansas City, Mo.	
Welsh Oil \& Gas Co...............stillwater	
Wells, N. D....................................... Tulsa Wertzenberger, D. D............................Tulsa	
Westheimer \& Daube................Ardmore	
Whitehall Petroleum Co.................Tulsa	
Wiser Oil Co.............................. Bartlesville Wise \& Jackson............................ Sapulpa	
Winters Oil Co.................Bradford, Pa.	
Wilcox, M. A............................... Dewey Wooster Oil Co..........................Okmulgee	
Workman Oil \& Gas Co.......Oklahoma City	
Netloc Oil Co................. Denrer, Colo.	

PETROLEUM REFINERIES IN THE UNITED STATES.

	Building	Completed	Daily Capacity
Year		176	
1914		267	1,186,155 Bbls.
1918.		2s9	1,295,115 Bbls.
1919.	99	373	1,530,565 Bbis.
1420.	44	415	1,888,800 Bbls.

In the following table, the refining plants are divided into eleven classes for the convenience of those desiring to know the products that are generally manufactured by each refinery:
('omplete Plant (Comp.)-Gasoline, ktrosene, gas and fuel oils, lubricating oils, paraffin wax, petroleum coke or asphalt, or both coke and asphalt.

Skimming Plant (Skim.) - Gasoline, kerosene, gas and fuel oils.
Skimming and Lube (S. \& L.)-Gasoline, kerosene, gas and fuel oils, lubricating oils.
skimming and Asphalt (S. \& A.)-Gasoline, kerosene, gas and fuel oils, asphalt. skimming and Coke (S. \& C.)-(rasoline, kerosene, gas and fuel oils, coke.
skimming, Lube and Asphalt (S.-1. \& A.)-Gasoline, kerosene, gas and fuel oils, lubricating oils, asphalt.

Skimming, Lube and Coke (S.-1. \& C.) Gasoline, kerosene, gas and fuel oils, lubricating oils, coke.

Wax Plant (W:ax) - Gasoline, kerosene, gas and fuel oils, lubricating oils, paraffin wax.

1,ubr llant (I, ube)-Gas and fuel oils, lubricating oils.

Asphalt l'lant (Asphalt)-Distillates, gas and fuel oils, asphalt.
'fupring l'lant (Top)-Fops, distillates, gas and fuel oils.

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY

LOCATION

Daily
Capacity
Type of
ARKANSAS

Arkansas Prod. \& Refining Co	El Dorado.	1,000	S
Davis, Abner	El Dorado.	1,000	S
Shipper's Petroleum	E] Dorado	2,000	S
Arkansas Oil Refining Co	E] Dorado	3,000	S
Lion Oil \& Refining Co..	E] Dorado	500 4000	S. \& L.
New Arkansas Petroleum Co	E1 Dorado	2,000	
Petroleum Products Co. (Root	es) . . El Dorado	2,000	S
Red River Oil \& Refining Co	El Dorado	1,000	S
Grison Refining Co........	El Dorado	2,000	S
National Petroleum Products C	El Dorado	1,000	S
Crude Oil Marketing Co. . . .	El Dorado.	$\begin{aligned} & 1,000 \\ & 3,000 \end{aligned}$	S
	CALIFORNIA		
Union Oil Co. of California	...Avila		
Assaciated Oil Co.	. Avon (San Francisco)	17,000 22,000	Top S. \& I
Richfield Oil Co..........	Bakersfield	22,000 3,500	S. \& 1. Skim
Standard Oil Co. (California)	Bakersfield	20,000	S. \& A.
Union Oil Co. of California	Brea	10,000	Skim.
Ama-ican Petroleum C	Chin	1,300	Skim.
Continsntal Patroleum R $\mathrm{S}_{\text {ain }}$	inga	3,600	Top.
Shell Co. of California.	Coalinga	2,500	Skim.
Standard Oil Co. (Califo:nia)	El Segan	$\begin{array}{r}2,000 \\ 35 \\ \hline\end{array}$	Skim.
A nı ica 1 Oilfields Co.	F jlows.	35,500 10,000	Comp.
Wilshire Oil Co., Inc	Fellows	10,000	Top.
Ventura Refining Co.	Fillmore	4,200	Wop.
California-Fresno Oil Co	Fresno.	+500	Skim.
St. Helens Petroleum Co Assaciated Oil Co	Fullerton Field...	200	Top.
King Refining Co	Gaviota (Santo Barbra)	10,000	Skim.
Producers Refining Co	Kern River.	450	Asphalt
Amalgamated Oil Co.	Lorn Angeles.	150 3,500	
Asphaltum \& Oil Refining Co.	Los Angeles.	3,500 600	Top. S \& A
Gilmore, A. F. Co...	Los Angeles.	260	Skim.
Richfield Oil Co	Los Angeles.	900	Skim.
Union Oil Co. of California	Los Angeles	1,000	
Shell Co. of California. . .		3,000 30,000	Skim.
Union Oil Co. of California.	Oleum	22,000	S. \& L.
Standard Oil Co. (California)	Richmond (San Fran.)	22,000 60,000	S. L. \& Comp.
Union Oil Co. of California.	San Pedro (L. A.) . .	12,000	Skim.
Union Oil Co. of Californi	Santa Paula.	40	Skim.
Seager, C. L.	Santa Paula	800	Skim.
California Oil \& Asphalt Co		150	Skim.-
General Petroleum Corporation	Vernon.	500 20,000	Skim.
Gilmore Petroleum Co.	Vernon.	20,000	Skim.
Jordon Oil Co	Vernon	600	Skim.
Pacific American Petroleum Co	Vernon.	300	Skim.
Petroleum Lubricants Co.	Vernon.	200	Skim.
Pioneer Paper Co...	Vernon	400	
Union Sales Corporation	Vernon	4,000	Skim.
Vernon Oil Refining Co	Vernon	1,500	Skim.
Wilshire Oil Co., Inc.	Vernon	3,000	Skim.
	COLORADO		
United Oil Co...			
Apex Refining Co	Loomis. .	1,500 200	Comp. S. \& I
Raven Oil \& Refining Co.	Rangeley.	50	Skim.
	GEORGIA		
Atlantic Refining Co	. Brunswick	4,000	S. \& 1.

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY

Pecos Prod. \& Refining Co.

Standard Oil Co. of N. Y racuum Oil Co.
Wellsville Refining Co
(Whio Refining Co
The (anfield Oi) Co
Standard Oil Co. (Ohio)
Anderson \& Gustaíson, Inc.
National Refining Co
The Pure Dil Co
The Craig Oil Co
Solar Refining Co
National Refining Co.
I'aragon Refining Co.
Standard Oil Co. (Ohio)
Sun Co
I a ajah Oil \& Refining Co

Bis Itiamond Oil \& Refining Co
Harsey ('rude Oil Co
Arhuckle Refining Co
('ameron lefining Co.
('hickasaw IRefining Co
Imperial Kefining Co
The fure ()il Co
Bugheat Jrod. \& Refining Co
(C. H. \& W. Wil \& (ias Co

Fionk (iil \& Ru-fining Co
Morlern Prafining Co
I rorlurers \& R Rofiners Corporation
Transeontinental (bil Co
Illine is IRefining Co
('urtior ()il ('or
American (lil \& Tank Line ('n
Marland le-lining ('o
Andurmen \& Ciustalson, Inr
flory (ol ('n
1:mpire Il.finerins, Inc
I llinome Wっl Cor
Inland Ibrtining ('o
Mframeld (til \& I Rofining ("o
(Werulant (Jild Kefining ("o
Tho l'ure (引) C'o
Shaffor ()it \& Redining (${ }^{\circ} \circ$

LOCATION
NEW JERSEY

Bayonne	20,000
Bayonne	1,000
Constable Hook.	180,000

Jersey City
Linden
Maurer 180,000

New Brunswick $\quad 6,000$
Paulsboro. 10,000
Warner
2,500
NEW MEXICO
Tucumcari
2,000

NEW YORK

Brooklyn.
Brooklyn
Long Island City 23,000

.
Wellsville
1,000
Daily
Capacity

20,000
1,000
180,000
3,000
6,000
10,000
2,500

2,000

1,200
Cincinnati
1,000
$\begin{array}{lr}\text { Cleveland. } & 8,400 \\ \text { Columbus } & 1,000 \\ \text { Findlay } & 1,400\end{array}$
$\begin{array}{lr}\text { Cleveland. } & 8,400 \\ \text { Columbus } & 1,000 \\ \text { Findlay } & 1,400\end{array}$
Findlay $\quad 1,000$
Heath..
Ironville.
Lima.
1,500
6,500
8,000
3,000
100
OKLAHOMA
Addington

Allen	1,500	Skim.
Ardmore	1,000	Skim.
Ardmore	3,000	Skim.
Ardmore	7,500	Skim.
Ardmore	4,000	Skim.
Ardmore	7,000	Skim.
Bigheart	2,500	S. \& L.
Blackwell		
Blackwell	1,800	S. \& L.
Bladkwell.	1,000	Skim.
Blackwell	2,000	Skim.
Boynton	3,000	S. \& L.
Bristow.	2,500	Skim.
Cartoco	15,000	Skim.
Cleveland.	1,250	Sk m.
Covington.	1,000	Skim.
Cushing.	1,500	Skim.
Cushing	1,800	Skim.
Cushing.	4,000	Skim.
Cushing	2,500	Skim.
Cushing	2,500	Skim.
Cushing.	2,000	Skim.
Cushing	1,200	Skim.
Cushing	6,500	Skim.
Cushing	6,000	Wax

Comp.

Comp.
S. \& L.

Comp.
S. \& A.

Comp.
Comp.
Wax

Skim.
Type of Plant

Wax
Comp. Skim. Comp. Skim.
Wax
Caomp.
Wax
Comp.
Comp.
S. \& L.

Skim.
.im.
Skim.
Skim.
Skim.
S. \& L.
im.
S. \& L.

Skim.
Sk m.
Skim.
Skim.
Skim.
Skim
Skim.
Wax

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY

LOCATION
Daily

Type of
mor
Sinclair Refining Co
Cyril Refining Co.
Constantin Refining
Constantin Refining Co.......
Tidal Gasoline Co
Duncan Refining Co
Bolene Refining Co.
Champlin Refining Co
Oil State Refining Co.
Francis Oil \& Refining Co.
Frederick Oil \& Refining Co
Garber Refinery, Inc.
Grandfield Oil \& Refining Co
Oklahoma-Texas Refining Co
Union Oil \& Refining Co.
Rock Island Petroleum Co
Bay State Refining Co
Cogswell Refining Co.
Southern Refining Co
Meridian Petroleum Corporation
Great American Refining Co
Republic Refining Co.
Damascus Refining \& Manufacturing Co
Lawton Refining Co.
Oklahoma Prod. \& Refining Corp. of A
Sinclair Refining Co
Nyanza Refining Co
Choctaw Oil \& Refining Co
Cherokee Refining Co .
Cushing Petroleum Corporation
Pirtle-Pitman Oil Co .
Atwood Refining Co....
Choate Oil Corporation
Empire Refineries, Inc.
Home Petroleum Co
Allied Refining Co
Empire Refineries, Inc.
Indiahoma Refining Co
Meridian Petroleum Co....
Oneta Refining Co
Empire Refineries, Inc.
Marland Refining Co
Meridian Petroleum Co
Osage Mutual Oil \& Refining Co.
North American Oil \& Refining Co .
Bison Refinery Co.
Mid-Continent Refining Co
Chestnut \& Smith Corporation
Pierce Oil Corporation.
Big Six Prod. \& Refining Co
Pular Prod. \& Gasoline Co.
Sapulpa Refining Co.
Constantin Refining Co..
Consumers Oil \& Refining Co
Cosden \& Co
Mid-Co Gasoline
Pan American Refining Co
The Texas Co. ...
Sinslair Refining Co
Blue Ribbon Oil \& Refining Co
Livingston Refiners Corporation
Southern Oil Corporation
Canfield Refining Co
Home Oil Refining Co. of Texas
KLAHOMA

Cushing.	6,500	Skim.
Cyril.	600	Skim.
Devol	8,000	Skim.
Dilworth		Skim.
Drumright	2,500	Skim.
Duncan	1,000	
Enid.	2,000	Skim.
Enid.	8,000	Skim.
Enid	1,800	Skim.
Francis	1,000	
Frederick	600	Skim.
Garber	800	Skim.
Grandfield	2,000	Skim.
Grandfield	1,200	Skim.
Grandfield	2,000	
Guthrie	1,500	Skim.
Healdton	1,000	Lube.
Henryetta	2,000	
Haskell	1,000	Skim.
Hominy	800	Skim.
Jennings.	4,000	Skim.
Jennings	1,000	Skim.
Lawton.	1,000	Skim.
Lawton	1,000	Skim.
Muskogee	2,000	Wax
Muskogee	600	S. \& I
New Wilson	3,500	Skim.
Oil City.	50	Skim.

Oilton...
Oilton
Oilkirk.
1,000
Oklahoma City
Oklahoma City
Oklahoma City.
Okmulgee.
2,000 Skim.
1,000 S. \& L.
2,000 S. \& L.
2,000 Skim.
2,500 Skim.
Okmulgee
${ }_{2}^{1,500} \quad$ S. \& L.
2,500 Wax
10,000
3,000 Skim.

Oneta $\begin{aligned} & \text { Ponca City. } \\ & \text { Ponca City . }\end{aligned}$.
1,500
S. \& L.
$\begin{array}{ll}2,500 & \text { Wax } \\ 5,000 & \text { Wax }\end{array}$
$\begin{array}{ll}2,500 & \text { Wax } \\ 5,000 & \text { Wax }\end{array}$
${ }_{2}^{2,000} \quad$ S. \& L.
$\begin{array}{ll}1,000 & \text { Skim. } \\ 1,500 & \text { Skim. }\end{array}$
Pawhuska
Pemeta
Quay
1,000 Skim.
Ringling
Sand Springs.
Sand Springs.
1,000

Sapulpa.
Sapulpa.
,000
9,000
800
1,500
7,500
4,000
Tulsa.
2,000
25,000
4,000
5,000
8,000
1,200
10,000
Vinita.
3,000
1,500
Walters
Walters
Yale
2,000
Skim.
Skim.
Wax
Skim.
Skim.
S. \& L.

Skim.
Wax
S. \& L.

Skim.
S. \& L.

Skim.
S. \& L.

Skim.
Skim.
Skim.

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY	LOCATION	Daily Capacity	Type of Plant
OKLAHOMA			
Ok-In Prod. \& Refining Co.	Yale	2,000 1,000	Skim.
Pawnee Bill Oil \& Refining Co.	Yale	6,000	Skim.
Southern Oil Corporation.	Yale.	5,000	Skim.
The Sun Jil Co...	Yale	1,000	Skim.
Worth Oil \& Refining Co.	Yale	100	Lube
Yale Oil Corporation...	Yale	1,200	Skim.
PENNSYLVANIA			
Emery Manufacturing Co.	Bradford.	1,200	Wax
Kendall Refining Co.	Bridford	${ }_{200}^{60}$	S. \& L.
Chippewa Oil Co...........	Bridgewater	1,000	Wax
Butler County Oil Refining Co	Butler	1,000	Wax
Interior Oil \& Gas Corporation	Clarendon.	300	S. \& L.
Ievi Smith Refining Co......	Clarendon.	1,050	S. \& L.
Tiona Refining Co	Clarendon	1,000	
White Oil Corporation	Clarendon	1,400	S. \& L.
The Canfield Oil Co....	Coraopolis	600	Skim.
Pittsburgh Oil Refining Corporation	Coraopolis.	1,000	Wax
Vulean Oil Refining Co.........	Coraopolis	850	Wax
Pennsylvania Oil Products Refining Co	Eldred	1,000	Wax
Emlenton Refining Co	Emlenton	600	Wax
Atlantic Refining Co	Franklin	6,500	Comp.
Foco Oil Co	Franklin.		
Franklin Quality Refining Co	Franklin	700	
Freedom Oil Works Co Pann. Refining Co	Freedom	100	Skim
Starlight Refining Co	Karns City	100	Skim.
Conewango Refining Co	Langdale and	1,400	S. \& L.
Pure Oil Co..	Mareus Hook	3,000	Comp.
Sun Company .	Marcus Hook	10,000	S. L. \& A.
The Texas Co	Mareus Hook	5,000	Asphalt
1 Island Petroleum Co	Neville Islan	1,000	Was
Atlantic Refining Co	Oak Grove	200	Skim.
Continental Refining Co	Oil City.	750	Wax
Indrpendent Refining Co	Oil City	1,000	Wax
P'enn-American Refining Co	Oil City.	3,000	Wax
W. H. Daugherty \& Son Refining Co	Petrolia	200	Skim.
Petrolia Refining Co	Petrolia	30	Skim.
Atlantic Refining Co	Philadelpha	50,000	Domp.
Atlantic Refining Coo	Pittsburgh.	4,000	Wax
A. 1). Miller Sons Co	Pittsburgh	1,000	S. \& L.
Waverly ()il Works Co	Pittsburgh	800	Lube.
Empire ()il Works	Reno	600	Wax
Crystal Oil Works	Rouseville	1,000	Wax
Pron. American Kelining CO	Rouseville	3,000	Wax
Fastern (i) Refining (on	Russell..	400	S. \& L.
Ampre ()il \& Realty Co.	Stoneham	75	Skim.
	Tidioute.	600	S. \& L.
American (il Works.	Titusville	800	S. \& L.
('rew lavirk C'o	Titusville	2,000	
(1) C'rowk Relining ('o)	Titusville	1,000	S. \& L.
Titusville (il Works..	Tutusville	1,000	S. \& L.
Cruw lavick Co.	Warren. .	-935	Wax
Misutual liffining Con	Warren	500	S. \& L.
	Warren	560	Wax
	Warren	1,500	Wax
1 Inited la-fining cos.	Warren	800	Wax
Warren Refining ${ }^{\text {cos }}$	Warren	1,700	
Warr-Went Re.fining (\%)	Warren	+400	S. \& L.
Willurin. (lil Works, litd	Warren	600	Wax

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY	LOCATION	Daily Capacity	Type of Plant
RHODE ISLAND			
Standard Oil Co. of N. Y	East Providence	10,000	Skim.
The Texas Co	Providence.	5,000	Asphalt
SOUTH CAROLINA			
Standard Oil Co. (N. J.)	. Charleston	10,000	Skim
	TENNESSEE		
Victor Refining \& Distributing Co.	Nashville.	500	Skim.
TEXAS			
General Oil \& Refining Co	Abilene	3,000	Skim.
Allen Reese S. Refining Co.	Amarillo	2,000	Skim.
Humble Oil \& Refining Co	Baytown.	10,000	S. \& L.
Magnolia Petroleum Co.	Beaumont.	25,000	Comp.
World Refining Co.	Bridgeport	500	
Baney Refining Corporation	Brownwood	500	Skim.
Brownwood Refining Co...	Brownwood	200	Skim.
Carson Refining Co..	Brownwood	400	Skim.
Freeport Gas Co. .	Bryanmound	5,000	Skim.
Bear Refining Co	Burkburnett.	1,000	Skim.
Burk-Tex. Refining \& Pipe Lin Co.	Burkburnett	4,000	
Crystal Petroleum \& Refining Co..	Burkburnett	600	Skim.
Invader Oil \& Refining Co. of Texas	Burkburnett	1,500	Skim.
Manhattan Oil Refining Co.....	Burkburnett	3,500.	Skim.
Chas. F. Noble Oil \& Gas Co	Burkburnett	5,000	Skim.
Nortex Refining Co.......	Burkburnett.	1,200	Skim.
Taxoil Refining Co.	Burkburnett	300	Skim.
Tidal-Western Oil Corporation.	Burkburnett	1,500	Skim.
Uniform Gasoline \& Petroleum Co.	Burkburnett	4,000	Top.
Victor Refining Co...	Burkburnett.	1,500	Skim.
Liberty Refining Co	Cisco	4,000	Skim.
Keen \& Woolf Oil Co	Clinton	750	Top.
Magnolia Petroleum Co	Corsicana	2,000	Skim.
Aetna Petroleum Corporation	Dallas.	2,500	Skjm.
Hercules Petroleum Co.....	Dallas.	3,500	S. ; L.
Sun Rise Refining Co.	DeLeon	, 700	¢ ${ }^{\text {co... }}$
Dublin Oil \& Refining Co	Dublin.	2,500	Skim.
Keystone Refining Co...	Dublin.	1,000	Skim.
Keystone Refining Co.	Dublin	5,000	
Rex Refining Co....	DeLeon.	1,500	
General Oil \& Refining Co	Eastland	2,000	Skim.
Beavers-Electra Refining Co	Electra.	2,000	Skim.
Waggoner Refining Co... . .	Electra.	1,500	Skim.
Rio Grande Oil Co...	El Paso	2,000	Skim.
Gulf Refining Co.	Fort Worth.	5,000	Skim.
Home Oil Refining Co. of Texas	Fort Worth.	5,000	Skim.
Magnolia Petroleum Co....... .	Fort Worth.	10,000	Skim.
Montrose Oil Refining Co., Inc	Fort Worth.	4,000	Skim.
Ok-In Prod. \& Refining Co...	Fort Worth.	5,000	
Pierce Oil Corporation...	Fort Worth.	8,000	S. \& L.
Souther Oil \& Refining Co	Fort Worth.	1,000	
Star Refining \& Prod. Co.	Fort Worth.	1,000	Skim.
Texas-Arizona Petroleum Co	Fort Worth.	4,000	
Texas Eagle Oil \& Ref. Co., Inc.	Fort Worth.	5,000	
Transcontinental Oil Co	Fort Worth.	5,000	S. \& L.
White Eagle Oil \& Refining Co.	Fort Worth	5,000	S. \& L.
Empires Refineries, Inc........ .	Gainesville	10,000	Skim.
The Texas Co.	Gater. .	15,000	Skim.
Gorman Home Refinery.	Gorman. . . .	2,000	Skim.
State Refining Association	Grand Prairie.	1,200	Skim.
North Texas Oil \& Refining Co	Greenville. . .		
Beacon Refining Co........	Henrietta.	2,500	Skim.
Galena Signal Oil Co. of Texas	Houston.	3,000	S. \& L.
Transatlantic Petroleum Co...	Houston.	1,000	Jube.
Deepwater Oil Refineries...	Houston.	1,000	Lube.
Burk Pipe Line \& Refining Co.	. Iowa Park.	2,500	Skim.

PETROLEUM REFINERIES IN THE UNITED STATES. (Continued)

COMPANY

LOCATION

J)aily Capacity

Type of Plant

TEXAS
Iowa Par
K. M. A. Field

Mexia.
Mexia..... Point
Morgan's Point
Nacogodoches
Orange.
Oriental
Panther.
Pasadena.
Pasadena...
Port Arthur
Port Arthur.
Port Houston
Port Neches.
Ranger.
Ranger.
Riverside.
Saginaw.
San Antonio
San Antonio
San Antonio.
San Antonio.
San Jacinto.
Sherman.
Sweetwater
Sinco (Houston).
Texarkana.
Texarkana...... $\quad 400$
Texas City 3,000

Thrall.	300
Tiffin	1,500

Toyah 50
Waco 2,500

Waxahachie
Weatherford
Wichita Falls

UTAH

North Salt Lake
Virgin

Skim.
Skim.
1,250
1,000
1,000
Skim.
1,000 Lube.
350
400
3,000
2,400
2,000
200
3,000
65,00
40,000
15,000
3,000
2,000
2,000
3,000
500
1,800
2,000
4,000
600
500
1,000
5,000
2,000
400
300

2,500
500
5,000
1,000
2,000
3,500
2,500
1,500
5,500
1,500
3,000
1,000
2,500
2,500
Skim.
Wax

Lube.
Comp.
Comp.
Asphalt
Skim.

Skim
Skim.
Skim.
Skim.
Skim.
Skim.
S. \& L.
skim.
Wax
Skim.

VIIRGINIA

The Trexar (or

Norfolk

WEST V1RGINIA
Cabin Creek Junction Calro

Falling Rock.
Parkersburg

5,000
Asphalt

3,000

Wax
Skim.
S. \& L.

Wax
Wax

000
50
Wax

The Jurn ()ll
Warner-Culnlan (\%)
Filk lu-finong (0
Stantard ()il (\%o. (N. J.)
Uhis Vallo.y Ir.fining, ('o

PETROLEUM REFINERIES IN THE UNITED STATES. (Concluded)

PETROLEUM REFINERIES IN MEXICO.

COMPANY

The producing, distributing and marketing organizations owned and controlled by the Royal Dutch-Shell oil combine: (Oil, Paint, Drug Reporter)

1. Acetylene Gas and Benzine Mat.
2. Alliance Co. (Mexico).

Operates 16,000 acres held in dispute by Mexican Eagle and Nexican Petroleum (Doheny') companies.
3. Anglo-Mexican Petroleum Co., Ltd. (London).

Marketers for Mexican Eagle and Eagle Transport Co.; hence now closely related to Shell-Dutch. Narkets in Central and South American and Britlsh 1sles.
4. Anglo-Egyptian Oiffields, Ltd. (Egypt).

July 6, 1911. $\$ 6,561,000$. Managed by Anglo-Saxon.
5. Anglo-Persian Oil Co. (Persia).

Marketing agreement until 1922 with Dutch-Shell.
6. Anglo-Saxan Petroleum Co., Ltd (London).

June 29, 1907. \$38, $\$ 80,000$.
7. Asiatic Petroleum Co., Ltd. (Ceylon).

Refiners, distributors, June 29, 1903. \$9.720,000.
S. Asiatic Petroleum Co., Ltd. (Ceylon).

Refiners, distributors, carriers. Nov. 13, 1917. \$972,000.
9. Asiatic Petroleum Co., Lid. (Egypt).

Property acquired from Anglo-Saxon. March 25, 1911. \$972.000.
10. Asiatic Petroleum Co., Lid. (Federated Malay States).

Feb. 29, 1911. $\$ 243,000$. Property acquired from Anglo-Saxon.
11. Asiatic Petroleum Co., Ltd. (North China).

Aug. 11, 1913. From Anglo-Saxon. $\$ 2,430,000$.
12. Asiatic Petroleum Co., Ltd. (India).

Property acquired from Anglo-Saxon. \$2,673,000.
13. Asiatic Petroleum Co., Ltd. (Philippine Islands).

IRegistered Jan. 30, 1914. $\$ 72,900$.
14. Asiatic Petroleum Co., Ltd. (Siam).

Aug. 11, 1913. From Anglo-Saxon. $\$ 364,500$.
15. Asiatic Petroleum Co. (South China).

Property acquired from Anglo-Saxon. Aug. 11, 1913. \$1,701,000.
16. Asiatic Petroleum Co., Ltd. (Straits Settlements).

1"eb. 28, 1911. From Anglo-Saxon. $\$ 1,215,000$.
17. Astra Romana Societe Anonyme (Rumania).

Geconsolidceerde Hollandsche Maat. is heavily interested. \$13.027,500.
18. Astra Refining Co. (Rumania)). $\$ 960,000$.
15. AlJan MIning Co. (Sumatra).
20. Hatrafche Petroleum Maatschappij (Holland).

Jan. I. 190\%. Anglo-Saxon, managers. $\$ 56,000,000$.
2I. I\%, Iglan Benzine Co. \$100,000.
$\because \because . \quad$ Bronzine Lagerungs Geselschaft (Blexien). \$121,500.
23. Hrnzlne Lagerungs Geselschaft (Breslau). \$12,150.
21. Burnine Lagerungs Geselschaft (Hamburg). $\$ 7,000$.
:U. Ibenalne Lagerungs Geselschaft (Madgeburg). \$85,050.
:C. Is•nzlnwerke Regensburg Geselschaft. $\$ 170,000$.
$\because i . \quad$ If nzlnwerk!. Ithenania (Dusseldorf). $\$ 204,120$.
2x. lirrmulez ('o., 1.td. (Venezuela). Sub. of General Asphalt Co.
24. - Ibillvar ("oncorshons (1917), Ltd. (Venezucla).

Intorwerd In Venezuelan Oil Concessions, Ltd., only. A source of supply but bot it bart of the butch-Shell group.
20. Lillish-smmerlan Oil Co. (Toronto).
. I Lrlish-13ornio I'etroleum Syndicatc. \$5 $\$ 3,200$.
\therefore Iirltish 1 mjurlat Oll Co., LitI. (London).
31. Tuperty iwroulred from Anglo-Saxon, Aug. 7. 1912. \$97,200.
lifitimh lmperlit Oll (o., Lid. (South Africa).
3\%. JiJtish Wisturn ram Anglo-Saxon, \$4\$,600.

34. 'allforinit Gllflelds, hedd. (Llduidated). (Shell Company of California.)

37 "rarlibwn I'etrnlrum Sismbleate, Lid. (Venczuela).
'wnol follity liy (i.n hi ral Asplialt and Dutch-Shell.

3s. Ceram Oil Syndicafe, Ltu. (Island of Ceram). (Dutch-Shell.) $\$ 972,000$,
39. Ceram Petroleun Co. (Duteh East Indies). (Duteh-Shell.)
40. Chijoles Oil, Ltd. (Mexico). (See Tampico Panuco Oilfivlds, Ltd.) $\$ 972,000$. Tampico Panuco Petroleum Mait.
41. Cleophane Oil \& Gas Conpany (Oklahoma). (Liquidated.)
42. *Colon D.velopment Co., Letd. (Venezueli).

Friendly to, but probably not as set a part of the group. $\$ 486,000$.
43. Commercial \& Mining Company (I.ondon). $\$ 4 \$, 600$.
44. Curacoa Petroleum Co. $\$ 1,600,000$.
45. Curacoasche Scheepvaart Maatschappij (Island of Curacna). Sept., 1916. Subsidiary of Bat. Peet. Naat. $\$ 800,000$.
46. Danske Engelske Benzin Petroleum Akt. (Denmark). \$135,000.
47. Danske Tyske Petroleum Company, Ltd. (Denmark). \$240,000.

4s. Dordtsche Petroleum Maatschappij.
Dutch-Shell selling and refining agency in Dutch East Indies. \$12,000,000.
49. Eagle Oil Transport Company, Ltd. (Tank steamers for Mexican crude and fuel. Now related to Dutch-Shell through Mexican-Eagle purchase.)
50. East Borneo Maat. (Borneo). $\$ \$ \$ 3,600$.
51. Eirnste Bayerische Petroleum Geselschaft. $\$ 346,500$.
52. Finnische Petroleum Import, Geselschaft (Finland).
53. Geconsolidceerde Hollandsche Petroleum Co. (Holland).

Intertsted in Astra Romana, and Dutch-Shell companies are largely interested in it. Jan., 190\%. \$9,600,000.
54. General Asphalt Company, U. S. A. (Trinidad and Venezuela).
$\$ 31,000,000$. (The Dutch-Shell controls the petroleum production of all of this company's Trinidad and Venezuela holdings, but is apparently not interested in its asphalt business).
55. Gravenhag Association (London). (Liquidated.)
56. Grozny-Sundja Oil Fields, Ltd. (Ruesia).

Managed by Anglo-Saxon. \$1,458,000. March 31, 1913.
57. Helouan Petroleum Co. (Liquidted.) $\$ 243,000$.

5S. Java Petroleum Co. (Liquidated.) \$2 $\$ 0,000$.
59. Kasbee Syndicate, Ltd. (Russia). \$6.240,000.
60. Koetei Exploratie Maat. $\$ 520,000$.
61. Koninkliijke Nederlandsche Naatschappij tot Exploitatie van Petroleum in Nederlandsche Indie.
Incorporated, Holland. June 16, 1890, and amalgamated with Shell Transport \& Trading Co., Ltd., as from Jan. 1, 1907. $\$ 60,700,000$. (Royal Dutch.)
62. King Oil Company (Oklahoma). (Liquidated.)
63. La Corona Petroleum Maatschappiji (Holland).

To consolidate Dutch-Shell interests in Mexico. $\$ 10,000,000$. Steamships.
64. La Corona Petroleum Company (Mexico).
65. Lubricating \& Fuel Oils, Ltd. (L^ndon). $\$ 4 \$ 6,000$.
66. Mexican Eagle Oil Co.. Ltd. (Mexico). $\$ 30,000,000$.
67. Mineralöl \& Benzine Werke (Rhenia). $\$ 240,000$.
68. Mineralöiwerke (Rhena nia).
69. Moeara Enim (Sumatra). $\$ 1,000,000$.
70. Moesillir (Sumatra). $\$ 3, \$ 40,000$.
71. Nederlandsche-Indische Eploration Syndicate.
72. Nederland-lndische Industrie and Handel. Mat. Anglo-Saxon, manager, $\$ \$, 000,000$. Blaik Papes, Koete.
73. Nederlandsche-Indische Petroleum Maat. \$I44,000.
74. Nederlandsche-Indische Tank Stoom-boot Company. Anglo-Saxon and B. P. M., managers. $\$ 1,200,000$.
75. New Orleans Refining Co., Roxana Petroleum Corporation. $\$ 400,000$.
76. New Schibaieff Petroleum Co., Ltd. (South Russia). $\$ 5,637,000$. Anglo-Saxon is manager.
iT. Norske Engelske Mineral Oil Akt. (Norway). \$147,420.
7S. North Caucasian Oil Fields, Ltd. (Grosny, South Russia). Jan. 29, 1901. Anglo-Saxon, manager. $\$ 3,645,000$.
79. Nourelie Societe du Standard Russe de Grosny. (Dutch-Shell.) $\$ 6,2 \neq 0,000$
80. Oilfields of Mexico Company.

Marketing and shipping obligations with Mexican Eagle. $\$ \$, 500,000$.
81. Panama Canal Storage Company.

52．Petıoleum Development Co．，Ltı．（Trini،larl）． Sulsidiary of General Asphalt Co．
83．Puora Oil Company（Oklahoma）．（ Roxina Corporation．）
St．Periak Petroleum Maatschappij（North Sumatra）．Dutcli－Shell．4，000，000．
s5．Quintuple Oil Conıpany゙（Oklahoma）．Roxana Corporation．（Liguidated．）
s6．Regatul－Foman．$\$ 4,632,000$ ．
Si．Fising Sun Petroleum Company（Japan）．\＄ッ，000，010．
ss．Red sea Oilfields，Ltd．（Liquidated．）\＄2，187，000．
49．Poxana Petroleum Corporation（New Jersfs）．
Holding company for 31 didContinent and Wyoming properties．$\$ 60,000,000$ ． Mar．S， 1917.
90．Fixxana Petroleum Company of Oklahoma．Roxana Petroleum Corporation． S．$\quad 000.000$ ． 1914.
41．sarawak Brunei（Borneo）．
92．Subatik Petroleum Maat．$\$ 800.000$ ．
y3．Shangliai Langkat Maat．（Sumatra）．\＄1， 095,000 ．
44．Shell Company of Canada．\＄243，000．
5\％．Shell Company of California．
To consolidate Dutch－Shell interests in Californix．$\$ 45,000.000$ ．July， 19 I5．
9f．＂Shell＂Marketing Company，Ltd．（London）．
Marketing in Cnited Kingdom．\＄7，290，000．
4－．Shell Transport \＆Trading Company，Litd．（Lnndon）．
Registered Oct．18，1897，as a transporter and marketer of oil．Amalgamated with the Royal Dutch as from Jan．I，1907．\＄111，S80，000．
9S．Signal Oil Company（Oklahoma）．（Roxana Corporation．）（liquidated．）
49．Simplex Refining Company（California）．
110．Soclete Commerciale et Industrielle de Eaphte Caspienne ot le la Ner Noire （Russia）．（Rothschilds．）Feb．，1912．\＄5，200．000．Dutch－Shell．
101．Socjeta Anonima Italiana．$\$ 291,000$ ．
101－a．Societa Nafta（Genoa）．
10\％．Societe de Mazout（Russia）．Dutch－Shell．（Pothschilds．） Feb．1912．\＄12，000，000．
103．Sumatra Palembang（Suriatra）．\＄2，$\$ 00,000$.
101．Sumatra Petroleum Company．（Liquidated．）$\$ 1,458,000$.
10i\％．Siunsk Engelske Nineral Oil Akt．（Sweden）．\＄540，000．
106．Tampico－Panuen Oil Fields，Ltr．（Mexico）．Held by the Tampico－Panuco Petroloum Maat．，which in turn is held the Bat．Pet．Maat．$\$ 1,550,000$ ．Dec．， 1416 ．
107．Tiampico－Fanuco Petroleum Laatsclappij（Holland）．Holds the Tampico－ l＇anuro Dilfields，Ltd．，the Chijol Oil，Ltd．，and the Tampico－Panuco Valley lkailwat Co． $32,880,000$ ．
10．Tampicu－I＇anuco Valley Railwas Company（Nexico）．（See above．）
11\％．T＇atakian Petroleum Company（？）．\＄I，560．000．
110．＂Ininilall lake Petroleum Company，Ltd．A subsidizry of the General Asphalt Company．All oil production controlled by Dutch－Shell．
111．＇Irlnjuad Oilliells，latd．Assets taken over by Lnited Britain Oiltields of ＂l＂rinirlad，I．tcl．Aug．，1913．\＄1，940，000．
112．Turner Cil Company（California）．Bought out by Shell of California． $\$ 590,000$ ．
II3．inltril British Oilfields of Trinidad，Ltd．Managed by the United British Wi．st Inrlies Petroleum Syndicate，Jtd．$\$ 3,152,000$ ．July $1,1913$.
111 Init：rl I3ritish l’roclucing Company，Ltd．（Trinidad）．Ianaged by the United British W゚ost Indies Fetroleum Syndicate，Ltd．\＄1，458，000．
11．F．nitod I3rltish Refineries，Ltd．（Trinidad）．Managed hy Linited British West lull．s l＇etroleum syndicate，Lata．\＄4S6，000．
11f．Fnltinl Britlsh West Indles Petroleum．Syndicate，Ltd．（West Indies，British fulitit or isfohore），Anglo－Saxon Company heavily interested along with 11ヶ．1311rmah ant Anglo－Persian crowd．July 18，I9I2．\＄972，000．
II\％．Vral（isplan Jil Corporition，Ltd． 10,000 square miles on northeastern sea－ lusiril of（＇asplian sea．April 15，1910．\＄t，S60，000．Looks like Dutch－Shell．
 \＄10，0100， 1100 ．
1I！Virneurian oll conression，Ltd．Dutch－Shell financially interested，and in luo minnikgrs for at least 15 vears from 19I5．\＄2，430，000．

121．W．だ．（）！（immpnny（Callfurnla）．liquidated and owned by Shell of Cali－ fornlit．\＄500．1000．
122．Yirhnlit l＇hulinc Company．（Poxana Petroleum Corporation．）$\$ 10,000,000$
1：3．\％nl\} l'urlitk M Lint. Sumatra). \$600,000
－Vot liart wf the cornhine－associated by marketing or other agreements．

STANDARD OIL GROUP.

Refiners and Marketers.

Company	C'apitalization	Market Price	Market Value
Anglo-American	\$15,000,000	25	\$ 75,000,000
Atlantic Refining	5,000,000	1.350	67,000,000
Borne-Serymser.	200,000	5010	1,000,000
Chesebrough Mfg.	1,500,000	310	+,650,000
Continental Can.	$3.000,000$	655	19,650,000
Galena Signal, 20 pfd .	6,000,000	107	6,420,000
Galena Signal Oil, 1 st pfd	2,000,000	125	$2.500,000$
'alena Signal, common.	16,000,000	13 S	22,080,000
.nternational Pet.	6,265,000	31	38,844,000
Solar Refining	2,000,000	370	7,400,000
S. O. of California	99,373,310	282	280,282,706
S. O. of Indiana.	30,000,000	800	$240,000,000$
's. O. of Kansas.	2,000,000	600	$12.000,000$
S. O. of Kentucky.	6,000,000	400	$24,000,000$
S. O. of Nebraska.	1.000 .000	550	$5,500,000$
S. O. of New Jersey.	- 98,338,300	710	698,201,930
S. O. of New York.	- 75,000,000	382	286,500,000
S. O. of Ohio.	7.000,000	525	$36,750,000$
Swan \& Finch.	$1,450.000$	100	1,450,000
Vacuum Oil	- 15,000,000	440	$66,000,000$
Midwest Refining Co. (W			

Producing Companies.

hio Oil Company	\$15,000,000	386	\$231,000,000
Prairle Oil \& Gas	18,000,000	750	$135,000,000$
South West Penn.	20,000,000	313	62,600,000
Washington Oil	100,000	40	400,000

Pipe Lines and Carriers.

Buckeye Pipe Linc $\$ 10,000,000$	100	\$ 20,000,000
Crescent Pipe Line. 3,000,000	36	$2,160,000$
Cumberland Pipe Line................. 1,488,851	200	2,977,600
Eureka Pipe Line 5,000,000	167	S,320,000
Illinois Pipe Linc. $20,000,000$	184	$36,800,000$
Indiana Pipe Line 5,000,000	105	10,500.000
National Transit 6,362,500	22	11,198,000
New York Transit Company. 5,000,000	185	9,250,000
Northern Fipe Line.................... 4,000,000	112	4,180,000
Prairie Pipe Line...................... 27,000,000	300	\$1,000,000
Southern Pipe Line..................... 10,000,000	165	16,500,000
South West Penn...................... 3,500000	100	:3,500,000
Union Tank Line. 12,000,000	130	15, 6,00,000
Total market values all companies. $\$ 2,186,214,236$ Market value refining and marketing companies.................. 1, 834, 228,636 Market value producing companies 429,000,000 Market value pipe line and carrying companies..................... $222,282,600$		

DIRECTORY OF OIL ASSOCIATIONS．

Western Petroleum Refiners Association－Presment，W．J．Riahardsun，Meridian Petroleum Corp．， 324 Rialto Bldg．，Fiansias（ity，Mn；Swretary，II．G．James， Soo Republic Bldg．，Kansas City，Mo．
American Pttroleum Institute－President，Thos．A．（）Dunnell，IF West 4th St．，

National Petroleum Association－Prtsident，Col． $1^{1 \%}$（s．loyns，Warrens，Pa．；Gen－ eral Counsel，Judge C．D．Chamberlin，Guardian bldg．，Cleveland，Ohio．
Kansas Oil Men＇s Association－President，John S．Longshore care sunllower Oil \＆ supply Co．，Topeka，Fas，Secretary，H．F．Basby，Wichita，Kas．
American Independent Petroleum Association－bresillent，1．．V．Nicholas，Nicholas Blag．，Omaha，Nebr．；Secretary，H．F．Reynolsls，If East Jackson Blvd．， Chicago，Ill．
Oklahoma Oil Jobbers＇Association－Presilent，D．I．Gilland，IIS W＇est 6th St．， Tuisa，Okla．；Stcretary，John E．Hutchens，Box SIl，Enid，Okla．
Independeni Oil Men＇s Association－President，T．J．Gay，Gay Oil Co．，little Rock， Ark．；Secretary，E．E．Grant， 110 South Dearbirn St．，Chicago，ill．
Texas Oil Jobbers Association－President，D．E．Little，Fort Worth，Tex．；Secre－ tary，Albert W．Wolters．Tiylor，Texas．
Minnesota Petroleum Cluh－Secretary，W．B．Cline，care Manhattan Oil Products Co．．St．Paul，Minn．
Nebraska Independent Oil Men＇s Association－President，T．Wilbur Thornhill， Charleston Oil Co．，Charleston，今．C．
suthern Petroleum Dealers＇Association－President，L．V．Nicholas，Howard and IIth St．，Omaha，Nebr．；Secretary，D．C．Patterson．Camden，S．C．
south Dakota Oil Jobbers＇Association－President，H．L．Freeman，Lake Park Corn．，Sioux Falls，S．D
New Mexico Petroleum Assochation－Address，Allison Bldg．，Roswell，N．M．
Independent Oil Marketers Association－President，W．L．Noore，Dixie Oil \＆ Grease Co．，Atlanta，Ga．
Luuisiana Petroleum Refiners Association－President，I．G．Abney，Louisana Oil Reflning Corporation，Shreveport，La．；Secretary，E．F．Buchanan，Crichton IRefining Co，Crichton，La．
Wisconsin Indeptndent Oil Men＇s Association－President，S．G．Hastings，Jr．，Bark－ housen Uil Co．，Green Bay，Wis．
Indiana Oil Jubbers＇Association－President．Paul Moorehead，Noorehead Oil Co．， llammond，ind ；Vice－President，F．C．Enz，Evansville；Secretary，Russell （ialloway，Hammond．
Arkansıs－Tennesser $1, i l$ Jobbers Association－President，T．G．Gay，Gay Oil Co．， little Rock，Irk．
c＂ntral ${ }^{\prime \prime} \because$ est Oil Mon＇s Association－Bowling Grefn，Ky－－President，Edward R． last；Serretary，F．L．Reeves．
に゙entucky Oil Mrn＇s Association－Lexington，Fr：－President，Alhert R．Marshall； Surntary，E．E．Loomis．
$\because \cdot n t r a l$ N゙・W York Oil Jubbers Association－syracuse，N．Y．－Prisident，Alfred M． （＇ally，Šyracuse，N゙．リ゙．Secretary，W．D．Metzger，Syracuse，ふ．Y．
M1d－1＂ntinunt ril di Gas Assuciation－21：－14 Kt nnedy Bldg．，Tulsa，Okla．－Presi－ dent，W．ㅅ．IJilvis；Sereretary－Counsel．Harry H．Smith．
dulf Corat and Jonuisiana Dil \＆Gas Association－lt Rossonian Bldg．，Houston， Trinel＇resllint，W．S．Farish；V＇ice－President，I．R．Bordages；Secretary， Nols F゙sprerson．
Mhl＇ontin．fit Oll d lias Association－Texas－Louisiana Division，Apartment 14， ltomsonian dBhlg．，lluuston，Texas－President．W．D．Cline；Secretary，Howard

ljulf＂uant Gil lorolumers Association－Beaumont，Texas－President，J．C．Wilson； Setrtary－l＇reasurnr，R．．I．Braud．
Niltonal Gll FixCling．－llarris Trust Blag．，Chicago，Ill．－President W．D．Sim－ mons，Vlsmoslly bil（＇口．，Chicigo；secretary，T．J．Gay，Gay Dil Co．，Little ltor k，Ark．

DIRECTORY OF OIL ASSOCIATIONS—Continued.

Independent Petroleum Marketers Association-930-is1 Marsh-Strong Bldg., Los Angeles, Calit.-lresident, H. S. Botsford; Secrelary-Manager, H. H. Maxson.
Northwestern Oil Pruducers' Assomation-Bradford, Pa.--President, F. D. Wood; Secetary-Treasurer, Earl Weber.
Oil and Gas Produeers' Association-Okmulgee, Okla.-President, John R. Relold; Secretary, W. R. Alexander.
Oil Produeers' Association-608 Main St., Bradiord, Pa.-President, Wm. J. Healey; Secretary, Earl S. W'eber.
O.l Traders Association of New York-35 South William St., New York-President, F. J. Snyder; Secretary, Jos. C. Smith.

Oil Trade Association of Philadelphia, Inc,-Philadelphia, Pa.-President, T. G. Cooper, \boldsymbol{T}. G. Cooper \& Co. ; Sceretary, James Stevensun, Stevenson Bros. \& Co.
Hest Texas Oil Men's Association-Mineral Wells. Texas-l'resident, J. Edgar Pew; Secretary, WV. E. O'Neal.

AMERICAN GAS SYNDICATES.

CALIFORNIA

Garland Bldg
724 S. Spring St . .
58 Sutter St
718 Mission St
454 California St.
995 Market St
445 Sutter St.
COLORADO

FLORIDA

Southern Utilities Co

Copley Gas \& Electric Syndicate
Illinois Traction System
American Coke \& Chemical Co
H. M. Bylleshy \& Co.

Gas \& Electric Improvement Co
Metropolitan Gas \& Electric Co
L. E. Myers Co..

Peoples Gas Ca.
Middle West Utilities Co
North American Light \& Power Co
Public Service Co. of Northern Illincis
Union Utilities Co.
Wisconsin Power, Light \& Heat Co
United Light \& Railways Co
E. A. I'otter

Southern Illinois Light \& Power C'o

ILLINOIS

208 S. LaSalle St	Chicago
Cont. \& Coml. Natl. Bank.	Chicago
33 S. LaSalle St	Chicago
Harris Trust Bldg	C.hicago
Monadnock Block	Chicago
108 S. LaSalle St	Chicago
72 W. Adams St	Chicago
2013 Peoples Gas Bldg	Chicago
72 W. Adams St.	Chicago
39 S. LaSalle St	Chicago
72 W . Adams St	Chicago
836 Edison Bldg	Chicago
Rector Bldg	Chicago

INDIANA

Northern Indiana Gas \& Electric Co
Interstate Public Service Co
510 Bcard of Trade Bldg
W. A. Martin Gas Syndicate

Consolidated Gas \& Oil Co.

Iowa Railway \& Light Co
Ilunnor Gas Co
Amritican Cas Construction Co
Iowa fas \& İlectric Co...

Los Angeles
Los Angeles
San Francisco
San Francisco
San Francisco
San Francisco
San Francisco

Boulder

Palatka

Aurora
Champaign
Chicago
Chicago
Chicago
hicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Hillsboro

Hammond
Indianapolis
La Porte
Ridgeville

Cedar Rapids
Charles City
Newton
Washington

New Or eans

Baltimore Baltimore

MASSACHUSETTS

Commonwiralth Cian \& Eilectric Co
Masmachurntte (ian ('o
Mamachumetta lighting ("0)
Stonne 然 Wramerer
(harlan II. Trenny \& ('o.
Tw n stato (ias \& lilectric (o)

78 Devonshire St.	Boston
111 Devonshire St	Boston
77 Franklin St	Boston
1.47 Milk St	Boston
201 Devonshire St	Boston

MICIIIGAN

Apllaby \& Wargn. I
W. Fi. Mome \& ('O

American l'uhlic Vitition ('o
Inltad liyht \& IRailways ('o
Morhigan lisht (\%

7i0 Un.Alma
Detroit
Grand Rapids Grand Rapids
Jackson Kalamazoo

AMERICAN GAS SYNDICATES (Continued)

NORTH CAROLINA

North Carolina Public Service Co . Greensboro
Carolina Power \& Light Co .

OKLAHOMA
Empire Gas \& Fuel Co. Bartlesvlle

OREGON

Pacific Power \& Light Co
. Gasco Bldg.
Portland

AMERICAN GAS SYNDICATES (Concluded)

PRINCIPAL PIPELINES.

PRINCIPAL PIPELINES－（Continued）．

Capacity， luarrels
Magnolia Petroleum Co．（Double Line）Red Iiver，Tes．，fo Beaumont，Tex．

Magnolia Petroleum Co．，Electra，Tex．，to Bowie，Tex．．．．．．．．．．．
Maryland Pipeline Co．，Kay County，Okla．，to l＇onca City，Okla．
Jidwest Refining Co．，Salt Creek Dist．，Wyo．，to Casper，Wyo．．．． 911
National Pipeline Co．，Oil Fields in Wood Co．，Ohio，to Findlay，O． 60
Vational Pipeline Co．，Oll Fields in Southeastern Ohio to Mari－ etta．Ohio

110
National Transit Co．，Nedska，Pa．，to New York－Pa．Dounslary．． 205
National Transit Co．，Colegrave，Pa．，to Nilway，Pa．．．．．．．．．．．．155
National Transit Co．，Milway，Pa．，to Fawn Grove，Pa．．．．．．．．．．\quad ，
Natioıal Transit Co．．Milway，Pa．，to Point Breeze，P：．．．．．．．．． 70
N゙ational Transit Co．，Milway，Pa．，to Centerbridge，Pa．．．．．．．． 70
Natrona Pipeline Co，Salt Creek，Wyo．，to Casper，W゙yo．．．．．．．．． 90
N゙ゃw York Transit Co．，Pa．－New York boundary to Buifalo，N．Y．I30
New York Transit Co．，Olean，N．Y．，to Bayonne，N．J．，and Long Island，N．K．

1，100
ぶorthern Pipe Co．，Pa．－Ohio boundary to Pa．－N．Y．boundary．．．． 525
Uklahoma Pipeline Co．，Creek County，Okla．，to McCurtain，Okla． 229
lataron Refining Co．，Sandusky County，Ohio，to Toledo，Ohio．．237
Pierce Pipeline Co．，Healdton，Okla．，to Fort Worth，Tex．．．．．．．135
l＇airie Pipeline Co．，Drumright，Okla．，to Ranger，Tex．
l＇rairie Pipeline Co．（Double Line），Ranger，Tex．，to Red River， Tex．

260
Pralrle Pipeline Co．，Cushing Dist．，Okla．，to Humboldt，Kan．．．．T0I
Prairie Pipeline Co．，From Humboldt，Kan．，to Sugar Creek，No．， and Wood River，Ill．．．I，820
Prairle Pipeline Co．，McCurtain，Okla．，to Ida，La．．．．．．．．．．．．．．．． 90
Prairie Pipeline Co．，Eldorado－Augusta，Kan．，to Neodesha，Kan． 85
l＇ierce l＇ipeline Co．，Healdton，Okla．，to Fort Worth，Tex．．．．．．．．I35 vill．，l＇a．．． 210
Producers＇Transportation Co．，Coalinga Dist．，Cal．，to Junction， （＂al．

41
lreducwrs Transportation Co．，Sunset Dist．，Cal．，to Junction，Cal． 50

l＇rorluer rs Trinsportation Co．，Lost Hills Dist．，Cal．，to Trunk
 3
l＇rollurers＇＇Transportation Co．，Junction，Cal．，to Port San Luis， （＇al．

74
l＇ure Wil l＇lpoline Co．，Morgantown，W．Va．，to Marcus Hook，Fa． 250
1！la Brava Oll Co．，Saratoga，Tex．，to Sour Lake，Tex．．．．．．．．．． 13
l＇月 ror llpollne＇o，Fort Worth，Tex．，to Real River，Tex．．．．．．．． 76

Kilr la｜r－Cudahy lipraline Co．，Cushing Dist．，Okla．，to Coffeyvilie， Kith．

70
Sinclalr－c＇urlahy l＇lpellne＂o．，bramehes and lateral in Okla，and Kínман
Sthr lair－lurlahy l＇poline＇o．，Cushing field，Okla．，to Whating， Ind．
Sinclalr－riudiay l＇lpellan（＇o．，c＇ushing field to Healdton，Okla

s inch
$1 \%, 000$
1,000
50.0

75，000
fi inch $55.00 n$
f． 0.000
35.400

4，000

Sinch
S inch 100,000

94，000
31,000

9,000
15.000

20，000

30,000
10,000
1，500
S inch
50.000

8 inch
s inch
51,000
45,000
65,000

PRINCIPAL PIPELINES (Concluded)

Pipeline	Mileage	Capacity, Barrels
Standard Oil Co., Cal., Midway Dist., Cal., to Bakersficld, Cal.	32	65.000
standard Oil Co., Cal., Coalinga Dist., Cal., to Mendota, Cal.	29	28,000
Standiırd Oil Co., Cal., Lost Hills Dist., Cit., to Pond, Cal.	21	20,000
Standard Oil Co., Cal., Northan Dist., Ca!., to El Segundo, Cal.	24	27,000
Standard Oil Co., Cal., Newhall Dist., Cal., to Ventura, Cal.	45	1,400
standard Oil Co., Cal., Santa Mina Dist., Cal., to Port Hartford, Cal.	d, 32	20.000
Standard Oil Co. of La., Ida, Lid., to Baton Rou	22	35,000
sun Co., Seneca and Woorl Co., O., to Toledo, O	250	1,000
Sun Pipeline Co., Humble, Tex. (also Yale, Okla.) to Sabine Pass T'ex.	. 100	21,000
Sun Pipeline Co., Humble, Tex., to Sour Lake,	53	6 inch
Sun Pipeline Co.. Sour Lake, Tex., to Spindle Top.	23	δ inch
Sun Fipeline Co., Spindle Top, Tex., to Sabine Pass, Te	25	δ inch
Sun Pipcline Co., Batson, Tex., to Sour lake, Te	16	S inch
Sun Pipeline Co., Spindletop, Tex., to Sun Station, Tex	. 4	6 inch
Texas Co. (main lines) Bartlesville, Okla., to Port Arthur, Tex.	742	20,000
Texas Co. (main lines) Electra, Tex., to W'est Dallas, Tex.	160	17,000
Texas Co. (main lines) Vivian, L.a., to Port Arthur, Tex	253	20.000
Texas Co. (main lines) Evangaline, Tex., to Garrison, Tex	95	9.6110
Texas Co. (main lines) Healdton, Okla., to Sherman, Te	40	12,0110
Texas Co. (laterals) in Oklahoma and Texas	-2ロ	
Texas Co. Dennison, Tex., to Port Arthur	400	6 inch
Texas Co., Logansport, Tex., to Port Arthur, Tex	155	8 inch
Texas Co. Ranger, Tex., to Fort Worth, Tex	S5	S inch
Texas Co. (two lints) Dallas, Tex., to Fort Worth,	60	s inch
Texas Co., Daytor, Tex., to Goose Cree	25	s inch
Texas Co., Electra, Tex.. to Fort Worth, Te	120	6 inch
Texas Co., Humble, Tex., to Houston, Tex	15	6 inch
Texas Co., Healdton, Okla., to Gates Station, Tex		s inch
Tidewater Pipe Co. (main line) Stoy, Ill., to Bayonne, N. J		11,000
Tidewater Fipe Co. (laterals) in Pennsylvania, N. Y., Ill. an Ind.	$\begin{aligned} & \mathrm{nd} \\ & \ldots 1,429 \end{aligned}$	
Union Oil Co., Orcutt, Cal., to Port San Luis, Cal	65	
Union Oil Co., local Jines in Ventura County, Cal.	43	
Enion Oil Co.. local lines in Los Angeles, Orange County, Fitds Cal.	. 51	
Valley Pipeline Co., Coalinga Dist., Cal., to San Francisco Bay	170	25,010
War Pipeline Co., Cushing Field, Okla., to Humboldt, K゙an.		S inch
Wilburine Pipelinc Co., Shannopin, Pa., to Warren, Pa	125	5,000
Yarhola Pipeline Co., Healdton, Okla., to Cushing, Okla	135	9,000
Yarhola Pipeline Co., Cushing, Okia., to St. Louis, Mo., and Wood River, Ill.	$\begin{array}{ll} \text { od } \\ \ldots & 400 \end{array}$	36,000

PIPE LINE TRANSPORTATION.

The oil pipe line was first introduced about 56 years ago and since that time has so demonstrated its superiority as a means of carrying crude oil from the well to the refinery, that this method of transportation has largely superseded all others. This has made possible the building of refineries in or near the large consuming centers, rather than at the wells, which are usually remote from the centers of population.

The pipes for conveying the oil are laid on the surface of the ground or at a depth varying from 18 inches to 3 feet beneath the surface and the main lines are generally eight inches in diameter. The oil is forced through the pipes by means of pumps operated either by steam or by internal combustion engines. The pump stations are located from $11 / 2$ to 90 miles apart, varying with the condition of the country through which the pipe lines extend, and the viscosity of the oil to be handled.

Some of the large pipe line systems are hundreds of miles in length. It is estimated by the U. S. Geological Survey that the total mileage of oil trunk lines in the United States today is approximately 34,000 and that the gathering systems, which are a fundamental part of the trunk systems, aggregate about 11,500 miles in length, making a total of 45,500 miles.

At the time most of the lines were constructed, the average cost per mile based on eight inch pipe was about $\$ 6,500$. The cost of the average pump station at that time varied from $\$ 130,000$ to $\$ 250,000$. The fixed investment in pipe lines is estimated to be approximately $\$ 500,000,000$.

The difference between the published pipe line tariff rates and the railroad rates for shipping crude oil have always been so large that refiners and producers even though they have no pipe line systems of their own, cannot afford to ship by rail except for comparatively short distances. The pipe line rates, although greatly increased in recent years, are still much lower than those charged by the railroads for tank car shipments.

In the construction of oil trunk lines, a reconnaissance survey is first mate of the route for the line. In making the choice, attention is given to avoiding as much as possible excessively rough country, swamps, rivers, etc., and selecting a route which will admit of pumping stations being located near suitable supplies of water. Where possible, the lines are routed along or near the lines of railroads. In some instances they have been placed in the railroad right of way, the construction and maintenance of the pipe lines being greatly facilitated thereby. As soon as the route is definitely decided upon, careful surveys are made and maps prepared showing the exact locations, grades and contours. Rights of way for one or more lines of pipes and for telegraph and telephone lines are pur'hased outright; in others, they amount to a perpetual easement for the use of the land upon which the pipe lines and telegraph lines are ennstructeri, fiving the owners of the lines ingress and egress (0) and from the property for the purpose of laying new lines and
operating and maintaining the ones in use. In some states pipe line companies have been granted powers of acquiring rights of way by condemnation proceedings.

The specifications for the pipe require that it be of a uniform quality of steel, that the threads be carefully made so as to make as perfect a union between the joints as possible, and that it be capable of safely withstanding an internal pressure of 2,000 pounds per square inch.

The actual construction work is commenced by the "right-of-way gang" who prepare the difficult places of the route selected. They remove the trees where these will interfere with the construction work, dig ditches and place casings at railroad crossings, build bridges across rivers and where necessary, build roads to facilitate the hauling and handling of the pipe.

Behind the "right-of-way gang" come the "stringing gang" who distribute the pipe.

The "stringing gang" is followed by the "pipe-laying gang." Where the work is done by hand, that is, using ordinary pipe tongs, this gang consists of about forty men. In its group are stabbers, tongsmen, rope men, bar men, jack men, etc., each of whom has his special work to perform in joining one length of pipe to another. In some instances the pipes have been joined by pipe machine. This is a more modern method enabling a very much smaller laying gang to be used and doing much more rapid work. Cases are on record where one pipe machine operated by a gang of 28 men has laid as much as 8,700 feet of eight-inch pipe in one day of nine hours, whereas the usual accomplishment of an ordinary gang of 40 men is from 2,500 to 4,000 feet per day.

Following the pipe gang comes the "ditching gang" whose duty is to dig the ditch and bury the pipe. Where the route is through comparatively level country free from rock in place, ditching machines can be used to good advantage. Where the country is hilly, plowing the ditch with teams and shoveling the dirt out by hand, is often advisable, but where rocky country is encountered, it is often necessary to dig the ditch entirely by hand, blasting much of the material to be removed. In some instances, the ditch has been dug first and the pipe joints, resting on skids or sleepers, were screwed into place over the open ditch. Where rivers or large bodies of water are to be crossed, it is customary to join the pipe on a flat boat or raft, which is moved along as the work proceeds. In places where the cost of digging ditches would be excessive, or where the pipe lines if buried would pass through strongly alkaline soil, it is usual to paint the pipe with asphalt, then before the asphalt has had opportunity to dry, to cover the painted pipe with a good grade of roofing paper, applying on the outside of the paper a second coat of asphalt.

The viscosity of the oil to be transported and the topography of the country through which the pipe lines pass, are the governing factors determining the distance between pumping stations. The average distance between pumping stations in the midwestern and
sastern States is about 35 miles, while the average distance between stations in California, where a relatively thick, viscous oil is handled, is about 12 miles, although stations are sometimes not more than a mile and a half apart, and in extreme cases are placed as much as 90 miles apart.

The operating equipment of a pumping station consists of a pump house, boiler house, tool house, garage or barn, office, probably two oil tanks, langing in size from 10,000 to 55,000 barrels capacity, water tower, fuel oil tanks and feed water tanks.

Equipment is usually provided in excess of ordinary demands so that there is always in reserve extra pump power to meet unusual demands, thereby avoiding shut-downs where repairs are needed to punips and boilers. The usual forms of power are steam pumps and internal combustion engines. 'The pumps are designed to deliver through an eight inch pipe line approximately 30,000 barrels of oil in 24 hours, working under a line pressure of 700 to 900 pounds per square inch.

Practically all the pipe line companies engaged in the transportation of petroleum have, in addition to their trunk lines, extensive systems of gathering lines. These are provided for the purpose of collecting the oil from the producers' tanks and running it to a tank farm or to some point where it can conveniently enter the main trunk lines. In some cases, however, these gathering systems are owned by the producing companies, and not by the same companies that operate the trunk lines. The pipe used in such systems is usually smaller than that in the trunk line, most of it being from four to six inches in diameter.

As in the casc of railroad operations, it is necessary to provide means for instant communication between different parts of a pipe line system. For this reason it is usual for the pipe line companies to own and operate their own telegraph and telephone systems. The telephonc lines usuaily parallel the pipe lines, and are constructed along the same right of way, so that the line walker who patrols the pipe lines can also look after the condition of the telephone and telegraph system.

A pipe line system such as described is administered from a general office, and from branch offices located at convenient points in the territory served. The system is divided into divisions, each division being under the supervision of a superintendent, who looks after the operations of the line within his territory. The division is in turn sometimes subdivided into districts, each district being in charge of a foreman. Foremen report directly to the superintendents of their districts, and the superintendents to the general manager who has his office at the headquarters of the company.

The office is divided into several departments, such as an oil transportation department, an engineering department, a legal department, a tax department, an accounting department and a treasury deparment. (The above matter was furnished by C. P. Bowie in report of Bureau of Mines No. 2164.)

In general it may be said that the cost of transportation of putoleum is tc to $10 c$ per 100 harrels per mile. This widely varies
because of the different ground contours, temperatures and oil viscosities.

Typical costs per mile of pipe line are as follows: (Sulentic in "Petroleum")

		Stations	Stations	day@800lbs.
4 inch	line.	\$9,000	\$6,500	6,000
6 inch	line.	12,500	8,500	18,000
8 inch	line.	16.000	11,000	30,000
10 inch	line.	19,000	13,500	60,000

In order to make a very crude estimate of the cost of transporting oil by pipeline when using equipment of the highest economy, assume a single line operating under the following conditions at a load factor of 80 per cent for 300 days per year:

Size of line, 8 inches.
Length of line, 33 miles.
Pressure in line, 700 pounds per square inch.
Rate of discharge, $£ 00$ barrels per hour.
At this rate, the discharge would be 21600 barrels per day or $6.480,0$ co barrels per year of 300 days. Assuming 6.5 barrels per ton, the yearly discharge would approximate $1,000,000$ tons. The work equivalent of this discharge would be $33,000,000$ ton-miles, calling for the continuous expenditure of 257 hp . Assuming the mechanical efficiency of the engine to be 75 per cent, the actual horsepower necessary to install would be 342 .

The assumed costs would be as follows:
Line: 33 miles at $\$ 165$ per foot
\$287,500
Right of way at $\$ 025$ per rod.. 2,640

Haulage: 〔00 tons at \$14 50.. 13,050
Laying pipe at $\$ 0.075$ per foot .. 13,060
Burying pipe at $\$ 0.20$ per foot .. 34, 350
Engines, pumps, installed accessories _-....................................... 68,500
Pump stations, buildings and foundations.................................. 30,000
Tanks-
Two 55,000 barrel at $\$ 18,500$ each 37,000
Two 500 barrel at $\$ 500$ each.. 1,000
Telegraph line: 33 miles at $\$ 550$....... .. 18,150
Superintendence and incidentals... 8, 8,
Total assumed costs .. $\$ 534,000$
The operating expense, including fixed charges based on the total assumed costs would be as follows:
Interest at 6 per cent... $\$ 32,040$
Depreciation at 5 per cent.. 26,700
Administration ... 10,000
Attendance at pump stations and lines... 11,500
Repairs to equipment, lines, etc.. 4,000
Fuel for pumping- 3,000 barrels at $\$ 2.65$...................................... 7,950
Total operating expense.. $\$ 92,190$

From which the cost of operation per ton-mile under the assumed conditions would be

$$
\frac{92,190}{33,000,000}=\$ 0.0028
$$

The relation between the cost of pipe line transportation and rail transportation is in the ratio of 1 to 10 .

It should be noted that most of the pipeline costs are fixed and are mainly independent of the amount of oil pumped. As a result the transportation cost per ton-mile will vary almost inversely with the load factor of the line. If this hypothetical pipe line should be operated only one-tenth of the time assumed, the unit transportation cost would equal the rail cost. Furihermore, these figures are based on a life of 20 years (5 per cent amortization). A railroad would probably be used for various classes of freight as long as it existed, but a pipe line is of service only as long as oil is present for transportation. If the pipe line in question were to become obsolete in 10 years through the exhaustion of the oil fields or other causes, the ton-mile cost would be greatly increased.

The following examples show the relations existing between pressure, capacity, diameter, length of line and power required.

Disregarding viscosity, the general hydraulic formula for friction head in a pipe discharging a uniform volume is

$$
\begin{equation*}
F=k \frac{v^{v} L}{2 g D} \tag{1}
\end{equation*}
$$

in which
$\mathrm{F}=$ friction head in feet of svater $=1 \mathrm{~b}$. per sq. in. $\div 0.433$
$\mathrm{k}=$ friction coefficient for 38 gravity oil $=0.024$
$\mathrm{v}=$ velocity of flow, ft. per sec.
$\mathrm{g}=$ acceleration of gravity $=322 \mathrm{ft}$. per sec.
$\mathrm{L}=$ length of line, ft .
$\mathrm{D}=$ diameter of line, ft .
The formula for pressure in the line may be stated as

$$
P=0.433 \mathrm{k} \frac{\mathrm{v}^{2} \mathrm{~L}}{2 \mathrm{gD}}
$$

in which $P=$ pressure in line in pounds per sq. in.
The discharge Q of the line, cu. ft. per sec. can be easily derived and stated as

$$
\begin{equation*}
Q=\frac{3.1416 \mathrm{D} v \mathrm{v}}{4} \tag{3}
\end{equation*}
$$

in which (Q varies directly as v. Since P varies directly as v^{2} in Formula (2) and Q varies directly as v in Formula (3) it follows that P varies directly as Q^{2}.

The net horsepower required for a pipe line may be most readily calculated by noting that the pressure per square foot is equal to the number of foot-pounds required to displace $1 \mathrm{cu} . \mathrm{ft}$. of oil or

$$
\begin{equation*}
\mathrm{Hp} .=\frac{144 \mathrm{P} \text { Q }}{550} \tag{4}
\end{equation*}
$$

The following data in regard to the 36 -mile, 8 -inch Alton pipe line operating between Carlton and Wood River, is given by S. A. Sulentic, in "Petroleum." This line, constructed in 1913, has four stations, in each of which are installed four units each consisting of a 100 horsepower type of engine direct-connected to a 6 inch by 18 inch herringbone-geared power pump with 8 inch suction and 6 inch discharge. The performance of one station equipment (three units) is as follows:
Oil pumped during 10 days, barrels............................ 140,000
Oil pumped per day, average, barrels.......................- 14,000
Pressure maintained in line, pounds per sq. in...........- 700
Brake horsepower, average.. 196
Pump efficiency, estimated, per cent........................... 85
Fuel consumed by engines during 10 days, barrels.... 65.8
Fuel consumed by engines per day, pounds............... $\quad 2,020$
Brake-horsepower-hours per day $=196 \times 24 \ldots \ldots$.
Fuel consumption per b.hp..-hr. pounds......................- 0.43
Ft.-lb. of work per day developed by the engine
$196 \times 33,000 \times 24 \times 60 \ldots \ldots .9,320,000,000$
Ft.-lb. of work per day in oil pumped $=9,320,000$,-
$000 \times 0.85(85 \%$ efficiency $) \ldots \ldots . ~ 7,900,000,000 ~$
B.T.U. in fuel consumed per day $=2,000 \times 18,000 \quad 36000,000$

Ft.-lb. of work per 1,000,000 B.'T.U............................. 217,000,000
Daily operating cost:
Fuel oil: 6.58 barrels at $\$ 150$................................ 9.87
Lubricating oil: 2 gallons at $\$ 0.22 \ldots \ldots . ~ 0.44$

Attendance: Total salaries of 2 engineers, 2 assistant engineers, 1 chief engineer and 2 telegraph operators
$\$ 52.15$
Cost per b.hp.-hr. $(\$ 52.15 \div 4,704)$..........................- 0.011
Cost per barrel of oil pumped ($\$ 02.15 \div 14000$) 0.0037
Bbl. of oil pumped per barrel of fuel consumed
$(14,000 \div 6.58)$
2,130

BULLETIN NUMBER SIXTEEN OF

FRICTION PRESSURE LOSS AND CAPACITY OF OIL PIPE LINES AS AFFECTED BY VISCOSITY OF THE OIL.

$\mathrm{P}=\frac{\mathrm{cg} \mathrm{q}{ }^{2}}{\mathrm{~d}^{5}} \quad$ or $\mathrm{q}=\sqrt{\frac{\mathrm{Pd}^{\sigma}}{\mathrm{c} \mathrm{g}}}$
$\mathrm{P}=$ friction pressure loss in pounds per square inch per 1000 ft . of pipe.
$\mathrm{g}=$ density of the oil at temperature of pumping.
$q=$ gallons of oil per minute.
$\mathrm{d}=$ internal diameter of the pipe in inches.
$\mathrm{c}=$ coefficient from following table.
$\mathrm{M}=\frac{\mathrm{g} \mathrm{q}}{\mathrm{d}}$ (from the value found for M look up the value of c in the d v table below. Use this value in the formulae given above.)
$\mathrm{V}=$ absolute viscosity $=\mathrm{g}\left(.00220 \mathrm{~S}-\frac{1.8}{\mathrm{~S}}\right)$
$\mathrm{S}=$ Saybolt viscosity in seconds (for viscosity conversion factors see section on method of testing for viscosity). (See fig. 21).

M	C	M	C	M	C
10,000	0.190	750	0.355	85	0.600
9,000	0.195	700	0.360	80	0.550
8,000	0.200	650	0.370	75	0.500
7,000	0.210	600	0.380	70	0.460
6,000	0.220	550	0.390	65	0.425
5,000	0.230	500	0.395	60	0.450
4,000	0.240	450	0.400	55	0.500
3,000	0.250	400	0.415	50	0.550
2,500	0.260	350	0.430	45	0.600
2,000	0.270	300	0.440	40	0.675
1,800	0.285	250	0.460	35	0.775
1,600	0.300	200	0.480	30	0.900
1,400	0.310	180	0.500	25	1.100
1,200	0.320	160	0.515	20	1.350
1,000	0.330	140	0.520	18	1.500
950	0.335	120	0.550	16	1.700
900	0.340	100	0.555	14	1.950
850	0.345	95	0.570	12	2.200
800	0.350	90	0.585	\cdots	...

DIAMETER FUNCTIONS OF STANDARD IRON AND STEEL PIPE.

Nominal Diameter, Inches	Actual Diameter, Inches (d)	d^{4}	
$1 / 2$			

PIPE LINE FORMULA.
Compiled by the National Transit Co.
$P=$ Gauge pressure in pounds per square inch.
$\mathrm{M}=$ Number of miles.
$\mathrm{B}=$ Discharge in barrels (42 gal) per hour.
$C=$ Constant for pipe sizes.
$B=\sqrt{\frac{\overline{C \times P}}{M}}$
C for 2 -inch pipe $=36$
(C) for 3 -inch pipe $=289$
(' for 4 -inch pipe $=1225$
(' for 5 -inch pipe $=3600$
(for 6-inch pipe $=9025$
C for 8 -inch pipe $=38416$
(' for 10 -inch pipe $=116964$
C' for 12 -inch pipe $=289444$
For every 3 degrees above 35 degrees Be^{\prime} add 1% to B .
For every i3 degrees below 38 degrees Be' deduct 1% from B.
Net H. $\mathrm{P} .=\mathrm{BxP} \times 00041$.

Medium- Standard
Long-Sweep Sweep El- Elbow or
bow or on
Run of Tee
Reduced in
Size $1 / 4$

 Elbow or bow or on on Run of菏范
 on Run of Run of Tee

Fif 21. Ralatlon of Viscosity to Temperature of Typical Crude Petroleums.

STORAGE OF PETROLEUM.

Petroleum is usually stored above ground in cylindrical steel or iron tanks of convenient proportions for requirements. A roof is provided to prevent admission of rain water and contamination. In the case of light oils evaporation losses are diminished by the use of an air tight roof but in the latter case, a special equilibrium valve is needed to allow the escape of the gas if the pressure exceeds a predetermined safe degree and to admit air when oil is abstracted. The main features characterizing an oil tank are:

1. Large draw-off valve at lowest point to remove water and sediment.
2. One or two manholes near base for entry.
3. Inlet pipe leading above top of tank and either discharging on base or flowing into second large pipe that conducts new oil to the base of tank and prevents undue splashing and consequently liberation of light products.
4. Gavge glass or succession of gauge glasses to read off oil level.
5. Sometimes a float and outside measuring board and indicator to show level of liquid.
6. Floating or adjustable suction pipe to draw oil from top of liguid when discharging.
7. Sometimes for light oils in hot climates a water spray for roof or a dished roof for holding water.
8. The construction of an earthen embankment round the tank enclosing a space from one and a half to twice the volume of the tank so that in the event of a fire, the burning oil may be prevented from spreading.
9. All oil tanks should be painted outside: the finishing coat should be white or nearly so in a hot climate to prevent undue absorption of heat.
10. Oil tanks, especially when intended for light gravity oil, should be very closely riveted, and great care should be taken to close the seams before the rivets are inserted and driven.
11. One or more dipping pipes, sometimes combined with the escape valves are usually fitted for sampling.

The cost of steel tankage varies with the price of metal and labor, but for standard sized tanks the price varies from about $\$ 1.00$ per barrel of capacity for 1,000 barrel tanks to $\$ 0.30$ per barrel for 55,000 barrel tanks (1921).

LOSSES IN THE STORAGE OF CRUDE PETROLEUM.

The principal losses in the storage of crude petroleum are due to evaporation, to fire and to seepage.

Oils having the greatest loss are the crude oils containing the most gasoline, since they are the most volatile, most readily form explosive and inflammable mixtures and due to their low viscosity most readily flow through walls of loose texture.

The loss from evaporation is greater the larger the amount of gasoline. The loss also depends upon the temperatures of storage and upon the amount of surface exposed to atmospheric circulation. If the tank or container is perfectly tight, then there will be no loss by evaporation.

There are three general types of storage now in use in the MidContinent fields;-the earthen reservoir, the steel tank with wooden roof and the steel tank with a steel, gas-tight roof.

The 55,000 and 35,000 barvel steel tanks are the usual sizes. Altogether there are more than 3500 of these large steel tanks in use in the Mid-Continent field.

The carthen storage is extremely wasteful from both seepage and evaporation. Petroleum standing in this type of reservoir has been known to shrink 40% in volume in two or three weeks. The shrinkage in value is of course much greater as the portion lost by evaporation is the best of the gasoline.

The following losses by evaporation took place in steel tanks with no scepage, with wooden roof covered with paper and tarred and apparently tight. The oil was of $40^{\circ} \mathrm{Be}^{\prime}$ gravity and the tanks were of a diameter of $1141 / 2$ feet.

Capacity Loss in Gauge Actual Loss Period Per Cent Loss

$$
55,000 \mathrm{bbls} .
$$

55,000 bbls.
55,000 bbls. $1 \mathrm{ft} .111 / 8 \mathrm{in} . \quad 1700 \mathrm{bbls}$.

5 mos.	4.2
$41 / 2 \mathrm{mos}$.	4.6
$31 / 2$	mos.
$31 / 4 \mathrm{mos}$.	3.4
	3.8

The above figures indicate that there might be a loss of 1% per month of storage in wood roof steel tanks and this might amount to is much as 6,000 barrels per year per tank.

It has been claimed that oil stored in white tanks is subjected to 1 to $11 / 2$ ' less evaporation than in red tanks and $21 / 2 \%$ less evaporation than in black tanks.

Varrous types of insulation have been used with success.
A typical storase temperature for the Mid-Continent field for nil stored above ground would be $80^{\circ} \mathrm{F}$. A typical temperature of the ground for a submerged tank would be $60^{\circ} \mathrm{F}$. which would more nearly approach the storage temperature of the air for the whole year.

If tanks conld be successfully and cheaply built in the ground, they would have the advantage of almost perfect insulation from outside heat, and the oil would be stored at practically the temperature at which it comes from the ground. For this submerged type of tank, concrete construction would be proper if capable of perfect construction. It shrould be monolithic, well reinforced and lined with a coatine imprrious to water and gasoline.

APPORTIONMENT OF THE LOSS SUSTAINED BY CRUDE ON ITS JOURNEY FROM THE WELL TO THE REFINERY.

Per Cent Volume Evaporated.

		Autumn		
Location of Loss-	Summer	Spring	Winter	Ave
Flow tank	1.2	1.0	0.8	1.0
Filling lease tank.	1.2	1.0	0.8	1.0
Lease storage	1.8	1.4	1.2	1.5
Gathering. . .	1.3	0.9	0.8	1.0
Transportation.	1.2	0.9	0.8	1.0
Tank farm.	0.9	0.7	0.6	0.7
Total.	7.6	5.9	5.0	6.2

Next in quantity after the evaporation losses in the storage of crude oil is the loss due to fire. Petroleum fires destroyed $12,850,000$ barrels of oil in the United States in 1918. From January 1, 1908, to January 1, 1918, approximately $12,850,000$ barrels of oil and $5,024,506$,000 cubic feet of gas were destroyed by fire in the United States entailing a total estimated property loss of $\$ 25,254,000$. During this period 503 fires were reported. Of these fires 310 were caused by lightning and 193 by other causes. The losses from the fires caused by lightning were estimated to be $\$ 11,148000$ and from those due to other causes, $\$ 14,106,200$. Directly and indirectly the fires resulted in the deaths of nearly 150 persons and were responsible for almost as many more being permanently disabled.

Loss from fire in the oil field storage in the year 1916 amounted to about $\$ 4,000,000$.

The causes of fires are electrical discharges or open flames in the presence of an inflammable or explosive mixture of gasoline and air. The amount of gasoline vapor in air necessary for an explosive mixture is within the limits of $1 \frac{1}{2}$ per cent and 5 per cent by weight. Less than the lower limit or more than the upper limit will not ignite. In an open tank if the amount at the surface of the oil exceeds $11 / 2$ per cent there is at some point an explosive mixture and an igniting temperature of 900 degrees F. or over will cause it to take fire. In a perfectly tight tank with gasoline vapor in excess of the upper limit for an explosive mixture, there will be no fire unless the roof of the tank is open at some point.

The ingress of a flame through an opening may be prevented in the same way that the flame in the Davy miner's lamp is prevented from passing outward. This operates by having some metal screen or other material cool the flame and prevent it being propagated into the tank. This will not prevent ignition from an electrostatic discharge in the vapor space of the tank.

Methods for prevention of fires of oil in storage are as follows:

1. Means of preventing the passage of the spark in a portion of the unfilled space of the tank.
2. The maintenance of a mixture in the unfilled portion of the tank which is not an explosive mixture.
doss in the mid-continent field from a day storage on the lease

3. A tank so placed and constructed that the cooling effect of the walls will tend to smother the flames and the ingress of air will be so arranged that the fire is not readily fed.
4. A means for quickly eradicating the fire after it is ignited.

Several more or less successful methods for extinction of oil tank fires have been in use. The best involves the use of mixtures of sodium bicarbonate and sulphuric acid which produce sufficient carbon dioxide to smother the flame. If some sort of saponifying agent is used the carbon dioxide will make a froth which will float on the surface of the oil and is very effective in extinguishing the flame.

The application of steam is very effective but in the storage of a very large amount of oil the steam is not always available when needed and at the point where needed.

For small oil fires dust or other finely divided mineral matter is effective in extinguishing the fire.

STANDARD SPECIFICATIONS FOR BRICK OR TILE ENCLOSED TANKS.

A concrete foundation must be built around base of tank and upon this must be built a 12 inch brick or interlocking tile wall, leaving an air space between wall and tank of not less than 6 inches. At the base of the air space a concrete gutter must be formed having a grade from the quarter points each way to a sewer opening: sewer to be carried underneath the wall to a running trap just outside and at least 2 feet underground.

The roof of the structure is to consist of a steel supporting frame upon which is to be placed successively No. 24 gauge dove-tailed plate reinforcement, concrete, metallic lath and a finish coat of cement mortar. The metallic lath to be carried over the cornice and fastened to the top of the wall and beneath the reinforced concrete ring which forms the wall plate: by this the whole concrete surface will have a protection of metallic lath. Walls of structure to be plastered on the outside with cement mortar.

The structure must have a 24 inch conerete or other incombustible ventilator resting on a steel ring, lower side of ring to be covered with No. 4 mesh wire screen: upper side of ring to be sealed with two flap (butterfly) doors, normally held open by chain with fusible link which, in case of the presence of heat, will allow the doors to close and, in case of gas pressure inside of structure, will force the flap doors open, and when pressure is relieved will allow them to close.

There should be placed about one foot above top of foundation a cast iron ventilating shutter on the end of a standard 8 inch nipple pipe, with flap door normally held open by wire rope with two fusible links, one near top of tank and one near flap door. Flap door to be provided with brass pin to insure easy operation. The face of the casting should have such bevel that when the flap door is closed it will be held closed by gravity. Tanks 20 feet or less in diameter to be provided with four, over 20 feet and under 50 feet in diameter to he provided with six, and 50 feet or over in diameter to be provided with eight such ventilators: to be equally spaced around tank in each case.

An opening must be left in the roof of the structure to allow of entrance to the top manhole of the tank, same to be covered with a door built of tile in steel frame, sealed lightly on asbestos gaskets and to be kept closed and locked at all times, except when in use for repairs.

Opposite the bottom manhole of the tank a door opening must be loft in the wall, same to be covered with a door built of tile in steel frame, sealed lightly with asbestos gaskets, and to be kept closed and locked at all times, except when in use for repairs.

At the apex of the tank there must be placed a ring spray capahle of handling all water that may come to it through a 2 inch pipe under 75 pounds pressure: pipe to be carried up inside the structure and to he controlled by a valve accessibly located at a distance and to be made automatic by means of a fuse.

All pump connections are to be carried underground into the housing:

FUEL OLL STORAGE TANKS REGULATIONS-DRAFTED BY FIRE PROTECTION ASSOCIATION.

The Committee on Inflammablc Liquids of the National Fire Protection Association has submittel the following tentative regulations covering the construction of concrete tanks for fuel oil storage.

Setting of Tanks.-(a) Tanks, if underground, shall be buried so that the top of the tank will be not less than three feet below the level of the surface of the ground and below the level of any piping to which the tanks may be connected.
(b) Tanks shall be set on a firm foundation.
(c) All tanks shall be provided with a concrete or other nonbustible roof.

Material and Construction of Tanks.-(a) Reinforcement.-Sufficient steel reinforcement shall be used to resist the oil pressure, and the horizontal and vertical reinforcement shall be proportioned properly and located to reduce the shrinkage cracks, so that they will be too minute to permit leakage. The fiber stress in the steel shall not exceed 10,000 pounds per square inch. (Note. A fiber stress of 10,000 pounds per sq. in. should prevent shrinkage cracks although a number of tanks have been designed with a fiber stress of 6,000 to 8,000 pounds.)
(b) Concrete. -The concrete for floor and walls should be at least 8 inches thick, mixed in the proportion of $1: 2: 3$ or better $1: 1 \frac{1}{2}: 3$ and having the coarse aggregate of clean, dense, crushed rock or gravel ranging in size from one inch down. The concrete shall be thoroughly mixed, carefully placed and worked around the reinforcement. The forms should not be held together by wire as is frequently done in building constiuction because leakage is likely to take place along the wire. The concrete shall preferably be poured in a continuous operation so as to form a monolithic construction. (Note. Where this cannot be done the bottom shall be poured without joints and the walls as a second continuous operation. One method of making a tight joint letween the bottom of the tank and the walls is by means of a strip of galvanized iron six inches wide with joints riveted and soldered, so as to form a continuous band. This strip should be vertically embedded three inches in the floor slab and on the center line of the wall. The floor slab under the walls should be thoroughly cleaned, and before pouring the walls a mixture of $1: 1$ mortar should be placed in the bottom of the forms and around the galvanized strip to make a tight joint.)
(c) Finish.-As soon as the wall and sides have been poured the floor shall be floated and troweled smooth. The wall forms shall be removed as soon as the concrete has hardened sufficiently to be self-sustaining and all projections and irregularities shall be removed from the surface and all cavities filled with a 1:1 mortar thoroughly rubbed in and troweled smooth. No plastering shall be applied.
(d) Aging.-The concrete shall be allowed to harden at least 30 days and longer if possible. (Note. To assist in the setting of the concrete before it becomes oil soaked it is advantageous to use sev-
eral priming coats of a $1: 4$ solution of 40° Baumé sodium silicate, followed by a finish coat of a $1: 2$ solution. This forms a glazed surface on the concrete, which although it is not permanent, gives the concrete an opportunity to harden until the protection from the silicate of soda is no longer necessary.)

Location of Pipe Connections.-All pipe connections to the tank shall be made through the top.

Venting of Tanks.-(a) Tanks shall be provided with a permanently open vent, or with a combined fill and vent fitting so arranged that the fill pipe cannot be opened without opening the vent pipe.
(b) Vent openings shall be screened with (30x30) brass mesh or equivalent, and shall provide sufficient area for allowing proper flow of liquid during the filling operation. Permanently open vent pipes shall be provided with weatl:er-proof hoods and terminate at a noint at least twelve feet above the top of the fill pipe and never within less than three feet, measured horizontally and vertically, from any window or other building opening. Where a battery of tanks is installed vent pipes may be run into a main header. Individual vent pipes should, however, be screened between tank and header and connection to the header should be not less than one foot above the level of the top of the highest reservoir from which the tanks may be filled.
(c) Fill pipes shall be screened and when installed in the vicinity of a building, shall not be located within five feet of any door or other opening and shall terminate in a metal box or casting provided with means for locking.

PROPERTIES OF STANDARD STEEL ROOF STORAGE TANKS.

$\begin{aligned} & \text { Ca- } \\ & \text { pacity } \end{aligned}$	Dimensions		Bairels per Inch	U.S. G рәг 1 In.	Lbs. per Bbl.	Weight Pounds	Relative Cost per Bbl.	Relative Selling Price	Relative Cost per Pound
55,000	114.5	x30	152.80	6420	7.47	411,000	\$0.3673	\$20,200	\$0.0.4916
37,500	95	x 30	105.20	4420	8.00	300,000	0.4134	15,500	. 05168
30,000	85	x30	84.24	3538	7.83	235,000	0.4133	12,400	. 05277
25,000	75	x30	65.57	2754	8.08	202,000	0.4340	10,850	. 05370
20,000	70	x30	57.12	2399	8.80	176,000	0.4750	9,500	. 05398
15,000	60	x30	41.98	1763	8.67	130,000	0.4833	7,250	. 05577
10,000	50	x30	29.15	1224	9.67	96,700	0.5400	5,400	. 05582
5,000	35	x30	14.28	600	10.46	52,300	0.5800	2,900	. 05545
2,000	35	$\times 12$	14.28	600	16.00	32,000	0.9300	1,860	. 05810
1,700	35	x10	14.28	600	17.06	29,000	1.0240	1,740	. 06000
3,800	30	x30	10.50	441	11.84	45,000	0.662	2,515	. 05590
3,200	30	$\times 25$	10.50	441	12.06	38,600	0.688	2,200	. 0570
2,500	30	$\times 20$	10.50	441	13.60	34,000	0.784	1,960	. 0577
1,250	30	x10	10.50	441	19.20	24,000	1.164	1,455	. 0606
1,000	30	$\times 8$	10.50	441	22.00	22,000	1.355	1,355	. 0616
2,000	25	$\times 25$	7.29	306	15.50	31,000	0.8875	1,775	. 0572
1,500	25	$\times 17^{\prime} 6^{\prime \prime}$	7.29	306	15.80	23,700	0.943	1,415	. 059
875	25	$\times 10$	7.29	306	20.23	17,700	1.257	1,100	. 0621
1,000	20	$\times 20$	4.66	196	20.60	20,600	1.190	1,190	. 0578
500	20	x10	4.66	196	27.60	13,800	1.74	870	. 0631
1,000	30	x 8	10.50	441	24.40	24,400	3.10	1,550	Bleacher
760	30	$\times 6$	10.50	441	31.19	23,700	1.89	1,435	Bleacher

Miscellaneous tanks:
U. S. gallons per inch of vertical tank $=0.4897 \mathrm{~d}^{2}$.

Barrels per inch of vertical tank $=0.01166 \mathrm{~d}^{2}$.
$\mathrm{d}=$ diameter of tank in feet.

DESIGN OF OIL TANKS（Clicago Bridge and Iran Works）．

 Weights include stairway outside，fixed adder nside，manhole in lower ring and in roof．Plate thiek－ 10.2 lbs per sq ．ft．All seams are lap type．Horizontal seams and seams in bottom are simgle riveted． Roof for smaller tanks supported by column at center and radical rafters columns with rafters．

บวินข่ 			$\left\lvert\, \begin{aligned} & i= \\ & x o \\ & i-i= \end{aligned}\right.$			$\begin{aligned} & \infty \rightarrow \infty \in \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$
punosp soleld jo 0 N	\％サ－ 010	000	∞ a．	Oこの	ざーの	¢，¢888
səupuI＇oliup doL						
səyouI ‘ə｜＞̊u\％woz7og						
\downarrow \downarrow			＊＊＊）			
səyวuI ұəл！ Csмоy		Man	－ロ～0			\cdots
	－	－\rightarrow－	－	－ー－	ーーーー	－Taccuas
｜sayวuI＇7		－	\％	\cdots	－¢n－	－
sวчวuI ขวл！	\cdots	－	Hin 1	\sim	－－Mricio	－－
	\square	－ー－	－	NOUN	Nいが	concreses
	${ }^{15}$		\cdots	\％－		－0゙0
\approx sayวuI zos！！		－－Mers	Hen	H－－－		
$\frac{0}{\pi}$ Smoy	－	$\cdots \mathrm{ma}$	CJN	－10N	Nッッか	Nッパパ
səyouI＇7	＂0men	Mancme	\％$\left.{ }^{5}-\right)^{\circ}$			－
－3 ¢ saypui zan！	人或成－	N゙ロージ	H0M	$\cdots \mathrm{max}$		
苂	いーッー	－${ }^{\text {N }}$	N N	\bigcirc	ッッパ	の๓ッが
－${ }^{\text {sayou }}$		＂）		－̇－̇－	以上，	－
		ーゼッ゙ッ	N－～1			
$\stackrel{\text { smoy jo }}{ }$	－小－	NAN	ヶ\％	¢ \％\％	った	マーアア7
	\cdots	M－mpmer	－7		or mamer－	－
${ }^{748!2} \mathrm{H}$			$\begin{aligned} & \text { E0 } \\ & 60 \\ & \text { Bio } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.0 \\ & 000 \\ & \text { sjos } \end{aligned}\right.$		
sәтай！！						
јооя чои！ \％ 105 （joort you！－9！ $47!\mathrm{M} 749!0 \mathrm{M}$ 07） PPV		$\begin{aligned} & 888 \\ & \text { Now } \\ & \text { NNON } \end{aligned}$	$\begin{aligned} & 88 \\ & 8_{0}^{8}= \\ & -10 \end{aligned}$			
лоррег I кq рале［d 	$\left\lvert\, \begin{aligned} & 8888 \\ & 888 \\ & -106 \\ & -108 \end{aligned}\right.$		$\begin{array}{\|} 88 \\ 08 \\ 10 \\ 10 \\ \text { Nis } \\ \hline \end{array}$	$\begin{aligned} & 989 \\ & 8.8 \\ & \text { NON } \end{aligned}$	$\begin{aligned} & 8888 \\ & 8106 \\ & \text { NN NO } \\ & \hline \end{aligned}$	$\begin{aligned} & 88888 \\ & 8.808 \\ & \text { NuNNN } \\ & \hline \end{aligned}$
				$\left\lvert\, \begin{aligned} & 888 \\ & 8.0 \\ & 0-6 . \\ & 0 \\ & 0 \end{aligned}\right.$		$\begin{aligned} & 88888 \\ & 888 . \\ & 0.108 \\ & \text { NHNH } \end{aligned}$
ч.	$\begin{aligned} & 8888 \\ & 880 \% \\ & \text { inon } \end{aligned}$		$\begin{aligned} & 88 \\ & 88 \\ & 08 \\ & 08 \end{aligned}$	$\begin{aligned} & 888 \\ & 600 \\ & -100 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 8888 \\ & 888 \\ & \text { mo } 0 . \\ & 0 \sim N \end{aligned}$	
เงuopro 	$\begin{array}{r} 8988 \\ 108810 \\ -8181 \end{array}$	$\begin{aligned} & 888 \\ & 888 \\ & 08 \end{aligned}$	$\begin{aligned} & 88 \\ & 108 \\ & 18 \end{aligned}$	$\begin{aligned} & 888 \\ & 088 \\ & \text { Nis } \end{aligned}$	$\begin{aligned} & 8888 \\ & 8885 \\ & 10.10 \\ & \text { Nit } \end{aligned}$	$\begin{aligned} & 8888 \\ & 888 \\ & 4080 \\ & \hline 1080 \end{aligned}$

RULES FOR FREIGH'T SHIPMENTS OF GASOLINE AND NAPHTHAS.

(See Pamphlet No. 9—Bureau of Explosives-30 Vesey St., New York)

INFLAMMABLE LIQUIDS-RED LABEL.

1824 (a) All inflammable liquids must be shipped in packages complying with specifications that apply, as follows:
(b) In tightly closed metal cans of not exceeding ten gallons capacity, packed in wooden boxes complying with Specification No. 11.
(c) In well-stoppered glass or earthenware vessels of not exceeding one gallon capacity, cushioned in wooden boxes complying with Specification No. 2, or cushioned in wooden barrels or kegs complying with Specification No. 11, or in a well-stoppered glass or earthenware vessel of not exceeding five gallons capacity, well cushioned in a wooden box and not more than one such vessel in the box. The completed package must comply with swing and drop tests prescribed for boxed carboys by Specification No. 1.
(d) In well-stoppered glass, earthenware, or metal vessels of not exceeding one pint capacity when flash point is $20^{\circ} \mathrm{F}$ or lower in wooden boxes complying with specification No. 2, or cushioned in fiber board or corrugated strawboard containers complying with Specification No. 24.
(e) In wooden kits of not exceeding ten gallons capacity, packed in wooden boxes complying with Specification No. 2, or cushioned in wooden barrels or kegs complying with Specification No. 11.
(f) In metal-jacketed cans of not exceeding ten gallons capacity, complying with Specification No. 23.
(g) In well-stoppered carboys of not exceeding thirteen gallons capacity, cushioned in wooden boxes complying with Specification No. 1.
(h) In wooden barrels or kegs complying with Specification No. 10 when the flash point of the liquid is not lower than $20^{\circ} \mathrm{F}$, or in wooden barrels or kegs complying with Specification No. 9 when the flash point is lower than $20^{\circ} \mathrm{F}$ unless otherwise provided in the tariffs under which shipment moves.
(i) In metal barrels or clrums complying with Specification No. 5.
(j) In tank cars complying with Master Car Builders' specifications provided the vapor tension of the inflammable liquid corresponding to a temperature of $100^{\circ} \mathrm{F}$ does not exceed ten pounds per square inch. A tank car must not be used for shipping inflammable liquids with flash point lower than $20^{\circ} \mathrm{F}$ unless it has been tested with cold water pressure of sixty pounds per square inch and sten-
ciled as required by Master Car Builders' specifications and is equipped with safety valves set to operate at 25 pounds per square inch, and with mechanical arrangement for closing dome cover as specified in paragraph 1824 (k).
(k) Liquid condensates from natural gas or from easinghead gas of oil wells, made either by the compression or absorption process, alone or blended with other petroleum products, must be described as Liquefied Petroleum Gas when the vapor pressure at $100^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{F}\right.$ Nov. 1 to Mch. 1) exceeds ten pounds per square inch.

When the liquid condensate alone or blended with other petroleum products has a vapor pressure not exceeding ten pounds per square inch, it must be described and shipped as Gasoline or Casinghead Gasoline.

Liquefied petroleum gas of vapor pressure exceeding ten pounds per square inch and not exceeding 15 pounds per square inch from April 1 to October 1 and 20 pounds per square inch from October 1 to April 1, must be shipped in metal drums or barrels which comply with Shipping Container Specification No. 5, or in special insulated tank cars approved for this service by the Master Car Builders' Association.

Liquefied petroleum gas of vapor pressure exceeding 15 or 20 pounds per square inch as provided herein, and not exceeding 25 pounds per square inch must be shipped only in metal drums or barrels which comply with Shipping Container Specification No. 5.

Liquefied petroleum gas of vapor pressure exceeding 25 pounds per square inch must be shipped in cylinders as prescribed for compressed gases.

When the liquid condensate, alone or blended with other petroleum products has a vapor pressure not exceeding 10 pounds per square inch, it must be described as Gasoline or Casinghead Gasoline and must be shipped in metal drums or barrels conmplying with Specification No. 5, or in ordinary tank cars, 60 pounds test class equipped with mechanical arrangement for closing of clome covers as specifierl in Master Car Builders' specifications for tank cars.

Every tank car containing liquid condensates, either blended or unblended, including liquefied petroleum gas, as defined herein must have sufcty valves set to operate at 25 pounds per square inch with it tolerance of ", pounds above or below, and the mechanical arrangements for closing the dome covers of such cars must either be such as to make it practically impossible to remove the dome cover while the intwrion of the cur is subjected to pressure, or suitable vents that will he upener atomatically by starting the operation of removing the dome eover must be provided.

The shipper must attach securely and conspicuously to the dome and dome cover three special white dome placards measuring 4×10 inches. bearing the following wording:

10 Inches
One placard must be attached to each side of the dome and one placard be attached to the dome cover. The presence of these special dome placards must be noted on the shipping order by the shipper and by the carrier on the billing accompanying the car. Placards must conform to samples furnished by the Chief Inspector of the Bureau of Explosives.
(1) Carbon bisulphide in interior packages of capacity greater than one-half gallon must be shipped in metal cans of not less than 28 gauge boxed, complying with Specification No. 2, or in metal barrels or drums complying with Specification No. 5, such barrels or drums not to exceed 55 galions capacity. Carbon bisulphide may also be shipped in tank cars complying with paragraph 1824 (j).
1825. (a) Packages containing inflammable liquids must not be entirely filled. Sufficient interior space must be left vacant to prevent leakage or distortion of containers due to increase of temperature during transit. In all such packages this vacant space must not be less than 2% of the total capacity of the container. In tank cars the vacant space must not be less than 2% of the total capacity of the tank, i. e., the shell and dome capacity combined. If the dome of tank cars does not provide this 2%, sufficient vacant space must be left in the shell of the tank to make up the difference.
(b) In packages containing alcohol, cologne spirits, high wines or other distilled spirits of 150 proof or over, the vacant interior space or allowance for wantage or ullage must be the maximum permitted by the United States Internal Revenue Regulations.
1826. Interior packages containing one quart or more of an inflammable liquid must be packed with their filling holes up and the top of the outside package must be plainly marked "THIS SIDE UP."
1827. Wooden-jacketed cans and wooden kits must not be used for the shipment of inflammable liquids, except as inside containers as provided by Specifications No. 2 or 11.

RULES FOR THE SHIPMENT OF PETROLEUM BY EXPRESS.

All shipments of articles subject to these regulations offered for the transportation by express in interstate commerce must be properly described by the shipper, and the proper and definite name of the dangerous article must be plainly marked on the outside of the package, in addition to the labels required herein. (a) Articles for which detailed instructions for packing are not given herein must be securely packed in containers strong enough to stand without rupture or leakage of contents, a drop of four feet to solid brick or concrete.
(b) Whenever orders are placed in foreign corntries for the importation of dangerous articles to be forwarded from port of entry by express, the importer must furnish with the order to the foreign shipper and also to the forwarding agent at the port of entry, full and complete information as to the necessary packing, marking and labeling required by these regulations. The forwarding agent must see that the packages are properly packed, marked and labeled.

35 (d) Interior packages containing 1 pint or more of an inflammable or corrosive liquid must be packed with their filling holes un and the outside package must be plainly marked "THIS SIDE UP."

Inflammable Liquids-Red Label,

(37) Except as herein prescribed, the maximum quantity of any inflammable liquid packed in one ortside container must not exceed 1 gallon when the flash point is $20^{\circ} \mathrm{F}$ or below and must not exceed 5 gallons when the flash point is above $20^{\circ} \mathrm{F}$ and below $80^{\circ} \mathrm{F}$.
(38a) Packages containing inflammable liquids must not be entirely filled. Sufficient interior space must be left vacant to prevent leakage or distortion of containers due to increase of temperature during transit. In all such packages this vacant space must not be less than 3% of the capacity of the container.
(39a) All inflammable liquids must be shipped in packages comMying with specifications that apply, as follows:
(b) In tightly closed metal cans of not exceeding 5 gallons capacity packed in wooden boxes complying with Specification No. 2 or cushioned in wooden barrels or kegs complying with Specification No. 11.
(c) In well-stoppered glass or earthenware vessels of not exrecrling 1 quart capacity cushioned in wooden boxes complying with Speceification No. 2 or cushioned in wooden barrels or kegs complyiny with Specification No. 11.
(d) In well-stoppered glass, earthenware, or metal vessels of not exceerlings one pint (ether 1 pound) capacity when flash point is 20 F" or lower and 1 quart capacity when flash point is above $20^{\circ} \mathrm{F}$, cushioned in fiberboard or corrugated strawboard containers complying with Specification No. 24 and not exceeding 8 quarts in one packare.
(e) In metal-jacketed cans of not exceeding 5 gallons capacity, complying with Specification No. 23.
(f) In metal drums of capacity not exceeding 5 gallons, complying with Specification No. 5.
(h) Liquefied petroleum gas, blended or unblended, when its vapor tension corresponding to a temperature of $100^{\circ} \mathrm{F}$ exceeds 10 pounds per square inch, must not be shipped by express except in steel containers conforming to paragraphs 57, 58 and 59.

For complete directions see the Bureau of Explosive pamphlet No. 9, Interstate Commerce Commission Regulations, 30 Vesey St., New York City.

OWNERSHIP OF TANK CARS.

Tank Cars Owned By Railroads.

Tank Cars Owned By Oil Industries.

Niame and Jacation.

Tank Cars
h. mu Protrol.um Co., kansas Cils, No 60
I cna Firsinin: (ro, l.nuiswille, ky
50
50
ifax riasolin" ('U, Kiansas rity, Mo 33Ifin diasolino Co Tulsa, rulla

- llien ferfining lo., The, Julsa, okla 34
1 melman fill Con. Baltimore Mrd 89
Imrrian Refining ('o.. Wichit' Falls, Texas 10 248
Imeriean ril llorks, I.:d.. Titusville, ra
Imeriean ril llorks, I.:d.. Titusville, ra
Andresson ※ qustafson, Chicago, Ill 105
trex liffining \& Drilling Co.. J.oomis, Col
8
8
Irimure J'rolucine \& lefining Co., Ardmore, Okla 16
Irow li, finiles Co., Waco, Texas
315
315
Alamtat Refining \& Mfg. Co., Atlantr, Ga. 7
Itanth Julrulramy Co., The, J'u!sa, Okla 25
औlas Protrolum ("o., Kansts Citer jo
औlas Protrolum ("o., Kansts Citer jo 10 10
 $3 ?$
Durohus Thomas riasmline Co., Drumbirlat, bikla
15
15
 15
 148
 25
 215

15
15
 6

3 in
3 in
1suplar ",umps Nil Refining "C., Bruin, P'i 92
 -4
 15
50
 43

25

 11
 25 fis

335
335
 202

232
232
 15

Tank Cars Owned By Oil Industry-Continued.

Name and Lccation.

Tank Cars
Choate Oil Corp., Oklahoma City, Okla 184
Clarendon Refining Co., Clarendon, Pa 7%
Cleveland Petroleum Refining Co., Cleveland, Okla. 21
Climax Refining Co., Corsicana, Texas 11
Commonwealth Oil \& Pefining Co, Moran, K゙ans 23
Conewango Refining Co., Warren, Pa
152
152
Constantin Refining Co., West Tulsa, Okla 1,150
Continental Oil Co, The, Denver, Col
70
70
Continental Refining Co., Ltd., Oil City, Pa
Continental Refining Co., Ltd., Oil City, Pa
76
76
Continental Refining Co., Bristow, Okla,
Continental Refining Co., Bristow, Okla,
2,030
2,030
Cosden \& Co., Tulsa, Okla
Cosden \& Co., Tulsa, Okla
175
175
Crais on Co., The, Ohedo,
250
250
Crew Levick Co., Philadelphia, Pa.
Crew Levick Co., Philadelphia, Pa.
32
32
Crystal Oil Works, Oil Clty, Pa (Cars operated by Empire Refineries, Inc.) Ponca City, Okla. 150
Daugherty \& Son Refining Cu., H: H., Petrolia, Pa
50
50
De Soto Gasoline Co., Beaumont, Texas
Deepwater Oil Refineries, Houston, Texas
Deepwater Oil Refineries, Houston, Texas
40
Diamond Gasoline Co., Kansas City, Mo
Doty Oil Co., Oklahoma City, Okla 34
Eagle Gasoline Co., Tulsa, Okla.
Eagle Gasoline Co., Tulsa, Okla. 60
Dorado Refining Co El Dorado 186
Elk Refining Co., Charleston. W. Va 72
Emery Mfg. Co., Bradford, Pa. 90
Emlenton Refining Co., Emlenton, Pa 78
Empire Oil Works, Oil City, Pa 90
Empire Refineries, Inc., Tulsa, Okla 1,S60
Ensign Oil Co., of Pa., Pittsburgh, Pa ${ }^{7}$
Evans-Thwing Refining Co., Kansas City, IIo.
Falling Rock Cannel Coal Co., Charleston, W. Va 26
Ferieral Oil \& Refining Co., Cushing, Okia 30
Fidelity Petroleum Co., (Cars operated by Uncle Sam Oil Co.) Tulsa, Okla 75
Foco Oil Co., Franklin, Pa 20
Franchot \& Co., D. W., Tulsa, Okla 12
Franklin Quality Relining Co.. Franklin. Pa 24
Freedom Oil Works Co., The, Freedom, Pa. 195
Freeport \& Mexican Fuel Oil Corp., Houston, Texas 348
Galena-Signal Oil Co., of Texas, Houston, Texas 80
Gasoline Corp., New York, N. Y 30
General Petroleum Corporation, Los Angeles, Cal 66
Golden Rule Retining Co., Wichita, Kans 48
Great American Refining Co., Tulsa, Okla 100
Great Western Oil Refining Co., Erie, Kans, 10 ก
Gulf Refining Co., Pittsburgh, Pa 2,150
Hawkeye Oil Co., Waterloo, Ia. 10
Hercules Petro!eum Co., Dallas, Texas 272
Higrade Petroltum \& Gasoline Co., Tulsa, Okla 50
High Grade Petroleum Products Co., St. Marys, W. Va
High Grade Petroleum Products Co., St. Marys, W. Va
135
135
Home Oil Refining Co.. of Texas, Ft. Worth, Texas
Home Oil Refining Co.. of Texas, Ft. Worth, Texas 50
Hope Gasoline Co., Tulsa, Okla. 10
Humble Oil \& Refining Co., Houston, Texas 185
Illinois Oil Co., of Rock Island, Pock Island, Ill 116
Imperial Refining Co., Ardmore, Okla 216
Independent Refining Co., Ltd., Oil City, Pa 120
Indiahoma Refining Co., St. Louis, Mo 765
Indian Refining Co., Lawrenceville, Ill 1,300
Inland Refining Co., Tulsa, Okla. 100
Interior Oil \& Gas Corp., Clarendon, Pa 10
International-Ardmore Ref. Div., Tulsa, Okla., (The Ohio Citics Gas Co.) 16
International Oil \& Gas Corp., Shreveport, La. 20
Interocean Refining Co., Chicago, Ill 90
Invader Oil \& Refining Co., Muskogee, Okla 25
Invincible Oll Refining Corp., Ft. Worth, Texas 175
Island Refining Co., The Pittsburgh, Pa 75
Johnson Oil Refiring Co., Chicago Heights, 111 220
Kanotex Refining Co., The, Arkansas City, Kans
180
180
Kansas City Refining Co., Kansas City, Kans
170
170
Kansas Oil Refining Co.., Coffeyville, Kans.
Kansas Oil Refining Co.., Coffeyville, Kans.
50
50
Kendall Refining Co., Bradford, Pa.......... 270
LaPorte Oil \& Refining Co., Houston, Texas 10

Tank Cars Owned By Oil Industry－Continued．

Name and J．ocation． Tank Cars 25
eader Oil Co．，Casey，Ill． 44
Lesh Refining Co．，Arkansas City，Kans．
Lesh Refining Co．，Arkansas City，Kans．
Liberty Oil Co．，Ltđ．，N゙erf Orleans，La 50
Liberty Pipe Line \＆Refining Co．，Wichita，Kans 5
Liquefied Petroleum Gas Co．，Tulsa，Olkla
18
18
Lisle Refining Division，Arkansas City，Kans
Lisle Refining Division，Arkansas City，Kans 105 105
Livingstnn Refining Corp．，Tulsa，Okla 60
Lone Star Refining Co．，Wichita Falls．Texas
230
230
Louisiana Oil Refining Co．，Shreveport，La
92
92
Lubrite Refining Co．，East St．Louis， $1 l l$
Lubrite Refining Co．，East St．Louis， $1 l l$
30
30
NeCombs Producing \＆Refining Co．，Louisville，ǩy 900
Magnolia Petroleum Co．，Dallas，Texas
844
844
Marland Refining Co．，Ponca City，Okla 1， 175
Mexican Petroleum Corporation，New York，N．Y 300
Mirlco Gasoline Co．，Tulsa．Okla
Mirlco Gasoline Co．，Tulsa．Okla
75
75
Mid Continent Refining Co．，Tulsa，Okla 250
Midland Refinine Co．，El Dorado，Kans
22
22
Midwest Refining Co．，The，Denver，Col
Midwest Refining Co．，The，Denver，Col
50
50
Miller＇s Oil Refining Works，Allegheny，Pa
50
50
Miller Petroleum Refining Co．，Chanule，kians
50
50
Mantrose Oil Refining Co．Ft，Worth Texas
Mantrose Oil Refining Co．Ft，Worth Texas
125
125
Mutual Oil Co．，K゙ansas City，Mo
Mutual Oil Co．，K゙ansas City，Mo 50
Mutual Refining \＆Producing Co．，Kansis City，Mo．
30
30
Mutual Refining Co．，Warren，Pa
Mutual Refining Co．，Warren，Pa
10
10
Nutual Sales Co．e Warren，Pa．．．．．．．． 1,004
National Oil Co．，New York，N．Y
National Oil Co．，New York，N．Y 25 25
Xoble Oil \＆Gas Co．，Chas．F．，Tulsa，Okla 200 68
Cortex Refinine Co．，Burkburnett，Texas
Cortex Refinine Co．，Burkburnett，Texas
Northern American Refining Co．，Oklahoma City，Okla 475
Northern Petroleum Co．，Pittsburgh，Pa 26
Northern Oil Co．，Wilmar，Minn 10
Nyanza Refining Co．，New Wilson，Okla 10
Oconee Oil Refining Co．，Athens，Ga． 10
Ohio cities Gas Co．，Columbus，Ohio 1,400
Ohin Valley Refining Co．，St．Marys，W．Va 75
Oll Products Corp．，New York，N．Y． 7
Gil State Gasoline Co．，Tulsa，Okla 12
Oll State Kefining Co．，Enid，Okla 50
Oklahoma Natural Gasoline Co．，Sapulpa，Okla
250
oklahoma Petroleum \＆Gasoline Co．，Tulsa，Okla
rklahnma Producing \＆Refining Corp．，Iuskogef．Okla 275 275
万kmulgee Producing \＆Refining Co．，Okmulgee，Okla 115
1）．K．Refining Co．（Cars operated by The Home Refining Co．of Texas） Fi．Worth，Texas． 15
Olsan Petroleum Co．，Tulsa，Okla． 11
Omaha Refining Co．，Omaha，Neb 25
Oneta Refining Co．，Tulsa，Okla． 52
ysatge Gasoline Co．，Kansas City，Mo 25
wzark Ibefining Co．，Ft．Smith，Ark． 17
lan－Amrerlean Refinlng Co．，Tulsa，Okla 310
lianhaufle lefining Co．，Wichita Falls，Texas 200
I＇mason Reflnlng Co．，Toledo，Ohio． 600
Pitwner I夕ll Oil \＆Refining Co．，Yale，Okla 25
lrallan Dit Refining Co．，Inc．，New Orleans，Jda 19
I＇•nn American Rofining（oo．，Oil City，Pa 250
［＇onnsylvanla \＆Inflaware Oil Co．，New York，N．Y 20
I＇יnnsylvanla Gasollne Co．，Bradtore，Pa
13
13
l＇יrmayivanla（）ll I＇rolucts lafining Co．，Eldred，Pa 40
I＇ronalvanla li＋fining Co．，latl．，The，karns City，Pa ？
Ifelrermon（\％o．，riron．C．，Chicago， 111
5
5
I＇rtrolfuin Prorlurts Co．，The，Pittsburgh，Pa． 12
Pirololnh livfining Co．，latonia，Ky 47

180
180
lhllips l＇etrolpum Co．，The，Barlleswlle，Okla 10
floren（lll＂orlo．，sit．Louls，Mo
1，500
1，500
I＇ltmburkh oll lefofingng（＇o．，l’itishurgh，Pa 85
I＇ttmbursh－＇loxats olit \＆Gas Po．，Juskngee，Okla．
I＇ttmbursh－＇loxats olit \＆Gas Po．，Juskngee，Okla． 12 12
Ionar I＇tularlak © Cbasolino C＂o，okmulgee Gkla
10
10
 92
I＇rulu，•rs \＆If．flnwrs Corp）．Blackwrll，Okla． 185
l＇rullential（）ll © 300
 92
 10

Tank Cars Owned By Oil Industry-Concluded

Name and Location.

Tank Cars
Ranger Refining Co., K゙ansas City 80
Record Oil Refining Co., The, New Orleans, Lia 35
Red C Oil Co., Baltimore, Md. 15
Red River Refining Co., Crichton, La 30
Red River Refining Co, of Texas, Wichita Falls, Texas 50
Richfield Oll Co., Los Angeles, Cal. S
Rio Grande Oil Co., El Paso, Texas 22
Riverside Eastern Öil Co.. I'ittsburgh, Pa. 45
Riverside W"estern Oil Co., Tulsa, Okla 100
Robinson Oil Refining Co., Robinson, 111 9
Roth Gasoline Co., Independence, Ǩans 10
Roxana Petroleum Co., Tulsa, Okla 750
St. Louis Dil \& Refining Co. Eldorado, Kans.
445
Sapulpa Refining Co., Sapulpa, Okla
65
65
Seneca Oil Works, Warren. Pa
15
Service Petroleum Co., The, Tulsa, Okia
450
450
Schaffer Oil \& Refining Co., Chicago, Ill.... 100
Simms Oil Co., Houston, Texas. 500
Sinclair Refining Co., Chicago, Ill. 3,700
Skagway Gasoline Co., Tulsa, Okıa ${ }^{6}$
Skelly Oil Co., Tulsa, Okla 12
Sloan \& Zook, Bradford, Pa 62
Smiley Petroleum Co., Kansas City, Mo 95
Smith Refining Co., Levi, Clarendon, Pa 20
Southern Oil Corp., Kansas City, Mo. 460
Southland Gasoline Co., Tulsa, Okla. 16
Southwestern Producing \& Refining Co., Wichita Falls, Texas 40
Sterling Oll \& Refining Co., Wichita, Kans 175
Sterling Pefining Co., Oklahoma City, Okla 20
Stewart Petroleum Co., Tulsa, Okla 20
Stoll Oil Co., Ine., Louisville, K゙y 35
Stroud Co., B. B Bradford, Pa 25
Sunland Oil Co., Tulsa, Okla
110
Sunshine State Oil \& Refining Co., Wichita Fills, Texis 35
Texas Co., The, New York, N. Y. 4.100
Texhoma Oil \& Refining Co., Wichita Falls, Tt xas 80
Tidal Gasoline Ce., Tulsa, Okla. 70
Tiona Refining Co., Clarendon, Pa 50
Titusville Oil Werks, Titusville, Pa 60
Totem Gasoline Co., Tulsa, Okla 10
Transcontinental Refining Co., Pittsburgh, Pa 815
Travis Oil Co., Tulsa, Okla 50
Tribes Gasoline Co., Tulsa, Olia 15
Turner Oil Co., Los Angeles, Cal. 6 7
Twin Hills Gasoline Co., Okmulgee, Okla
Twin Hills Gasoline Co., Okmulgee, Okla
Union Oil Co. of California, Los Angeles, Cal 325
Union Petroleum Co., Philadelphia, Pa 200
Lnited Oil Co., The, Denver, Col 20
United Oil Refining Co., West Lake, La 15
United Refining Co., Warren, Pa 45
Union Tank Line (Standard) 25,000
Valvoline Oil Works, Lta., East Butler, Pa 130
Ventura Refining Co., Los Angeles, Cal. 15
Viekers Petroleum Co., Potwir, Kans.
25
25
Vulcan Oil Refining Co., Cleveland, Ohis 48
Wabash Refining Co., Robinson, Ill. 160
Wadhams Oil Co., Milwaukee, Wis. 10
Waggoner Refining Co., Electra, Texas 80
Walker Oil \& Refining Co., Houston, Texas 10
Warren Oil Co., Warren, Pa.. 415
Warren Refining Co., Warren, Pa 70
Waverly Oil Works Co., Pittshurgh, Pa 50
Webster Oil \& Gasoline Co., Yale, Okla 5
Western Oil Corp., Tulsa, Okla 80
Western Petroleum Co., Chicago, III 10
White Eagle Petroleum Co., Augusta, Kans. 450
Whlte Oil Corp., Houston, Texas 335
Wichita Valley Refining Co, Iowa Park, Texas. 125
Wllburne Oil Works, Ltd., Warren, Pa 75
Wilhoit Refining Co., Springfield, Mo. 110
Wight Producing \& Refining Corp., Tuls?, Okla 11
Tank Car Companies 10,000

RULES GOVERNING THE LOCATION OF NEW LOADING RACKS AND NEW UNLOADING POINTS FOR CASINGHEAD GASOLINE, REFINERY GASOLINE, NAPHTHA OR INFlammable liquid With Flash POINT BELOW $30^{\circ} \mathrm{F}$.

The location of new loading racks and unloading points for volatile inflammable liquids is considered of great importance, and there is at present lack of uniformity in the enforcement of proper safe-guards for the protection of life and property. The following rules for the location of new installations shall govern all carriers under Federal control. These rules are not applicable to present locations.

For the purpose of these rules casinghead gasoline is defined to be any mixture containing a condensate from casinghead gas or natural gas obtained by either the compression or the absorption process, and having a vapor tension in excess of 8 pounds per square inch.

Loading.

1. (a) New loading racks for refinery gasoline, naphtha, or any liquid (ather than casinghead gasoline) with flash point below $30^{\circ} \mathrm{F}$. Must not be located nearer than 50 feet to a track over which passenger trains are moved when physical conditions permit and in no case less than 25 feet.
(b) New loading racks for casinghead gasoline must be located not less than 100 feet distant from a track over which passenger trains are moved when physical conditions permit, and in no case less than 50 fect. When within 75 feet of such a track a retaining wall, dike or carthen embankment shall be placed between the installation and the track, so constructed as effectually to prevent liquids from flowing on to the track in case of accident.
(c) In loading casinghead gasoline, the tank car and the storage tank shall be so connected as effectually to permit the free flow of the gasoline vapors from the tank car to the storage tank and to positively prevent the escape of these vapors to the air, or the vapors must be carried by a vent line to a point not less than 100 feet distant from the nearest track over which passenger trains are moved.

Unloading.

2. (i) When new unloading points requiring railroad service for the unloading of tank cars of refinery gasoline, benzine, or any liquid (other than casinghead gasoline) with flash point below $30^{\circ} \mathrm{F}$ are recruired, the location shall be subject to negotiation between the carrier and the interested oil company.
(b) New locations for the unloading of casinghead gasoline shali b. placed a minimum distance of 50 feet from a track over which passenger trains are moved where physical conditions do not permit a greater distance, and a maximum distance of 100 feet shall be reguired where physical conditions permit, where old or new installations are placed within 75 fect of a track over which passenger trains
are moved a retaining wall, dike or earthen embankment shall be placed between the installation and the track, so constructed as effectually to prevent liquids from flowing on to the track in case of accident.

Storage.

3 (a) These regulations apply only to above-ground tanks for which railroad service is required. Under-ground tanks should be considered by interested railroads as occasion may arise. All storage tanks will be considered above ground unless they are buried so that the top of the tank is covered with at least three feet of earth.
(b) All tanks should be set upon a firm foundation and be electrically grounded.
(c) Each tank over 1,000 gallons in capacity shall have all manholes, hand holes, vent openings, and other openings which may contain inflammable vapor, provided with 20×20 mesh brass wire screen or its equivalent, so attached as to completely cover the openings and be protected against clogging, these screens may be made removable but should be kept, normally, firmly attached. Such a tank must also be properly vented or provided with a suitable safety valve set to operate at not more than 5 pounds per square inch for both interior pressure and vacuum, manhole covers kept closed by their weight only will be considered satisfactory.
(d) Tanks used with a pressure discharge system must have a safety valve set at not more than one-half of the pressure to which the tank was originally tested.
(e) Tanks containing over 500 gallons and not exceeding 18,000 gallons of gasoline, benzine, naphtha, casinghead gasoline, or any liquid with flash point below $30^{\circ} \mathrm{F}$, must be located not less than 20 feet from a track over which passenger trains are moved.
(f) For capacities exceeding 18,000 gallons, the following distances shall govern:
Capacity of tanks (in gallons)

(g) Where practicable, tanks should be located on ground sloping away from railroad property. If this is impracticable, then the tanks must be surrounded by dikes of earth, or concrete, or other suitable material, of sufficient capacity to hold all the contents of the tanks, or of such nature and location that in case of breakage of the tanks the liquid will be diverted to points such that railroad property and passing trains will not be endangered.

General.

4 (a) In measuring distance from any railroad track the nearost rail shall be considered as the starting point.
(b) During the time that the tank car is connected by loading or unloading connections, there must be signs placed on track or car so as to give necessaiy waining. Such signs must be at least 12×15 inches in size and bear the words "Stop-Tank Car Connected" or "Stop-Men at Work," the word "Stop" being in letters at least 4 inches high and the other words in letters at least 2 inches high. The letters must be white on a blue background. The party loading or unloading the tank car is responsible for furnishing, maintaining, and placing these signs.
(c) In laying pipe lincs on railroad peoperty for the loading or unloading of tank cars, they must be laid at a depth of at least three feet, and at points where such pipe lines pass under tracks they must be laid at least four feet below the bottom of the ties.
(d) All connections between tank cars and pipe lines must be in good condition and must not permit any leakage. They must be frequently examined and replaced when they have become worn in order to insure at all times abzolutely tight comnections. Tank cars must not be left connected to pipe lines except when loading or unloading is going on and while a competent man is present and in charge.
(e) The ends of the pipe lines for loading or unloading tank cars from their bottom opening, when on railroad property should be placed in shallow pits with brick or concrete walls not closer than 8 feet from center line of track. These pits should be ventilated and be protected by substantial one-piece covers, level with the surface of the ground, which must be kept locked in place when the pits are not in use. These pits should not be drained into a sewer or running stream.
(f) Except when closed electric lights are available, the loading or unloading of tank cars on railroad property shall not be permitted except during daylight when artificial light is not required. The presence of flame lanterns, nearby flame switch lights or other exposed flame lights or fires during the precess of loading or unloading is prohibited.

B. W. DUNN, Chief Inspector.

THE MEASUREMENT AND GAUGING OF PETROLEUM.

The unit of measurement of petroleum in the United States is the barrel of $42 \mathrm{U} . \mathrm{S}$. gallons. The important units of measurement with factors for their conversion to one another are given below. Other units of measurement are to be found on pages 554-5-6. In measuring petroleum, it is necessary to strap the tanks in which it is contained and to prepare gauging tables for each tank. The tanks are usually identified by number. In the case of the vertical cylindrical tanks it is very simple to prepare gauging tables as the amount per inch is figured from formulae (1) on pages 135, 151, 182. Using an adding machine each inch is added and sunmed until the height of the tank is reached.

Ir making gauging tables for horizontal cylindrical tanks formula (4), page 151, may be used but this is rather tedious. With flat ends and with diameters up to 10 feet the tables on pages 159 to 173 are useful as it is only necessary to multiply the total capacity of the tank by the factor given for the depth desired. The result is in gallons. For horizontal tanks of any size, the tables given on pages 155-6 are most suitable. It is only necessary to first make a table showing the per cent of the total diameter represented by each inch in diameter and to multiply the corresponding per cent of capacity by the total capacity.

The capacity of tanks with standard bumped ends is derived from formula (3) on page 151. The contents of tanks with bumped ends may be found as described on pages 153-4. For irregular tanks and tanks with coils and pipe, tables are made by measuring out water from the tank. On a lease or at the refinery it is usual to gauge all tanks every morning. The measurement may be done with a steel tap plumb bob at the end for the total amount of fluid and with a "thief" which measures the water in the bottom of the tank. A gauging stick may be used which is chalked with special chalk or carries a strip of sensitive paper showing the demarcation between it and water may be used. A formula for impregnating paper indicator for this purpose is as follows:

For the correction of the volume of oil to a temperature of $60^{\circ} \mathrm{F}$ use the table on page 152.
The following table is used in the calculation of raporities of recervoirs and tanks and in quickly converting different measures of petroleum and water ints eath other.
MEASUREMENT OF WATER AND PETROLEUM AT $60^{\circ} \mathrm{F}$.
IIultiply or divide, as required, the weight-measure values by the specific rravity of the petroleum.
Specific rrivity of average crude oil $=0.850 ;$ fucl oil $=0.900 ;$ gasoline $=0.750 ;$ kerosene $=0.820 ;$ gas
oil $=0.850$.

	Cubic Foot	Cubic Inch	U.S. Gallon	Imperial Gallon	Liter	1'etroleum Barrel	Pound	Kilogram	Metric Ton
Cubic Foot	1.000	1728.	7.48	6.23	28.317	0.1781	62.37	28.29	028:9
Cubic Inch	.0005787	1.000	. 00.4329	003605	. 016387	$1.306 .10^{-4}$. 03609	. 01637	$1.637 .10^{-5}$
U. S. Gallon	. 13367	231.	1.000	8328	3.785	. 02381	8.338	3.782	.003782
Imperial Gallon.	. 1605	277.4	1. 201	1.000	4.515	. 02859	10.01	4.541	004541
Liter	. 03532	61.03	. 2642	. 2200	1.000	. 00629	2.203	. 999034	. 000999
Petroleum Barrel.	5.615	9703	42.00	3.1.98	159.3	1.000	350.2	158.85	. 15885
Pound (Av.)	. 01603	27.71	. 1199	. 0999	. 4539	. 002856	1.000	. 45359	. 000.4536
Kilogram.	.03535	61.08	. 2644	. 2202	1.001	. 006296	2.205	1.000	. 001
Metric Ton.	35.35	61080.	264.4	220.2	1001	6.296	2205.	1000.	1.000
Pood (Russian).	. 5791	1000.	4.331	3.607	16.40	0.1031	36.12	16.38	. 01638

HORIZONTAL CYLINDRICAL TANKS.

(1) Total capacity of horizontal cylindrical tank in gallons. $\mathrm{C}=.0034 \mathrm{~d}^{2} \mathrm{~L}$
$\mathrm{d}=$ diameter in inches. $\mathrm{L}=$ length in inches.
$\mathrm{c}=$ capacity in U. S. gallons.
(2) Total capacity of horizontal cylindrical tanks in barrels without bumped ends.
$C^{\prime}=0.14 \mathrm{~d}^{2} 1$
$\mathrm{d}=$ diameter in feet.
$1=$ length in feet.
$\mathrm{c}=$ capacity in barrels.
(3) Total capacity of horizontal cylindrical tank in barrels with bumped ends (when radius of bumped end $=\mathrm{d} \mathrm{ft}$.) $\mathrm{C}=\mathrm{d}^{2}(0.141+.019 \mathrm{~d})$
Capacity of each bumped end $=.019 \mathrm{~d}^{3}$ bbls. $=.4024 \mathrm{~d}^{3}$ gallons (. $000233 \mathrm{~d}^{3}$ if $\mathrm{d}=$ inches)
(4) Liquid contents of partially filled tanks.
$\mathrm{C}=$ Liquid contents in gallons.
$\mathrm{L}=$ Length of tank in inches.
$\mathrm{d}=$ Diameter of tank in inches.
$\mathrm{x}=$ Depth of liquid contents in inches.
$C=\frac{L}{231}\left(0.004363 d^{2} \operatorname{Cos}^{-1} \frac{d-2 x}{d}-\frac{d-2 x}{2} \sqrt{d}(d-x)\right)$
$\operatorname{Cos}^{-} \frac{d-2 x}{d}$ means the value of the angular degrees whose cosine is $\frac{d-2 x}{d}$

The cosine of an angle is the ratio in its right angled triangle, of the side adjacent the angle to the hypothenuse of the triangle.
When $\mathrm{L}=300$ inches

$$
\begin{aligned}
& \mathrm{d}=100 \text { inches } \\
& \mathrm{x}=30 \text { inches } \\
& \frac{\mathrm{d}-2 \mathrm{x}}{\mathrm{~d}}=.4
\end{aligned}
$$

$\operatorname{Cos}^{-1} .4=66.42^{\circ} \quad$ (From Trigonometric tables)
$C=\frac{300}{231}[0.004363(10000)(6642)-20 \bigvee 2100]$
$=\frac{300}{231} \quad(2897-882$.
$=2617$ gallons.

CORRECTIONS OF GAUGED VOLUME OF OLL TO $60^{\circ} \mathrm{F}$.

Multiply the volume in the tank or car at the observed temperature by the following factor to get the volume at 60° F. for each. commodity.

Observed Temperature	$\begin{aligned} & \text { Casinghead } \\ & \text { Gasoline } \end{aligned}$	Gasoline and Naphtha	Kerosene	Gas Oil	Fuel Oil	Asphalt
30	1.0240	1.0178	1.0151	1.0135	1.0123	1.0111
32	1.0224	1.0166	1.0141	1.0126	1.0115	1.0103
34	1.0208	1.0154	1.0131	1.0117	1.0107	1.0095
36	1.0193	1.0142	1.0121	1.0108	1.0099	1.0088
38	1.0177	1.0130	1.0111	1.0099	1.0091	1.0080
40	1.0161	1.0118	1.0101	1.0090	1.0082	1.0073
42	1.0145	1.0106	1.0091	1.0081	1.0074	1.0066
44	1.0129	1.0095	1.0080	1.0072	1.0066	1.0059
46	1.0113	1.0083	1.0070	1.0063	1.0058	1.0051
48	1.0098	1.0071	1.0060	1.0054	1.0050	1.0044
50	1.0082	1.0059	1.0050	1.0045	1.0041	1.0037
52	1.0065	1.0048	1. 0040	1.0036	1.0033	1.0029
54	1.0048	1.0036	1.0030	1.0027	1.0025	1.0021
56	1.0032	1.0024	1.0020	1.0018	1.0017	1.0014
58	1.0016	1.0012	1.0010	1.0009	1.0009	1.0007
60	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
62	0.9984	0.9988	0.9990	0.9991	0.9992	0.9992
64	0.9968	0.9976	0.9980	0.9982	0.9984	0.9985
66	0.9952	0.9964	0.9970	0.9973	0.9976	0.9978
68	0.9936	0.9952	0.9960	0.9964	0.9967	0.9971
70	0.9919	0.9940	0.9950	0.9955	0.9959	0.9963
72	0.9903	0.9928	0.9940	0.9946	0.9951	0.9956
74	0.9887	0.9917	0.9930	0.9937	0.9943	0.9948
76	0.9871	0.9905	0.9920	0.9928	0.9935	0.9941
78	0.9855	0.9893	0.9909	0.9919	0.9927	0.9934
80	0.9839	0.9881	0.9899	0.9910	0.9918	0.9927
82	0.9823	0.9869	0.9889	0.9901	0.9910	0.9920
84	0.9807	0.9857	0.9879	0.9892	0.9902	0.9912
86	0.9790	0.9845	0.9868	0.9883	0.9893	0.9905
88	0.9774	0.9833	0.9856	0.9875	0.9885	0.9898
90	0.975 S	0.9821	0.9848	0.9865	0.9877	0.9891
92	0.9741	0.9809	0.9838	0.9856	0.9869	0.9884
94	0.9725	0.9798	0.9828	0.9847	0.9860	0.9877
96	0.9708	0.9786	0.9818	0.9838	0.9852	0.9870
98	0.9692	0.9774	0.9808	0.9829	0.9844	0.9862
100	0.9676	0.9762	0.9797	0.9820	0.9836	
102 104	0.9660	0.9750	0.9787	0.9811	0.9836 0.9828	0.9855 0.9848
104	0.9643	0.9738	0.9777	0.9802	0.9820	0.9841
106 108	0.9626	0.9726	0.9767	0.9793	0.9812	0.9834
108	0.9610	0.9714	0.9757	0.9784	0.9804	0.9827
110	0.9594	0.9702	0.9747	0.9776	0.9796	0.9819
112	0.9578 0.9562	0.9690	0.9736	0.9767	0.9788	0.9812
114	0.9562	0.9678	0.9726	0.9758	0.9880	0.9805
118	0) 05945	09666	0.9716	0.9749	0.9772	0.9798
	() 952 ?	0.9654	0.9706	0.9740	0.9764	0.9791
120) 9513	0.96942	0.9696	0.9731	0.9756	0.9784

METHOD OF GAUGING A HORIZONTAL CYLINDRICAL TANK WITH BUMPED ENDS (RADIUS OF CURVATURE = d).

Fig. 22-Horizontal Cylindrical Tank Diagram.
$\mathrm{d}=$ diameter of tank in inches.
$\mathrm{c}=$ total capacity of cylindrical portion of tank in U. S. gallons.
$\mathrm{f}=$ liquid depth of the contents of the tank in inches.
$c=0.0034 \mathrm{~d}^{2} 1$
$b=0.0004666 \mathrm{~d}^{3}=$ capacity of both bumped ends in U.S. gallons.

$$
\frac{100 f}{d}=\% \text { liquid depth of total diameter. }
$$

EXAMPLE: d $=87.0$ inches

$$
\begin{aligned}
& \mathrm{l}=378.2 \text { inches } \\
& \mathrm{f}=21.1 \text { inches }
\end{aligned}
$$

then $\mathrm{c}=9733$. gallons
and $\mathrm{b}=\begin{array}{r}\text { 307. gallons } \\ 10040 \text {. gallons }\end{array}=$ total capacity of tank
$100 f$
and $\frac{100}{\mathrm{~d}}=24.25 \%$
From the tables of the following pages 155-158.

$$
\begin{aligned}
24.25 \% \text { of } \mathrm{d}=12.06 \% \text { of } \mathrm{b} & =37 \text {. gallons } \\
\text { and } & =18.78 \% \text { of } \mathrm{c} \\
\text { Therefore total contents } & =1828 . \text { gallons } \\
& =\text { gallons }
\end{aligned}
$$

Take the temperature of the oil with a tank thermometer and in the preceding table giving the corrections for gauged volume of oil to $60^{\circ} \mathrm{F}$, look up this temperature. Multiply the above calculated volume by the factor corresponding to this temperature and use the product as contents of the tank. This gives the volume at $60^{\circ} \mathrm{F}$. In the case of the above tank containing 1865 gallons of gasoline at a temperature, for instance of $80^{\circ} \mathrm{F}$ the factor used would be 0.9881 and the net contents of the tank at $60^{\circ} \mathrm{F}$ would be 1843 gallons.

Method of Constructing a Gauging Table for Horizontal Cylindrical
Tank With Standard Bumped Ends. ($\mathrm{r}=\mathrm{d}$) for Each .1 Inch.
Assume tank diameter $=87.0$ inches. length $=378.2$ inches.
Total capacity of cylindrical portion $=9,733$ gallons.

$$
\begin{aligned}
\text { bumped ends } & =307 \text { gallons. } \\
\text { total capacity } & =10,040 \text { gallons. }
\end{aligned}
$$

To construct this table, a slide rule (Thacher) reading to the fifth place is very convenient. Set the rule with a divisor of 87.0 and with the one setting of the rule, read off the per cent of diameter for each 0.1 inch in depth to one-half of the diameter of the tank, that is 43.5 inches. Now look up in the tables on following pages, the corresponding values, interpolating if that accuracy is desired, for the capacity of the cylindrical portion and the bumped end portions of the tank and record these values as shown below. Now set the slide rule with the total capacity of the cylindrical portion in gallons as multipiier and read off and record the capacities corresponding to each 0.1 inch of diameter as already set out. Do the same with the bumped ends. Add the two values and the gauging table is complete up to half full. Now subtract the preceding value from each value of total gallons and with the adding machine sum each valuc. This completes the table. The following sets forth enough to illustrate the method:

Depth,		\% of Cyl-	$\%$ of	Actual Gallons		
	\% of	inder	Bumped	Cylinder	Bumped	
Inches	Diameter	Capacity	Capacity	Part	Part	Total
0.1	0.12	007.	0.00	0.7 .	0.0	0.7
1.0	1.15	21	0.01	20.4	0.0	20.4
1.1	1.26	24	0.01	23.4	0.0	23.4
2.0	2.30	59	0.03	57.4	0.1	57.5
2.1	2.41	63	0.04	61.3	0.1	61.4
3.0	3.45	1.07	0.11.	104.1	0.4	104.5
3.1	3.56	1.12	0.12	109.0	0.4	109.4
4.0	4.64	1.67	0.23	162.5	0.7	1632
4.1	4.71	1.71	0.24	166.4	0.7	167.1
5.0	5.75	2.30	0.44	223.8	1.4	225.2
6.0	6.90	3.01	0.64	292.9		294.9
7.0	8.05	3.78	0.92	367.9	2.8	370.7
43.0	49.42	49.26	48.96			
43.5	50.00	50.00	50.00			
44.0	S	5.00	50	4866.5	153.5	5095. 2
80.0						9669.3

TABLE FOR GAUGING THE CONTENTS AT VARIOUS LIQUID DEPTHS OF HORIZONTAL CYLINDRICAL TANKS.

For Bumped Ends, See Next Table.
$\% \mathrm{~d}=$ percentage of total diameter of tank.
$\% ~ c=$ percentage of total capacity of tank.

$\% \mathrm{~d}$	\%c	M 10	\%c	$\%$	7 c	\% d	\%c	70 d	$\% \mathrm{c}$
0.1	0.0053	5.1	1.9250	10.1	5.2805	15.1	9.497	20.1	14.341
0.2	0.0152	5.2	1.9814	10.2	5.3580	15.2	9.588	20.2	14.444
0.3	0.0279	5.3	2.0383	10.3	5.4350	15.3	9.679	20.3	14.547
0.4	0.0429	5.4	2.0956	10.4	5.5122	15.4	9.771	20.4	14.649
0.5	0.0600	5.5	2.1535	10.5	5.5902	15.5	9.863	20.5	14.751
0.6	0.0788	5.6	2.2116	10.6	5.6690	15.6	9.956	20.6	14.854
0.7	0.0992	5.7	2.2705	10.7	5.7472	15.7	10.048	20.7	14.957
0.8	0.1212	5.8	2.3297	10.8	5.8258	15.8	10.142	20.8	15.060
0.9	0.1445	5.9	2.3895	10.9	5.9050	15.9	10.234	20.9	15.163
1.0	0.1692	6.0	2.4497	11.0	5.9848	16.0	10.327	21.0	15.267
1	0.1952	6.1	2.5105	11.1	6.0645	16.1	10.422	21.1	$\overline{15.371}$
1.2	0.2223	6.2	2.5715	11.2	6.1445	16.2	10.515	21.2	15.475
1.3	0.2508	6.3	2.6333	11.3	6.2255	16.3	10.609	21.3	15.579
1.4	0.2800	6.4	2.6952	11.4	6.3060	16.4	10.703	21.4	15.683
1.5	0.3104	6.5	2.7579	11.5	6.3870	16.5	10.797	21.5	15.787
1.6	0.3419	6.6	2.8211	11.6	6.4685	16.6	10.893	21.6	15.892
1.7	0.3744	6.7	2.8845	11.7	6.5500	16.7	10.986	21.7	15.998
1.8	0.4077	6.8	2.9483	11.8	6.6320	16.8	11.082	21.8	16.101
1.9	0.4421	6.9	3.0127	11.9	6.7145	16.9	11.178	21.9	16.206
2.0	0.4773	7.0	3.0771	12.0	6.7970	17.0	11.273	22.0	16.312
2.1	0.5134	7.1	3.1426	12.1	6.8795	17.1	11.369	22.1	16.418
2.2	0.5501	7.2	3.2082	12.2	6.9630	17.2	11.465	22.2	16.524
2.3	0.5881	7.3	3.2742	12.3	7.0460	17.3	11.561	22.3	16.630
2.4	0.6263	7.4	3.3408	12.4	7.1305	17.4	11.657	22.4	16.737
2.5	0.6660	7.5	3.4075	12.5	7.2145	17.5	11.754	22.5	16.842
2.6	0.7061	7.6	3.4749	12.6	7.2990	17.6	11.851	22.6	16.949
2.7	0.7470	7.7	3.5426	12.7	7.3830	17.7	11.949	22.7	17.055
2.8	0.7886	7.8	3.6106	12.8	7.4680	17.8	12.046	22.8	17.161
2.9	0.8310	7.9	3.6790	12.9	7.5540	17.9	12.143	22.9	17.269
3.0	0.8742	8.0	3.7480	13.0	7.6390	18.0	12.240	23.0	17.376
3.1	0.9179	8.1	3.8171	13.1	7.7245	18.1	12.338	23.1	17.483
3.2	0.9625	8.2	3.8869	13.2	7.8110	18.2	12.437	23.2	17.590
3.3	1.0075	8.3	3.9570	13.3	7.8970	18.3	12.535	23.3	17.698
3.4	1.0533	8.4	4.0276	13.4	7.9840	18.4	12.633	23.4	17.806
3.5	1.0998	8.5	4.0983	13.5	8.0710	18.5	12.732	23.5	17.913
3.6	1.1470	8.6	4.1696	13.6	8.1580	18.6	12.831	23.6	18.022
3.7	1.1947	8.7	4.2411	13.7	8.2450	18.7	12.930	23.7	18.130
3.8	1.2432	8.8	4.3131	13.8	8.3330	18.8	13.030	23.8	18.240
3.9	1.2921	8.9	4.3855	13.9	8.4210	18.9	13.130	23.9	18.348
4.0	1.3418	9.0	4.4582	14.0	8.5090	19.0	13.229	24.0	18.457
4.1	1.3920	9.1	4.5312	14.1	8.5975	19.1	13.329	24.1	18.566
4.2	1.4429	9.2	4.6045	14.2	8.6860	19.2	13.429	24.2	18.675
4.3	1.4941	9.3	4.6782	14.3	8.7755	19.3	13.529	24.3	18.784
4.4	1.5461	9.4	4.7525	14.4	8.8645	19.4	13.630	24.4	18.892
4.5	1.5986	9.5	4.8270	14.5	8.9545	19.5	13.731	24.5	19.010
4.6	1.6515	9.6	4.9015	14.6	9.0440	19.6	13.832	24.6	19.110
4.7	1.7052	9.7	4.9769	14.7	9.1345	19.7	13.934	24.7	19.220
4.8	1.7594	9.8	5.0523	14.8	9.2240	19.8	14.035	24.8	19.330
4.9	1.8142	9.9	5.1280	14.9	9.3150	19.9	14.146	24.9	19.440
5.0	1.8693	10.0	5.2040	15.0	9.406	20.0	14.238	25.0	19.551

TABLE FOR GAUGING HORIZONTAL CYLINDRICAL TANKSContinued.
$\% \mathrm{~d}=$ percentage of total capacity of tank.
$\% \mathrm{c}=$ percentage of total capacity of tank.

$\% \mathrm{~m}$	\% ${ }^{\text {c }}$	\%d		\%d				\%d	
25.	19.662	30.1	25.350	35.1	31.314	40.1	37.480	45.1	43.775
25	19.773	30.2	25.467	35.2	31.436	40.2	. 37.606	45.2	43.902
25.3	19.884	30.3	25.584			40.	37.731	45.3	44.028
25.	19.995	30.4	25.701	35.4	31.680	40.4	37.856	45.4	44.15
25	20.106	30.5	25.818	35.5	31.802	40.5	37.981	45.5	44.282
25	20.217	30.6	125.935	35.	31.924	40.6	38.106	45.6	44.409
25	20.328	30.7	26.052	35.7	32.046	40.7	38.231	45.7	44
25	20.439	30.8	26.170	35.8	32.168	40.8	38.355	45.8	44
25.	20.550	30.9	26.288	35.9	32.290	40.9	38.479	45.9	44
26.0	20.661	31.0	26.407	36	32.412	41.0		46.0	44.918
26	20.7	31.1	$\overline{26.524}$	361	32.	41.1	0	46.1	45
26.	20.886	31.2	26.642	36.2	32.	41.2	38.85	46.2	45
26.	20.998	31.3	26.760	36.3	32.780	41.	38.982	46	
26.4	21.110	31.4	26.878	36.4	32.902	41.	39.108	46.4	45.424
26.5	21.222	31	26.996	36.5	33.025	41.	39.233	46.5	45.550
26.6	21.334	31.6	27.114	36.6	33.147	41.6	39.358	46.6	45.678
26	21.447	31.7	27.232	36.7	33.269	41.7	39.482	46.7	45
26.	21.560	31.8	27.351	36.8	33.392	41.8	39.60	46.8	45.930
26.9	21.672	31.9	27.470	36.9	33.515	41.9	39.73	46.9	46.058
27.0	21.785	32.0	27.589	37.0	83.638	42.0	39.862	47.0	46.183
27	21.898	32.1	27	37.1	33	42	39.988	47.1	46.311
27.2	22.011	32.2	27.827	37.2	33.885	42.2	40.114	47.2	46.438
27	22.125	32.3	27.916	37.3	34.003	42.3	40.24	47.3	46.56
27	22.239	32.4	28. 665	37.4	34.131	42.4	40.36	47.4	46.693
27	22.353	32.5	28.184	37.5	34.25	42.5	40.490	47.5	46.819
27	22.467	32.6	28.302	37.6	34.377	42.6	40.61	47.6	46.947
27	22.581	32.7	28.422	37.7	34.501	42.7	40.741	47.7	47.074
27.8	22.695	32.8	28.543	37.8	34.625	42.8	40.869	47.8	47.201
27.9	22.810	32.9	28.660	37.9	34.759	42.9	40.99	47.9	47.329
28.0	22.923	33.0	28.781	38.0	34.873	43.0	41.120	48.0	47.457
28	23.038	33	28.899	38	34.996	4	41.246		47.583
28	23.152	33.2	29.020	38.2	35.11	43.2	41.372	48.2	47.710
28	23.266	33.3	29.140	38.3	35	43.3	41.499	48.3	47.837
28	23.380	33.4	29.260	38.4	35.36	43.4	41.628	48.4	47.965
28.5	23.494	33.5	29.380	38.5	35.491	43.5	41.749	48.5	48.093
	23.611	33.6	29.500	38.6	35.615	43.6	41.876	48.6	48.220
28	23.728	33.7	29.620	38.7	35.739	43.7	42.002	48.7	48.348
28.8	23.842	33.8	29.740	38.8	35.865	43.8	42.129	48.8	48.475
28.9	23.957	33.9	29.860	38.9	35.988	43.9	42.257	48.9	48.603
29.0	24.072	34.0	29.981	39.0	36.110	44.0	42.383	49.0	48.729
29	24.187	34.1	30.102	39.1	36.234	44.	42.510	49.1	8.857
29.2	24.302	34.2	30.223	39.2	36.359	44.2	42.637	49.2	48.983
29 3	24.418	34.3	30.344	39.3	36.483	44.3	42.762	49.3	49.112
29	24.535	34.4	30.465	39.4	36.608	44.4	42.890	49.4	49.239
29.5	24.651	34.5	30.587	39.5	36.732	44.5	43.018	49.5	49.366
6	24 2469	34.6	30.708	39.6	36.856	44.6	43.142	49.6	49.494
29.8	24.884 25.000		30.829	39.7	36.981	44.7	43.268	49.7	49.621
29.8	25.000		.30.950	39.8	37.106	44.8	43.397	49.8	49.748
			31.071 31.192	39.9	37.230	44.9	43.521	49.9	49.877
	25233	:35	31.192	40.0	37.355	45.0	43.648	50.0	50.000

TABLE FOR GAUGlivg THE CONTENTS AT VARIOUS LIQUID DEPTHS OF BUMPED ENDS OF HORIZONTAL

CYLINDRICAL TANKS.
$\% \mathrm{~d}=$ percentage of total diameter of tank.
$\% \mathrm{~b}=$ percentage of total contents of both bumped ends.

\%d	$\% \mathrm{~b}$	$\%_{0} \mathrm{~d}$	Mb	Mod	\%b	Cd	$\% \mathrm{~b}$	\%d	7 Cb
0.1	0.00	5.1	0.32	10.1	1.62	15.1	4.18	20.1	7.99
0.2	0.00	5.2	0.34	10.2	1.66	15.2	4.24	20.2	8.09
0.3	0.00	5.3	0.36	10.3	1.69	15.3	4.31	20.3	8.19
0.4	0.00	5.4	0.38	10.4	1.73	15.4	4.38	20.4	8.28
0.5	0.01	55	0.40	10.5	1.77	15.5	4.44	20.5	8.38
0.6	0.01	5.6	0.41	10.6	1.81	15.6	4.50	20.6	8.46
0.7	0.01	5.7	0.43	10.7	1.85	15.7	4.57	20.7	8.54
0.8	0.01	5.8	0.45	10.8	1.89	15.8	4.63	20.8	8.63
0.9	0.01	5.9	0.47	10.9	1.94	15.9	4.70	20.9	8.72
1.0	0.01	6.0	0.49	11.0	1.98	16.0	4.77	21.0	8.81
1.1	0.01	6.1	0.50	11.1	2.03	16.1	4.83	21.1	8.89
1.2	0.01	6.2	0.52	11.2	2.07	16.2	4.90	21.2	8.97
1.3	0.01	6.3	0.53	11.3	2.11	16.3	4.96	21.3	9.06
1.4	0.02	6.4	0.54	11.4	2.15	16.4	5.03	21.4	9.15
1.5	0.02	6.5	0.56	11.5	2.20	16.5	5.10	21.5	9.24
1.6	0.02	6.6	0.58	11.6	2.24	16.6	5.17	21.6	9.34
1.7	0.02	6.7	0.60	11.7	2.29	16.7	5.25	21.7	9.44
1.8	0.02	6.8	0.62	11.8	2.33	16.8	5.32	21.8	9.54
1.9	0.02	6.9	0.64	11.9	2.38	16.9	5.40	21.9	9.64
2.0	0.02	7.0	0.66	12.0	2.43	17.0	5.48	22.0	9.74
2.1	0.03	7.1	0.68	12.1	2.48	17.1	5.55	22.1	9.84
2.2	0.03	7.2	0.70	12.2	2.54	17.2	5.63	22.2	9.93
2.3	0.04	7.3	0.73	12.3	2.59	17.3	5.71	22.3	10.03
2.4	0.04	7.4	0.75	12.4	2.65	17.4	5.78	22.4	10.12
2.5	0.05	7.5	0.78	12.5	2.70	17.5	5.86	22.5	10.22
2.6	0.05	7.6	0.81	12.6	2.75	17.6	5.94	22.6	10.32
2.7	0.06	7.7	0.84	12.7	2.80	17.7	6.02	22.7	10.42
2.8	0.06	7.8	0.87	12.8	2.85	17.8	6.10	22.8	10.52
2.9	0.07	7.9	0.90	12.9	2.90	17.9	6.17	22.9	10.62
3.0	0.07	8.0	0.92	13.0	2.95	18.0	6.25	23.0	10.72
3.1	0.08	8.1	0.95	13.1	3.01	18.1	6.33	23.1	10.82
3.2	0.08	8.2	0.98	13.2	3.06	18.2	6.41	23.2	10.93
3.3	0.09	8.3	1.01	13.3	3.12	18.3	6.49	23.3	11.04
3.4	0.10	8.4	1.05	13.4	3.17	18.4	6.57	23.4	11.14
3.5	0.11	8.5	1.08	13.5	3.22	18.5	6.64	23.5	11.25
3.6	0.12	8.6	1.11	13.6	3.28	18.6	6.72	23.6	11.36
3.7	0.13	8.7	1.14	13.7	3.33	18.7	6.80	23.7	11.47
3.8	0.14	8.8	1.17	13.8	3.39	18.8	6.88	23.8	11.58
3.9	0.15	8.9	1.20	13.9	3.44	18.9	6.96	23.9	11.69
4.0	0.16	9.0	1.23	14.0	3.50	19.0	7.05	24.0	11.80
4.1	0.17	9.1	1.26	14.1	3.56	19.1	7.13	24.1	11.90
4.2	0.18	9.2	1.30	14.2	3.62	19.2	7.21	24.2	12.01
4.3	0.19	9.3	1.33	14.3	3.68	19.3	7.29	24.3	12.12
4.4	0.20	9.4	1.36	14.4	3.74	19.4	7.37	24.4	12.22
4.5	0.21	9.5	1.40	14.5	3.80	19.5	7.46	24.5	12.32
4.6	0.22	9.6	1.43	14.6	3.87	19.6	7.55	24.6	12.43
4.7	0.24	9.7	1.46	14.7	3.93	19.7	7.63	24.7	12.54
4.8	0.26	9.8	1.50	14.8	4.00	19.8	7.72	24.8	12.66
4.9	0.28	9.9	1.54	14.9	4.06	19.9	7.81	24.9	12.77
5.0	0.30	10.0	1.58	15.0	4.12	20.0	7.90	25.0	12.89

TABLE FOR GAUGING THE CONTENTS AT VARIOUS LIQUID DEPTHS OF BUMPED ENUS OF HORIZONTAL.

CYLINDRICAL TANKS (Concluded)
氿 $d=$ percentage of total diameter of tank.
$r, b=$ percentage of total contents of both bumped ends.

	, b	${ }_{0} \mathrm{~d}$	co	70 d	${ }_{0} \mathrm{~b}$	b	7 Cb	70 d	7% b
25	12.95	30.1	19.06	35.1	26.05	40.1	33.74	45.1	41.77
25.2	13.06	30.2	19.19	35.2	26.20	40.2	33.90	45.2	41.94
25	13.17	30.3	19.32	35.3	26.35	40.3	34.05	45.3	42.11
25.4	13.29	30.4	19.43	35.4	26.59	40.4	34.29	45.4	42.28
25	13.40	30.5	19.55	35.5	26.65	40.5	34.35	45.5	42.45
25.	13.51	30.6	19.68	35.6	26.80	40.6	34.50	45.6	42.61
5.7	13.63	30.7	19.81	35.7	26.95	40.7	34.65	45.7	42.77
25	13.75	30.8	19.94	35.8	27.10	40.8	34.80	45.8	42.93
25.9	13.87	30.9	20.07	35.9	27.25	40.9	34.95	45.9	43.09
26.0	13.98	31.0	20.22	36.0	27.40	41.0	35.10	46.0	43.25
26.1	14.10	31.1	20.37	36.1	27.55	41.1	35.26	46.1	43.41
26.2	14.22	31.2	20.52	36.2	27.70	41.2	35.42	46.2	43.57
26.3	14.34	31.3	20.67	36.3	27.84	41.3	35.53	46.3	43.73
26.4	14.46	31.4	20.82	36.4	27.99	41.4	35.75	46.4	43.89
26.5	14.58	31.5	20.97	36.5	28.13	41.5	35.92	46.5	44.05
26.6	14.70	31.6	21.11	36.6	28.28	41.6	36.08	46.6	44.22
26.7	14.82	31.7	21.25	36.7	28.43	41.7	36.24	46.7	44.38
6.8	14.94	31.8	21.39	36.8	28.59	41.8	36.39	46.8	44.54
26.9	15.16	31.9	21.52	36.9	28.75	41.9	36.55	46.9	44.71
27.0	15.19	32.0	21.65	37.0	28.90	42.0	36.70	47.0	44.88
27	15.31	32.1	21.79	37.1	29.05	42.1	36.86	4	45.05
27.2	15.43	32.2	21.93	37.2	29.20	42.2	37.02	47.2	45.23
27.3	15.56	32.3	22.07	37.3	29.35	42.3	37.18	47.3	45.31
+	15.68	32.4	22.20	37.4	29.50	42.4	37.34	47.4	45.59
27.5	15.80	32.5	22.34	37.5	29.65	42.5	37.50	47.5	45.77
27.6	15.92	32.6	22.47	37.6	29.80	42.6	37.67	47.6	45.95
27.7	16.04	32.7	22.60	37.7	29.95	42.7	37.83	47.7	45.12
8	16.16	32.8	22.74	37.8	30.10	42.8	37.99	47.8	46.29
27.9	16.28	32.9	22.87	37.9	30.26	42.9	38.16	47.9	46.46
-	16.40	33.0	23.00	38.0	30.42	43.0	38.32	48.0	46.63
28.1	16.53	33.1	23.14	38.1	30.58	4	38.49	48.1	46.80
2	16.65	33.2	23.28	38.2	30.74	43.2	38.65	48.2	46.96
3	16.77	33.3	23.41	38.3	30.91	43.3	38.81	48.3	47.13
	16.90	33.4	23.55	38.4	31.08	43.4	38.97	48.4	47.30
28.5	17.02	33.5	23.69	38.5	31.25	43.5	39.13	48.5	47.46
¢	17.14	33.6	23.84	38.6	31.40	43.6	39.30	48.6	47.62
7	17.27	33.7	23.99	38.7	31.56	43.7	39.46	48.7	47.77
28.8	17.39	33.8	24.15	38.8	31.72	43.8	39.62	48.8	47.93
289	17.51	33.9	24.31	38.9	31.87	43.9	39.78	48.9	48.09
90	17.69	34.0	24.45	39.0	32.02	44.0	39.95	49.0	48.25
491	17.76	34.1	24.59	39.1	32.16	44.1	40.12		48.42
,	17.89	34.2	24.74	39.2	32.31	44.2	40.29	49.2	48.59
	18.02	34.3	24.89	39.3	32.46	44.3	40.46	49.3	48.76
29 9	18.15	34.4	25.05	39.4	32.60	44.4	40.62	49.4	48.93
\%	18.27	34.5	25.20	39.5	32.75	44.5	40.79	49.5	49.10
\%	18.40	:3.16	25.36	39.6	32.91	44.6	40.95	49.6	49.28
	$18.5: 3$	3. 3.7	25.52	39.7	33.06	44.7	41.11	49.7	49.46
1	18.66	31.8	25.68	39.8	33.32	44.8	41.27	49.8	49.64
!	18.80	34.9	25.84	39.9	33.45	44.9	41.44	49.9	49.82
()	18.93\%	35.0	25.90	40.0	33.58	45.0	41.60	50.0	50.00

CONTENTS OF HORIZONTAL TANKS (GALLONS).
Multiply Capacity in Tables by Length of Tanks in Inches.

36 Inches in Diameter	37 Inches in Diameter	38 Inches in Diameter	Depth Inches	39 Inches in Diameter	40 Inches in Diameter	41 Inches in Diameter
			2012			2.858
			20		2.720	2.769
			191/2	2.536	2 517	
	2.327°	2.445	19 191	2501	2547	2.951
2.203	2.247	2.290	18	2.332	2374	2.415
2.047	2.087	2.126	17	2.165	2202	2.239
1.893	1.923	1.963	16	1998	2.032	2.065
1.739	1.770	1.801	15	1.832	1.863	1.894
1.535	1.613	1.643	14	1. 669	1697	1.724
I. 434	1.459	1.484	13	1509	1533	1.557
1.286	1.30 S	1.330	12	1.351	1.372	1.393
1.140	1.159	1.159	11	1.198	1. 216	1.233
. 999	1.015	1.032	10	1.017	1.063	1.079
. 861	. 875	. 899	9	. 903	. 916	. 929
. 729	. 740	. 752	8	. 763	. 774	. 78.5
. 603	612	.62I	7	631	. 639	. 648
. 483	490	. 497	6	505	. 512	. 518
. 371	. 376	. 382	5	337	392	. 398
. 269	271	. 275	4	230	233	. 237
175	178	180	3	183	18.5	188
. 096	098	099	2	100	102	103
034	035	035	1	036	. 036	037

42 Inches in Diameter	43 Inches in Diameter	41 Inches in Diameter	Depth Inches	45 Inches in Diameter	46 Inches in Diameter	47 Inches in Diameter
			$231 / 2$			2. 755
			2.3		3.597	3.653
			$221 / 2$	3.442		
		3.291	22	3.344	3.337	3453
	3.143		2112			
2.998	3.050	3.100	21	3149	3.199	3.218
2.817	2. 864	2.908	20	2.955	3.002	3.047
2.633	2.679	2.721	19	2.763	2.805	2.846
2.455	2.495	2.533	18	2572	2.609	2.647
2.276	2.313	2.317	17	2.381	2.416	2.450
2.098	2.132	2.163	16	2.193	2.225	2256
1.922	1.952	1.981	15	2.009	2.037	2.061
1.750	1.776	1.802	14	1.827	1.852	1.876
1.539	1.693	1.623	13	1.618	1.672	1693
1.414	1.434	1451	12	1.473	1.494	1.513
1.252	1.269	1.237	11	1334	1.321	1.333
1.094	1.110	1.125	10	1139	1151	1.168
942	. 955	. 968	9	. 980	. 993	1.005
. 797	. 807	. 817	8	. 827	839	. 813
. 657	. 665	. 675	7	. 632	691	. 699
. 526	. 532	. 54)	6	. 513	. 552	. 553
. 403	403	. 414	5	. 419	421	. 493
291	294	.297	4	. 391	.3)1	. 309
193	. 193	194	3	. 197	. 199	. 200
101	. 105	. 107	2	. 108	. 110	111
037	039	. 038	1	. 039	. 039	. 039

HORIZONTAL TANKS-(Continued). Multiply Capacity in Tables by Length of Tanks in Inches.

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tanks in Inches.

60 Inehes in Diameter	61 Inches in Diameter	62 Inches in Diameter	Depth Inches	63 Inches in Diameter	64 Inches in Diameter	65 Inches in Diameter
			391/2			7.182
			32		6.963	7.039
		6.535	$311 / 2$ 31	6.747 6.610	6.686	6.755
	6.326		$301 / 2$		6.680	
6.119	6.193	6.267	30	6.337	6.410	6.472
5.858	5.929	5.999	29	6.065	6.134	6.193
5.598	5.668	5.732	28	5.794	5.858	5.915
5.339	5.407	5. 465	27	5.523	5. 584	5.639
5.082	5.146	5.199	26	5.254	5.310	5.363
4.826	4.885	4.935	25	4.986	5.038	5.089
4.572	4.625	4.672	24	4.722	4709	4.817
4.318	4.366	4.412	23	4.458	4503	4.547
4.066	4.111	4.153	22	4.196	4.239	4.281
3.818	3.859	3.898	21	3.937	3.976	4.016
3.572	3.609	3.645	20	3.683	3.718	3.756
3.328	3.363	3.397	19	3.490	3.464	3.496
3.088	3.120	3.151	18	3.181	3.213	3.242
2.582	2.881	2.910	17	2.937	2.964	2.992
2.621	2.646	2.672	16	2.608	2.723	2.748
2.392	2.417	2.440	15	2.463	2.486	2.508
2.171	2.192	2.213	14	2.232	2254	2.274
1.954	1.972	1.991	13	2.008	2.027	2.045
1.743	1.759	1.776	12	1.791	1.898	1.823
1.538	1.552	1.567	11	1. 581	1.505	1.608
1.341	1.352	1.366	10	1.378	1.390	1.401
1.152	1.161	1.173	9	1.183	1.192	1.203
. 971	. 980	. 988	8	. 906	1.005	1.013
. 799	. 806	. 812	7	. 819	. 827	. 833
. 634	. 642	. 648	6	. 653	659	. 664
. 487	. 491	. 496	5	. 500	504	. 506
. 349	. 354	. 357	4	. 359	. 362	. 365
. 229	. 230	. 233	3	235	238	. 238
. 125	. 126	. 128	2	. 128	. 129	. 131
. 045	. 045	. 045		. 046	. 046	. 047

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tank in Inches.

66 Inches in Diameter	67 Inches in Diameter	68 Inches in Diameter	Depth Inches	69 Inches in Diameter	70 Inches in Diameter	71 Inches in Diameter
			351/2			8.570
			3.5		8.330	8.413
			$34^{1}{ }^{1}$	8.094		
	-. 631	7.861	$\begin{aligned} & 34 \\ & 33^{1}{ }_{2} \end{aligned}$	7.94	8.026	8. 107
-406	-485	7567	$3: 3$	$\bigcirc 610$	7.723	-.801
7.120	-. 194	-. 273	32	7.348	$\bigcirc 421$	7.495
6834	6904	6979	31	7.051	7.120	7.190
6549	6.617	6.655	30	6755	6.819	6.886
6264	6.327	6.395	29	6.459	6.519	6.583
5981	6.041	6. 104	28	6.164	6.22 ?	6.283
5699	5.756	5.814	27	5.850	5927	5.983
5419	5473	5.528	26	5580	5.634	5.686
5 141	J 191	5244	25	5292	5.343	5.291
+ 865	4.913	4.961	24	5006	5.052	5.098
+ 592	$463{ }^{\circ}$	4.681	23	4.724	4. 764	4.809
+. 322	+.363	4.403	29	4444	4481	4.524
+ 054	4092	4.12S	21	4.16%	4204	4241
3799	3824	3.859	20	3.893	3.929	3.962
3529	3561	3. 593	19	3. 625	36.51	3. 688
3273	3.302	3.331	18	3.360	3.388	3.418
3020	${ }^{3} 046$	3. 074	17	3101	3.125	3152
$\bigcirc 70$	2797	2821	16	2846	2868	2.894
$\stackrel{5}{2} 530$	2. 53.3	2. 575	15	- 2.595	2.617	2.640
2294	2. 314	2333	14	2.352	2.372	2.391
2064	2. 080	2.099	13	2116	2135	2.150
1839	18.50	1.811	12	1.886	1901	1.916
1 1629	1. 635	1. 630	11	1663	1.674	1. 693
1 1 1 213	1426	1.439	10	1.449	1.459	1.476
$\begin{array}{ll}1 & 213 \\ 1 & 022\end{array}$	$1 \begin{aligned} & 1.223 \\ & 1\end{aligned}$	1. 235	9	1.242	1.254	1. 264
18	1. 030	1.041	8	1047	1.060	1.063
670	. 675	. 635	6	. 859	. 871	. $87 \pm$
. 512	516	. 529	5	. 524	. 689	. 693
368	371	. 374	4	-37\%	. 378	. 382
240 131	243	244	3	246	. 243	. 250
131 .017	132	133	?	134	135	136
017	047	047	1	048	. 048	048

HORIZONTAL TANKE-(Continued).

Multiply Capacity in Tables by Length of Tank in Inches.

72 Inches in Diameter	73 Inches in Diameter	74 Inches in Diameter	Depth Inches	75 Inehes in Diameter	76 Inches in Diameter	77 In 1]: Diameter
			381/2			10.079
			38		9.819	9.912
			371 ²	9.562		
		9.309	37	9400	9.489	9.579
	9.059		361\%			
8.813	8.899	8989	36	9076	9160	9.246
8.500	8.582	8.669	35	8.752	8.832	8.914
8188	8.267	8.349	34	8.428	8.505	8.583
7.887	7.953	8.030	33	8104	8.178	8.253
7.887	7.953	8.030	33	8104	8.178	8.253
7.567	7.639	7712	32	7.782	7.782	7.924
7.259	7.326	7.395	31	7.461	7.528	7.596
6.952	7.015	7.080	30	7142	7.205	7.268
6.645	6.706	6.766	29	6.824	6.885	6.944
6.341	6.397	6.454	28	6.509	6.567	6.622
6.038	6.091	6.145	27	6.195	6.250	6.302
5.736	5.786	5.839	26	5.885	5.938	5.988
5.439	5.485	5.535	25	5578	5.628	5.675
5.144	5.188	5.232	24	5.274	5.320	5.364
4.852	4.892	4.934	23	4.975	5.014	5.056
4.563	4.599	4.639	22	4.677	4.715	4.753
+. 278	4.311	4.374	21	4.383	4.418	4.453
3.997	4.025	4.062	20	409.4	4.127	4.161
3.719	3.748	3.781	19	3.809	3839	3.871
3.446	3.474	3.501	18	3529	3.556	3.585
3.179	3.204	3.229	17	3.255	3.280	3.305
2.917	2.938	2.962	16	2985	3.008	3.032
2.658	2.681	2.702	15	2723	2.744	2.764
2.408	2.429	2.447	14	2467	2.485	2.503
2.167	1.184	2.200	13	2.216	2.234	2.250
1.932	1.946	1.960	12	1.978	1.990	2.003
1.703	1.716	1.727	11	1.742	1.753	1.767
1.483	1.494	1. 505	10	1515	1.527	1.538
1.272	1.281	1.291	9	1.300	1.309	1.318
1.071	1.079	1.086	8	1.095	1.102	1.110
. 880	. 887	. 893	7	899	. 906	. 912
. 701	707	. 712	6	. 717	. 722	. 727
. 536	. 540	544	5	518	. 551	. 555
386	388	391	4	. 393	. 396	. 399
. 252	253	254	3	256	. 259	. 260
. 138	. 138	139	2	140	. 141	. 142
. 048	049	049	1	050	050	050

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tanks in Inches.

78 Inches in Diameter	79 Inches in Diameter	80 Inches in Diameter	Depth Inches	81 Inches in Diameter	82 Inches in Diameter	83 Inches in Diameter
			$411 / 2$			11.711
			41		11.431	11.531
			401/2	11.154		
		10.880	40	10.978	11.075	11.172
	10.610		$391 / 2$			
10.343	10.439	10.533	39	10.627	10.720	10.814
10.000	10.097	10.187	38	10.277	10.365	10.456
9.666	9. 756	9.841	37	9.927	10.012	10.098
9.329	9416	9.496	36	9.578	9.659	9.741
8.994	9.076	9.151	35	9.231	9.307	9.385
8.659	8.737	8.809	34	8.884	8.958	9.032
8.325	8.398	8.468	33	8.538	8.608	8.679
7.992	8.060	8.128	32	8.194	8.260	8.328
7.660	7.724	7.789	31	7.854	7.916	7.980
7.330	7.391	7.454	30	7.514	7.575	7.633
-. 001	7.059	7.120	29	7.176	7.234	7.286
6.676	6.734	6.788	28	6.842	6.893	6.947
6.354	6.407	6.458	27	6.508	6.557	6.610
6. 035	6.085	6.132	26	6.181	6.228	6.274
5.719	5.764	5.809	25	5.583	5.899	5.943
5406	5.449	5.490	24	5.532	5.574	5.615
5.096	5.138	5.175	23	5.212	5.252	5.291
4.791	4.829	4.864	22	4.900	4.933	4.970
4.487	4.523	4.557	21	4.592	4.624	4.657
4. 189	4.224	4.254	20	4.286	4.316	4.436
3.897	3.928	3.956	19	3.987	4.013	4.043
${ }^{3} 610$	3.637	3.665	18	3.691	3.717	3.742
3329	3.355	3.377	17	3.403	3.426	3.450
3.053	3.076	3.098	16	3.120	3.141	3.164
2784	2. 504	2.825	15	2.816	2.863	2.883
2. 522	2.540	2.558	14	2.576	2.592	2.612
2267	2.282	2.299	13	2.315	2.329	2.345
2019	2.033	2.047	12	2.062	2.074	2.089
1779	1791	1. 804	11	1.816	1.827	1.840
15.19	1. 5750	1.570	10	1.582	1.501	1.606
1. 329	1. 336	1345	9	1.355	1.365	1.372
1118	1.126	1.132	8	1.141	1.148	1.156
. 319	. 325	. 931	7	1.937	1. 943	- 950
. 731	. 736	. 742	6	746	. 752	. 757
. 509	563	. 565	5	. 569	. 574	. 576
. 101	404	. 407	4	. 409	. 412	. 415
. 261	.26.1	. 265	3	267	. 269	. 269
. 113	. 113	. 145		146	. 147	. 148
. 051	0.01	. 051	1	. 052	. 052	. 053

HORIZONTAL TANKS-(Continued).
Multiply Capacity in Tables by Length of Tank in Inches.

84 Inches in Diameter	85 Inches in Diameter	86 Inches in Diameter	Depth Inches	87 Inches in Diameter	88 Inches in Diameter	89 Inches in Diameter
			$441 / 2$ 44		13165	13.466
			431/2	12.867		
		12.573	43	12.679	12.783	12.887
	12.283		421/2			
11.995	12.099	12.201	42	12.303	12.401	12.501
11.632	11.731	11.829	41	11.927	12.019	12.116
11.269	11.363	11.457	40	11.552	11.638	11.734
10.906	10.997	11.086	39	11.177	11.261	11.352
10.544	10.632	10.716	38	10.802	10.88 .4	10.970
10.183	10.267	10.347	37	10.430	10.508	10.589
9.822	9.903	9.979	36	10.058	10. 132	10.209
9.462	9.540	9.611	35	9.759	9.759	9.832
9.104	9.177	9.245	34	9.318	9.387	9.458
8.747	8.816	8.883	33	8.951	9.018	9.085
8.392	8.459	8.523	32	8.587	8.651	8713
8.040	8.105	8164	31	8.226	8.287	8.345
7.690	7.751	7.807	30	7.865	7.925	7.978
7.344	7. 401	7.454	29	7.509	7.566	7.617
7.000	7.054	7.104	28	7.156	7.210	7.258
6.658	6.710	6.756	27	6.805	6.856	6.901
6.320	6.369	6.413	26	6.458	6.504	6.549
5. 986	6.030	6.074	25	6.118	6.158	6.201
5.656	5.699	5.738	24	5.773	5.816	5.858
5.330	5.368	5.404	23	5.445	5.482	5.516
5.007	5.043	5.078	22	5. 114	5.150	5.182
4.690	4.724	4.756	21	4.790	4.821	4.855
4.378	4.410	4.440	20	4.469	4.499	4.528
4.071	4.098	4.126	19	4.155	4.181	4.211
3.770	3.796	3.821	18	3.847	3.872	3.896
3.475	3.497	3.522	17	3.544	3.576	3.590
3.186	3.206	3.227	16	3.249	3.269	3.291
2.904	2.924	2.941	15	2.961	2.980	2.999
2.629	2.646	2.663	14	2.679	2.699	2.714
2.362	2.378	2.393	13	2.406	2. 421	2.439
2.104	2.116	2.129	12	2.142	2.154	2.169
1.853	1.865	1.876	11	1.888	1.900	1.200
1.613	1.621	1.633	10	1.641	1. 656	1.663
1.383	1.391	1.400	9	1.407	1.416	1.425
1.162	1.169	1.176	8	1185	1.190	1.200
. 954	. 962	. 967	7	. 973	979	. 98.3
. 760	. 765	. 770	6	. 776	778	784
. 580	. 585	. 587	5	. 592	595	. 598
. 417	. 420	. 422	4	. 429	429	. 430
. 272	. 274	. 275	3	278	279	280
. 148	. 149	. 151	2	151	153	154
. 053	. 053	. 053	1	054	055	055

HORIZONTAL TANKS-(Continued).
Multiply Capacity in Tables by Length of Tanks in Inches.

90 Inches in Diameter	91 Inches in Diameter	92 Inches in Diameter	Depth Inches	93 Inches in Diameter	94 Inches in Diameter	95 Inches in Diameter
			471/2		15.02	15.342 15.136
			$4{ }_{4}^{12}$	14703		
		14.388	46	14.501	14.612	14.726
	14078		$45^{1 / 2}$			
13.760	13.880	13.988	45	14098	14207	14.316
13.378	13487	13.599	44	1.3696	13.802	13.905
12. 987	13.094	13194	43	13996	13.397	13.495
12.597	12. 701	12798	4.	12896 12 497	12.993	13.086
12.209	12.308	12.403 12008	41	12. 497	12.590 12.187	12.679 12.273
11.822	11.915	12.008 11.613	40 39	111.699	12.785	11.867
11.051	11.137	11218	38	11.301	11.381	11463
10.667	10.750	10.826	37	10.906	10.983	11.061
10.284	10.363	10.438	36	10.513	10587	10.662
9903	9975	10.050	35	10123	10.193	10.265
9524	9.596	9.665	34	9.733	9.800	9.870
9.184	9.216	9.281	33	9.344	9.410	9.476
873	8.837	8.900	32	8962	9.024	9.084
§ 403	8.463	8.523	31	8.580	8.639	8.697
8035	8.093	8. 149	30	8200	8.257	8.313
-670	7.724	7.77	29	7.827	7.880	7.932
7. 308	7.358	7. 409	28	- 456	7. 506	7.553
6948	6.996	7.046	2	7.089	7. 138	7.182
6593	66.38	6657	26	6.727	6.711	6.812
6.242	6283	6.331	25	6.367	6.407	6.450
5 594	5. 93.3	5. 976	24	6.013	6.052	6090
55.52	5.598	5.626	23	5.662	5.300	5.734
5215	5248	5294	22	5.320	5.352	5.386
4893	4416	4.949	21	4.979	5.010	5.042
4850	4.557	4.617	20	4645	4.673	4.701
4235	+264	4292	19	4.317	+.343	4.368
3921	3946	3972	18	3.996	4.021	4.045
3 F 11	36.35	3657	17	3.681	3.703	3.727
3 309	33.31	3.353	16	3.375	3.393	3.414
3014	3.035	3.056	15	3073	3. 091	3.109
2329	274	2.763	14	2.781	2. 796	2.814
24.9	2468	2. 480	13	2.497	2510	2.524
$\begin{array}{ll}2 & 183 \\ 1 & 192\end{array}$	$\cdots 196$	2210	12	2.222	-. 232	2.248
$\begin{array}{ll}1 \\ 1 & 1829\end{array}$	1934 1 1 64.3	1. 946	11	1. 957	1. 966	1.981
$\begin{array}{ll}1 & 163 \\ 1 & 13.3\end{array}$	1642	1696	10	1.703	1714	1.723
120	1.44 .3 1.21 .4	$\begin{array}{lll}1 & 455 \\ 1 & 216\end{array}$	9	1.455	1. 469	1.474
194,	39.5	11100	$\frac{8}{7}$	1. 007	1. 010	1.240 1.019
74	71.3	799	6	1.803	1. 807	1.812
6,t1	(i0)	tios	5	61.3	. 616	. 618
382	4.35	440	4	440	. 445	. 445
291	28.1	290	3	290	291	. 292
10.5	15.5 11.5	156	,	157	158	160
0.5	(1,55)	(156)	1	056	056	. 056

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tanks in Inches.

96 Inches in Diameter	Depth Inches	97 Inches in Diameter	96 Inches in Diameter	Depth Inches	97 Inches in Diameter
	481/2	15.995	6.128	24	6.163
15.668	48	15.785	5.770	23	5.803
15.248	47	15.365	5.416	22	5.450
14.828	46	14945	5.066	21	5.101
14.410	45	14.525	4.726	20	4.757
13.992	44	14.108	4.394	19	4.421
13.574	43	13.692	4.068	18	4.092
13.158	42	13.276	3.752	17	3.770
12.744	41	12.860	3444	16	3.455
12.336	40	12.446	3139	15	3.145
11930	39	12.033	2.838	14	2.844
11.524	38	11.622	2.546	13	2.554
11.119	37	11.214	2.260	12	2.273
10.716	36	10.807	1.990	11	2.001
10.315	35	10400	1.728	10	1.742
9.915	34	9.997	1.480	9	1.492
9.518	33	9599	1.240	8	1.254
9.124	32	9.204	1.016	7	1.032
8.736	31	8.810	. 804	6	. 821
8.352	30	8.420	. 620	5	. 625
7.974	29	8.035	. 447	4	. 448
7.600	28	7.654	. 292	3	. 293
7.230	27	7.274	. 160	2	. 160
6.862	26	6.897	. 057	1	. 057
6.494	25	6.526			

98 Inches in Diameter	Depth lnches	99 Inches in Diameter	98 Inches in Diameter	Depth Inches	99 Inches in Diameter
	4912	166.662	6.569	25	6.607
16.327	49^{\prime}	16.446	6.203	24	6.239
15.898	48	16.016	5.841	23	5.874
15.473	47	15587	5.484	22	5.514
15.049	46	15.159	5.131	21	5.160
14.626	45	14.732	4.786	20	4.814
14.205	44	14.305	4.449	19	4.472
13.784	43	13.880	4.116	18	4.138
13.363	42	13.458	3.792	17	3.811
12.944	41	13.036	3.472	16	3.941
12.527	40	12.615	3.160	15	3.181
12.111	39	12197	2.856	14	2.878
11.698	38	11.780	2565	13	2.583
11.287	37	11365	2.282	12	2.298
10.877	36	10.952	2.016	11	2.025
10.468	35	10.539	1.754	10	1.759
10.063	34	10.128	1.501	9	1.508
9.661	33	9.723	1.260	8	1.266
9.263	32	9.322	1.035	7	1.040
8.867	31	8.921	. 823	6	. 828
8.473	30	8526	. 628	5	. 633
8.085	29	8136	. 453	4	. 453
7.700	28	7.747	. 295	3	. 297
7.318	27	7.362	. 162	2	. 162
6.940	26	6982	. 058	1	. 058

HORIZONTAL TANKS-(Continued).
Multiply Capacity in Tables by Length of Tank in Inches.

100 Inches in Diameter	Depth Inches	101 Inches in Diameter	100 Inches in Diameter	Depth Inches	101 Inches in Diameter
	501 2	17.342	6.647	25	6.685
17.000	50	17.122	6274	24	6.311
16.565	49	16.683	5.908	23	5.942
16.132	48	16.247	5.546	22	5.579
15.699	47	15.812	5.190	21	5.221
15.267	46	15.377	4841	20	4.808
14.837	45	14.942	4.498	19	4.523
14.407	44	14.507	4.162	18	4.185
13.987	43	14073	3.833	17	3.855
13.551	42	13.642	3.511	16	3.531
13.125	41	13.213	3.198	15	3.215
12.700	40	12784	2.893	14	2.908
12.277	39	12.356	2.597	13	2.612
11.855	35	11.931	2.311	12	2.324
11.436	37	11508	2.035	11	2.041
11.020	36	11.000	1.769	10	1.779
10.605	35	10.672	1.516	9	1.524
10.194	34	10.257	1.274	8	1.282
9.785	33	9.846	1.040	7	1.053
9.379	32	9437	. 833	6	. 838
8.977	31	9.032	. 636	5	. 640
8.578	30	8.630	. 456	4	. 458
8.184	29	8.233	. 297	3	. 298
7. 793	28	7.840	. 162	2	. 162
7.407	27	7.450	. 058	1	. 158
7024	26	7.065			

102 Inches in Diameter	Depth Inches	103 Inches in Diameter	102 Inches in Diameter	Depth Inches	103 Inches in Diameter
	$511 / 2$	18.033	7.108	26	7.148
17687	51	17.811	6.722	25	6.764
17246	50	17.364	6340	24	6.387
16805	49	16.918	5.972	23	6.010
16.364	48	16.473	5.608	22	5.644
15924	47	16.030	5251	21	5.281
$\begin{array}{lll}15 & 185\end{array}$	46	15.587	4.895	20	4.924
150.17	45	15.144	4.549	19	4.576
14609	41	14.701	4.208	18	4.230
14172	43	14.259	3.877	17	3.896
13738	42	13.819	3.554	16	3508
138304	41	13.384	3.235	15	3.250
12871	40	12.950	2916	14	2.938
12410	39	12.516	2.622	13	2.639
12011	38	12.053	2.333	12	2.348
11597	37	11.655	2.056	11	2.069
11816.3	315	11.229	1.787	10	1.798
119713	35	10805	1.531	9	1.542
11) 38.5	3.	10386	2178	8	1.295
3 3 3 411 4	338	9.968	2.057	8	1.064
3 3 3 4 1947	32	9.556	. 854	6	. 844
41.50	30	9.147 8.738	. 642	5	. 646
8252	29	8.738	. 453	4	. 462
7881	29	8.831	. 300	3	. 301
$\div 167$	27	7.537	. .058	$\stackrel{2}{1}$.164 .059

HORIZONTAL TANKS—(Continued).
Multiply Capacity in Tables by Length of Tank in Inches.

104 Inches in Diameter	Depth Inches	105 Inches in Diameter	104 Inches in Diameter	Depth Inches	105 Inches in Diameter
	521自	18.742	7.190	26	7.229
18.387	52	18.513	6.804	25	6.841
17.936	51	18.057	6.423	24	6.457
17.485	50	17.603	6.046	23	6.075
17.035	49	17.150	5.671	22	5.704
16.587	48	16.697	5.308	21	5.336
16.140	47	16.245	4.950	20	4.978
15.693	46	15.794	4.599	19	4.626
15.247	45	15.343	4.255	18	4.277
14.802	44	14.893	3.920	17	3.938
14.357	43	14.447	3.588	16	3.608
13.912	42	14.002	3.267	15	3.285
13.470	41	13.558	2.955	14	2.971
13.032	40	13.116	2.653	13	2.667
12.597	39	12.675	2.361	12	2.373
12.164	38	12.237	2.080	11	2.090
11.732	37	11.802	1.809	10	1.814
11.297	36	11.371	1.548	9	1.556
10.872	35	10.910	1.300	8	1.308
10.450	34	10.511	1.068	7	1.074
10.029	33	10.088	. 850	6	. 853
9.610	32	9.666	. 649	5	. 652
9.198	31	9.249	. 467	4	. 469
8.789	30	8.837	. 302	3	. 304
8.382	29	8.430	. 164	2	. 165
7.978 7.582	28	8.025	. 059	1	. 059
7.582	27	7.623			

106 Inches in Diameter	Depth Inches	107 Inches in Diameter	106 Inches in Diameter	Depth Inches	107 Inches in Diameter
	531/2	19.463	7.668	27	7.710
19.101	53	19.230	7.272	26	7.312
18.639	52	18.766	6.877	25	6.919
18.180	51	18.303	6.491	24	6.526
17.723	50	17.841	6.111	23	6.14
17.266	49	17.381	5.733	22	5.767
16.810	48	16.922	5.366	21	5.395
16.354	47	16.463	5.005	20	5.029
15.898	46	16.004	4.648	19	4.673
15.444	45	15.545	4.300	18	4.323
14.991	44	15.087	3.960	17	3.980
14.539	43	14.629	3.626	16	3.643
14.089	42	14.176	3.302	15	3.320
13.642	41	13.724	2.988	14	3.001
13.196	40	13.275	2.680	13	2.696
12.752	39	12.828	2.384	12	2.398
12.310	38	12.384	2.101	11	2.110
11.869	37	11.943	1.824	10	1.834
11.434	. 36	11.503	1.564	9	1.571
11.005	35	11.069	1.314	8	1.320
10.576	34	10.635	1.077	7	1.084
10.150	33	10.205	. 858	6	. 862
9.725	32	9.779	. 655	5	. 6.58
9.303	31	9.354	. 470	4	. 473
8.888	30	8.937	. 306	3	. 306
8.474	29	8.523	. 166	2	167
8.069	28	8.116	. 059	1	060

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tank in Inches.

108 lnches in Diameter	Depth lnches	109 Inches in Diameter	108 Inches in Diameter	Depth Inches	109 Incies in Diameter
	54^{12}	20.198	7.756		7.796 7.391
19.828	$5{ }^{5}$	19.962	7. 6.953	26	7.391 6993
19.359	5.3	19.490	6.953 6.560	24	6.933 6.597
18 18 89 42	52	19.019 18.548	6. 6.176	23	(6. 209
18. 426	51	18.077	5.797	22	5.827
1: 496	49	17.607	5428	21	5453
$1^{7} .031$	48	17137	5.059	20	5084
16.567	47	16.670	4.996	19	4.720
16103	46	16.203	4.343	18	4.367
15.639	45	15737	4.000	17	4.022
15.178	44	15272	3.661	16	3.682
1\% 719	43	14510	3.335	15	3.353
14263	42	14.349	3.020	14	3. 032
13810	41	$13 \$ 90$	2.711	13	2.723
13359	40	13.435	2.409	12	- 422
12910	39	12.983	2. 121	11	2.131
12.464	38	12531	1.843	10	1.852
12.019	37	12.083	1.575	9	1.586
11576	36	11639	1.323	8	1.336
11135	35	11197	1.085	7	1.095
10 6isy	34	10758	. 868	6	871
10.265	33	10322	.662	5	. 665
95.36	32	9842	476		477
9 +12	31	9.463	309	3	. 309
9542	30	9.037	169	2	170
$85 i 6$	29	¢ 619	060	1	. 060
8 165	28	8. 207			

114 Inches in Diameter	Depth Inches	111 Inches in Diameter	110 Inches in Diameter	Depth Inches	111 Inches in Diameter
	$55^{1} 2$	20946	8244	28	8.290
2050	55	20.703	7.83 .3	27	7.878
20) 09.3	54	20.219	7.428	26	7.468
19 filf	53	19.738	7.026	25	7.063
19110	52	19.259	6.628	24	6.665
15 664	51	18.781	6.238	2.3	6.274
1s 148	50	18.305	5.856	22	5.889
17.715	49	17.829	5.481	21	5.509
11214	45	17.353	5.116	20	5.136
11, 37	47	16.575	4.754	19	4.771
11.361	46	16.403	4.396	18	4.413
1.5	45	15.332	4.046	17	4.059
1.531 .4	44	15461	3. 704	16	3.718
11.415	13	11992	3.366	15	3.385
14111	12	14.523	3.036	14	3.062
$1: 3 \mathrm{ys} 3$	41	11.064	2.724	13	2.748
1.3 : 24	119	13.589	2423	12	2.445
1.3 10.15	39	13.130	2.140	11	1.153
1210104	in	12.626	1. 864	10	1.870
12 lain	37	12.223	1. 599	+ 9	1.600
118	310	11.72\%	1.347	8	1.347
11 2is	3.5	11323	1102	7	1.106
1110	31	10.80	. 876	6	1.880
11.35	3.3	11) 433	611	5	. 671
4, 1,11	32	100003	. 79	4	. 480
9) 8111	311	45.50	. 310	${ }_{3}^{+}$. 312
	311	9 1.11	. 170	2	. 170
5 then	29	, 714	060	1	. 061

HORIZONTAL TANKS-(Continued).

Multiply Capacity in Tables by Length of Tank in Inches.

112 Inches .n Diameter	Depth Inches	113 Inches in Diameter	112 Inches in Diameter	Depth Inches	113 Inches in Diameter
	$56{ }^{1}{ }^{2}$	21807	8.338	23	8.383
21.325	56	21.461	7.919	27	7.962
20.837	55	2.971	7.507	26	7. 548
20.349	54	2J. 481	7101	25	7.139
19.863	53	19991	6 703	24	6.736
19.379	52	19504	6307	23	6.339
18.897	51	19.017	5.916	22	5948
18.415	50	18.530	5.536	21	5.560
17.936	49	18.044	5163	23	5.188
17.457	48	17.559	4.795	19	4817
16.980	47	17.074	4.434	18	4.457
16.503	46	16.590	4.081	17	4.101
16.028	45	16.112	3.738	16	3.755
15.554	44	15.638	3.402	15	3.419
15.080	43	15.165	3.077	14	3.091
14.610	42	14.692	2.764	13	2.772
14.141	41	14.221	2.457	12	2.468
13.672	40	13.751	2.162	11	2.171
13.210	39	13.283	1.881	10	1.887
12.751	38	12.821	1.610	9	1.615
12.292	37	12.361	1.350	8	1.357
11.838	36	11.904	1.111	7	1.113
11.388	35	11.449	. 885	6	. 886
10.942	34	10.999	. 674	5	. 675
10.497	3:3	10.552	. 482	4	. 486
10.055	32	10.108	. 314	3	. 317
9.620	31	9.669	. 171	2	. 171
9.188	30	9235	. 061	1	. 062
8761	29	8805			

114 Inches in Diameter	Depth Inches	115 Inches in Diameter	114 Inches in Diameter	Depth Inches	115 Inches in Diameter
	571/2	22.482	8.856	29	8. 898
22.093	57	22.230	8.425	28	8. 163
21.599	56	21.733	8.003	27	8.040
21.105	55	21.236	7.583	26	7.622
20.611	54	20.740	7.176	25	7.213
20.117	53	20.244	6.770	24	6806
19.624	52	19.748	6.369	23	6.401
19.132	51	19252	5.978	22	6.007
18.643	50	18.750	5592	21	5.619
18.155	49	18.262	5212	20	5238
17.668	48	17.772	4.841	19	4865
17.181	47	17.282	4.476	18	4.499
16.695	46	16.795	4120	17	4. 139
16.212	45	16.309	3.71	16	3786
15.731	44	15.823	3.436	15	3.451
15.253	43	15.341	3.109	14	3121
14.775	42	14.862	2.786	13	2. 799
14.299	41	14.383	2.481	12	2. 491
13.828	40	13.906	2183	11	2192
13360	39	13431	I. 898	10	1.907
12.893	38	12964	1624	9	1632
12.428	37	12.497	1. 365	8	1.371
11.967	36	12.033	1.120	7	1. 126
11.511	35	11572	. 890	6	. 805
11.057	34	11.116	. 681	5	. 684
10.609	33	10.664	. 488	+	. 490
10.165	32	10.217	. 317	3	. 319
9.722	31	9.771	. 172	2	173
9.288	30	9.331	062	1	.062

HORIZONTAL TANKE-(Continued).
IIultiply Capacity in. Tables by Length of Tank in Inches.

HORIZONTAL TANKS-(Concluded).
Multiply Capacity in Tables by Length of Tank in Inches.

120 Inches in Diameter	Depth Inches	12) Inches in Diameter	Depth Inches	120 Inches in Diameter	Depth Inches
24.479	60	14.237	40	5.363	20
23.954	59	13.797	39	4.981	19
23.434	58	13314	33	4.608	18
22.914	57	12.833	37	4.240	17
22.395	56	12.354	36	3.882	16
21.877	55	11.881	35	3.538	15
21.359	54	11.411	34	3.198	14
20.842	53	10.944	33	2.866	13
20.328	52	10.483	32	2.537	12
19.815	51	10.024	31	2.239	11
19.305	50	9.567	30	1.949	10
18.795	49	9.124	29	1.668	9
18.287	48	8.683	28	1.396	8
17.780	47	8.244	27	1.151	7
17.273	46	7.816	26	. 915	6
16.767	45	7.393	25	. 699	5
16.265	44	6.976	24	. 501	4
15.768	43	6.561	23	. 326	3
15.273	42	6.153	22	. 178	2
14.779	41	5.751	21	. 063	1

GAUGLíg TABLE FOR EACH ONE－QUARTER INCH IN DEPTH FOR TANK AS DETAILED ON PETROLEUM IRON WORKS COMPANY DRAWING No．2050－A

8050－Gallon 78－Inch Diameter Tank With Steam Coils for Type ＂A＂and＂A－1＂Cars

三	$\begin{aligned} & \Xi \\ & \tilde{y} \\ & \tilde{0} \end{aligned}$	تِّ	$\stackrel{\text { 年 }}{=}$	芴	$\frac{\sqrt[n]{x}}{=}$	苞	$\frac{x}{=}$	烒	会		$\stackrel{\text { en }}{\stackrel{\text { ® }}{=}}$	－	冎	艺	\％
0	\ldots		731	2	2037	3	3565	\pm	2241	5	6583	6	7695	7	8085
4			754	1	2067	1／4	3598	1／4	5174	14	6611	14	3713	1	8088
12			777	12	2097	1／2	3631	$1 / 2$	5206	$1 / 2$	66.38	$1 / 2$	7731	$1 / 2$	8091
2			S01	$3{ }^{3}$	2128	3	3664	$3{ }_{4}$	5238	$3 / 4$	6665	$3 / 4$	7549	$3 / 4$	8094
	20		825	1	2159	1	3697	1	5269	1	6692		7766	1	8097
1	28		849	$1 / 4$	2189	$1 / 4$	3730	$1 / 4$	5301	1.	6719	1／4	7783	1／4	8100
$1{ }_{2}^{4}$	37		875	1	2220	1.2	3765	1.2	5332	1.2	6746	12	7800	1／2	8103
32	46		S98	3_{4}	2251	3	3796	3.4	5364	3	6772	3	7816	$3 / 4$	8106
－	55		823	2	2252	2	3830	2	5395	2	6798	2	7832	2	8109
	65	14	948	$1 / 4$	2313	14	3863	14	5427	$1 / 4$	6824	14	7847	$1 / 4$	8112
12	76	12	973	1／2	2344	1.	3896	$1 / 2$	5458	$1 / 2$	6850	$1 / 2$	7862	1／2	8115
3	89	3	998	3	2375	3	3929	${ }_{3}{ }_{4}$	5489	3	6876	$3 / 4$	7877	3／4	8118
3	100	3	1024	3	2406	3	3963	3	5520	3	6901	3	7891	3	8120
14	113	1.	1050	$1 / 4$	2437	1	3997	1.	5551	14	6927	1.4	7905	1／4	8123
2	1215	$!2$	1076	12	2468	$1{ }_{2}^{1}$	4030	12	5582	12	6952	1.	7918	1／2	8126
3	139	$3{ }_{4}$	1102	${ }_{4}$	2499	${ }_{4}{ }_{4}$	4063	${ }^{3}$	5613	${ }_{4}$	6977	3	7931	$3 / 4$	8129
1	15：3	，	1128	4	25.31	4	4096	4	5644	4	7002	＋	7943	4	8132
1	167	11	1154	${ }_{4}$	2562	12	4130	14	5675	${ }_{1}^{1}$	3027	$1{ }^{1}$	7954	$1 / 4$	8235
12	191	12	1180	12	2594	12	4163	12	5703	12	705 ？	12	7965	1／2	8138
${ }^{2}$	196	3	1207	${ }^{3}$	2625	3	4196	3	5737	${ }^{3}$	7077	${ }^{3}$	7976	3.1	8141
．	211	5	1231	5	26.5	5	4229	5	5767	5	7101	5	7986	5	8144
1	296	1	1261	1	2688	$1 / 4$	4262	14	5799	1，4	7125	1／4	7995	1／4	8147
12	241	12	1288	$\frac{1}{2}$	2720	12	4295	12	5829	$1 / 2$	3149	12	8003	1／2	8150
32	2.56	3	1315	${ }^{3}$	2752	3.	4328	${ }_{4}$	5859	${ }^{3}$	7173	$3 / 4$	8010	3	8153
，	272	－	1343	6	2784	6	4361	6	5889	6	7197	6	8015	6	8155
$1 /$	25%	${ }_{1} 1$	1370	14	2816	14	4394	$1 / 4$	5919	1	$\because 21$	1／4	8018	1／4	
12	305	12	1398	$1 / 2$	2818	12	427	$\frac{1}{2}$	5949	12	724	12	8021	3／2	
3	$31!$	3.	1426	${ }^{3}$	2580	${ }_{3}{ }_{4}$	4460	${ }_{3}$	5979	3	7267	3	8024	3	
＇	335		1154	7	2912	7	4493	i	6009	7	7290	－	8027	7	
1	353	1	1482	1／4	2414	1	4526	14	6039	1.	7313		8030	$1 / 4$	
F	314	$\frac{1}{3}$	1510	12	2976	${ }^{1} 2$	4559	12	6069	12	7335	12	8033	$1 / 2$	
－${ }^{3}$	3sis	31	1535	3	300.9	3_{4}	4592	${ }_{3}{ }_{4}$	6098	3 3	7357	3.	8036	3／4	
近	1113	，	1567	8	30.11	8	4624	8	6127	8	7379	8	8035	8	
\％	121	11	15%	1	3073	1	4657	${ }_{1}{ }_{4}$	6157	1	7401	${ }^{1}$	8042	3_{4}^{4}	
$\bigcirc 1_{2}$	13！	1.2	16.4	12	3106	12	4690	12	6186	12	7422	16	8045	$1 / 2$	
$\stackrel{3}{ }{ }^{3}$	157	3	$16,5]$	3	3138	${ }^{3} 4$	4723	${ }_{3}^{3}$	6215	${ }_{3}{ }_{4}$	7443	3	8048	3	
三－1	176	4	16992	9	3171	9	475.5	9	6244	9	7484	9	8050	9	
皆：	1945	1.	1711	1 ＇	3203	$1 / 4$	478.8	${ }_{1}{ }_{4}$	6273	$1 /$	7485	14	8053	1／4	
	516	12	17\％	12	3236	12	4820	$1{ }_{2}$	6302	1	7506	12	8056	1／2	
	5386	18 111 10	1769	${ }_{3}^{4}$	3269	${ }^{3}$	485.3	${ }_{4}$	6351	3	7526	3	8059	3	
$\begin{aligned} & 211 \\ & \hline \end{aligned}$		111	1799	10	33302	10	4585	11	（i359	10	7546	10	8062	10	
	817	$1 /$	1．5．6	1.	333：3	${ }^{1}$	4918	1	6388	1	7566	1，	8065	1	
	S14	1_{3}	18.7	${ }^{1}$	33357	$\frac{1}{3}$	4950	$\frac{1}{3}=$	6416	1.2	7585	12	8068	$1 / 2$	
－ 11	1.111	31	1487	${ }^{3} 1$	3400	${ }^{3}$	1982	${ }^{1}$	6441	3	7604	$3 / 4$	8071	3.4	
c．	\％，17	1	1917	11	3133	11	5014	11	6172	11	7623	11	8074	11	
1	1，1， 1,1	1	1！17	1	3156	1	501.16	1.4	6500	14	7641	$1 / 4$	8077	1／4	
	1，41	3^{1}	$14 \pi 7$	3^{1}	3！9？	1.2	3078	12	$65^{2} 28$	1	7659	1／2	8080	1／2	
	311	3.	2017	3.	3in32	3.	5110	3	6555	3	7677	3	8083	37	

DO． 1 ME 244 gallons $=11.60$ gallons to one inch．
Furnished by Pennsylvania Tank Car Company，Sharon，Pa．

Outage Table for Standard 6,000 Gallons Capacity Tank Car.

Table for gauging tanks by the inch. Capacity in U. S. gallons of a $721 / 2^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head, 222 gallons. Length of tank, bend line to bend line, $27^{\prime} 81 / 4^{\prime \prime}$.

Inches	Gallons	Inches	Gallons	Inches	Gallon
1	16.62	26	1964.88	50	4482.36
2	46.94	27	2067.94	51	4580.68
3	85.99	28	2171.75	52	4677.68
4	131.84	29	2276.29	53	4773.38
5	183.44	30	2381.39	54	4868.52
6	240.16	31	2487.05	55	4959.99
7	301.30	32	2593.30	56	5050.69
8	366.47	33	2699.71	57	5139.43
9	435.23	34	2806.40	58	5226.07
10	507.47	35	2913.24	59	5310.56
11	582.80	36	3020.24	60	5392.65
12	660.96	361/4	3047.00	61	5472.12
13	741.73	37	3127.26	62	5548.86
14	825.15	38	3234.18	63	5622.65
15	910.70	39	3340.95	64	5693.60
16	998.43	40	3447.50	65	5760.64
17	1088.20	41	3553.82	66	5823.88
18	1179.82	42	3659.78	67	5882.82
19	1273.13	43	3765.16	68	5937.01
20	1368.11	44	3869.98	69	5985.74
21	1464.53	45	3974.15	70	6028.37
22	1562.11	46	4077.59	71	6063.41
23	1661.17	47	4180.20	72	6088.36
24	1761.46	48	4281.91	$721 / 2$	6094.00
25	1862.72	49	4382.69		

Dome capacity is 9.914 gallons per inch.

TANK CAR OUTAGE TABLES

Calculated From 0.25 Inch to 5 Inches Out of Shell, at $60^{\circ} \mathrm{F}$. Capacity of Car in Gallens at $60^{\circ} \mathrm{F}$.

Inches	$\begin{gathered} 4,231 \\ \text { Gallons } \end{gathered}$	$\begin{aligned} & \text { 6,000 } \\ & \text { Gallons } \end{aligned}$	$\begin{gathered} \text { 6,641 } \\ \text { Gallons } \end{gathered}$	$\begin{aligned} & 7,000 \\ & \text { Gallons } \end{aligned}$	$\begin{gathered} 8,087 \\ \text { Gallons } \end{gathered}$	$\begin{gathered} 8,102 \\ \text { Gallons } \end{gathered}$	$\begin{gathered} 8,505 \\ \text { Gallons } \end{gathered}$	$10,000$ Gallons
0.25	3	4	4	4	5	5	5	6
0.5	6	8	8	8	10	10	10	12
0.75	9	13	13	13	16	16	17	19
1.	13	18	18	18	23	23	25	26
1.25	18	24	25	25	31	31	33	36
1.5	23	31	33	33	39	39	45	46
175	29	38	41	41	48	48	56	58
2.	35	46	49	50	58	58	67	71
2.25	41	54	58	59	69	69	79	84
2.5	48	63	68	69	80	80	92	98
2.75	55	72	78	79	90	91	105	111
3.	63	82	88	90	103	103	119	125
3.25	71	92	99	101	115	115	133	140
3.5	79	103	110	113	128	128	148	156
3.75	87	114	123	125	141	141	163	171
4.	96	125	134	137	154	154	178	186
425	105	136	146	150	167	167	194	203
4.5	114	148	159	163	181	181	211	220
4.75	123	160	172	176	195	195	288	237
5.	133	173	186	190	210	210	244	25.1

TANK CAR OUTAGE TABLES (Continued)

Outage Table for Standard 6,648 Gallons Capacity Car Tank. Table for gauging tanks by the inch. Capacity in U. S. Gallons of a $74^{1 / 4}{ }^{\prime \prime}$ diameter tank. $29^{\prime} 1 / 2^{\prime \prime}$ long. Official dome capacity, including dish in head, 87.9 gallons.

Inches	Gallons	Inches	Gallons	Inches	Gallons
1	17.35	26	2076.40	51	- 4883.33
2	47.28	27	2186.05	52	4985.74
3	87.99	28	2296.28	53	5089.50
4	138.36	29	2407.45	54	5190.91
5	195.85	30	2519.24	55	5290.73
6	259.34	31	2631.44	56	5389.40
7	325.55	32	2744.43	57	5485.82
8	394.82	33	2858.07	58	5578.96
9	467.81	34	2972.14	59	5670.70
10	544.49	35	3087.13	60	5759.71
11	623.44	36	3202.94	61	5847.58
12	795.18	37	3319.12	62	5933.25
13	790.00	38	3436.02	63	6014.58
14	877.85	39	3552.30	64	6091.75
15	967.02	40	3668.07	65	6165.89
16	1059.55	41	3782.59	66	6236.98
17	1154.35	42	3895.89	67	6306.66
18	1250.30	43	4008.87	68	6373.20
19	1348.07	44	4120.85	69	6436.49
20	1447.30	45	4232.14	70	6494.53
21	1548.89	46	4343.13	71	6544.95
22	1651.71	47	4453.32	72	6587.26
23	1756.36	48	4562.90	73	6622.29
24	1861.57	49	4670.73	$741 / 4$	6643.02
25	1968.52	50	4777.60	74	6647.69
	Capacit	6 gall	per inc		

Outage Table for Standard 7,191 Gallons Capacity Car Tank.
Table for gauging tanks by the inch. Capacity in U. S. gallons of an $83^{\prime \prime}$ diameter tank. Length of tank 25^{\prime}.

1 nches	Gallons	Inches	Gallons	Inches	Gallons
1	16.50	29	2219.32	57	5242.01
2	44.86	30	2322.74	58	5341.46
3	79.72	31	2427.17	59	5439.84
4	120.47	32	2532.58	60	5537.19
5	167.45	33	2638.98	61	5633.39
6	210.30	34	2746.36	62	5728.54
7	276.14	35	2854.66	63	5822.64
8	337.48	36	2963.76	64	5915.82
10	403.4 .1	37	3073.76	65	6007.92
111	474.27	38	3184.66	66	6098.91
12	550.22	39	3296.31	67	6188.90
$1: 3$	630.21 71219	40	3408.65	68	6277.35
11	795.5	41	3521.68	69	6364.33
15	881.37	43	3635.18	70	6450.11
16	963.07	44	3748.21	71	6533.50
17	1058.17	45	3860.56 3972	72	6615.38
18	1149.16	46	4083.15	74	6695.37 6772.35
19	12.11 .56	47	4193.17	75	6843.28
21	1333.68	48	4302.29	76	6909.26
22	1523.83	49 50	4410.59	77	6970.01
$2: 1$	162003	51	4517.97	78	7025.01
21	1717.38	52	4624.37	79	7073.85
25	1815.68	53	4834.78	81	
27	1915 19	54	4937.71	81	7145.76 7173
28	2015.49	55	5040.21	83	7191.00
2	211684	56	5141.59		

Dume capacity is 9.914 gallons per inch.

TANK CAR OUTAGE TABLES (Continued)

Outage Table for Standard 10,676 Gallons Capacity Car Tank.

Table for gauging tanks by the inch. Capacity in U. S. gallons of an $891 / 2^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head.

Inches	Gallons	Inches	Gallons	Inches	Galions
1	21.32	31	3282.20	61	7751.24
2	60.13	32	3427.51	62	7891.79
3	110.07	33	3573.91	63	8030.85
4	168.83	34	3720.04	64	8169.02
5	235.30	35	3868.20	65	8305.63
6	308.16	36	4017.80	66	8439.87
8	387.04	37	4166.71	67	8572.33
8	471.14	38	4315.69	68	8703.44
9	560.20	39	4466.30	69	8831.89
10	653.72	40	4617.59	70	8958.11
11	751.57	41	4769.17	71	9082.62
12	853.15	42	4920.99	72	9204.69
13	958.45	43	5072.96	73	9323.49
14	1067.06	44	5223.85	74	9439.58
15	1178.93	45	5376.24	75	9553.62
16	1294.34	46	5527.88	76	9663.93
17	1411.24	47	5679.31	77	9770.98
18	1531.95	48	5831.21	78	9874.42
19	1655.37	49	5982.91	79	9974.14
20	1780.97	50	6134.34	80	10069.89
21	1907.80	51	6285.29	81	10161.18
22	2037.89	52	6435.08	82	1024780
23	2170.01	53	6584.34	83	10329.37
24	2302.82	54	6733.59	84	10405.33
25	2438.48	55	6882.16	85	10475.05
26	2576.04	56	7029.31	86	10537.75
27	2714.82	57	7175.57	87	10592.43
28	2854.15	58	7321.43	88	10637.17
29	2995.93	59	7466.26	89	10668.70
30	3137.84	60	7609.40	$891 / 2$	10676.28

Dome capacity, 11.532 gallons per inch.
Outage Table for Standard $\mathbf{7 , 9 0 0}$ Gallons Capacity Tank Car.
Table for gauging tanks by the inch. Capacity in U. S. gallons of an $823 / 8^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head, 155.6 gallons. Length of tank $27^{\prime} 8^{\prime \prime}$.

Inches	Gallons	Inches	Gallons	Inches	Gallons
1	17.91	29	2483.84	56	5718.90
2	50.36	30	2600.79	57	5832.27
3	92.19	31	2718.82	58	5944.38
4	141.43	32	2837.52	59	6055.17
5	196.90	33	2956.90	60	6164.53
6	257.78	34	3076.85	61	6272.41
7	323.66	35	3197.29	62	6378.66
8	393.89	36	3318.29	63	6483.10
9	468.15	37	3439.58	64	6585.79
10	546.16	38	3561.20	65	6686.43
11	627.60	39	3683.09	66	6784.99
12	712.18	40	3805.00	67	6881.33
13	799.82	41	3927.12	68	6975.25
14	890.26	$41 \frac{3}{16}$	3950.00	69	7066.62
15	983.16	$42{ }^{10}$	4049.19	70	7155.32
16	1078.63	43	4171.20	71	7241.05
17	1176.38	44	4293.11	72	7323.69
18	1276.30	45	4414.89	73	7403.02
19	1378.19	46	4536.28	74	7478.73
20	1481.96	47	4657.37	75	7550.54
21	1587.57	48	4778.04	76	7618.05
22	1694.81	49	4898.23	77	7680.90
23	1803.62	50	5017.81	78	7738.46
24	1913.92	51	5136.76	79	7790.17
25	2025.51	52	5254.99	80	783489
26	2138.42	53	5372.40	81	7871.23
27	2252.48	54	5488.83	82	7895.80
28	2367.65	55	5604.40	$823 / 8$	7900.00

Dome capacity is 6.00 gallons per inch.

TANK CAR OUTAGE TABLES (Continued)

Outage Table for Standard 7,920 Gallons Capacity Tank Car.
Table for gauging tanks by the inch. Capacity in U. S. gallons of an $80^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head, 155.6 gallons. Length of tank 28^{\prime}.

Inches	Gallons	Inches	Gallons	Inches	Gallons
1	18.76	28	2470.39	55	7568.45
2	52.74	29	2591.10	56	5021.64
3	96.50	30	2712.71	57	6936.50
4	149.04	31	2835.18	58	0149.84
5	206.12	32	2958.36	59	6261.58
6	269.85	33	3082.19	60	6371.59
7	338.72	34	3206.53	61	6479.85
8	412.14	35	3331.42	62	6586.18
9	489.83	36	3456.61	63	6690.35
10	571.36	37	3582.21	64	6792.40
11	656.43	38	3708.01	65	6892.03
12	744.91	39	3833.96	66	6989.14
13	836.47	40	3960.00	67	7083.53
14	930,86	41	4086.04	68	7175.09
15	1027.97	42	4211.99	69	7263.57
16	1127.60	43	4337.79	70	7348.64
17	1229.65	44	4463.39	71	7430.17
18	1333.82	45	4588.58	72	7507.86
19	1440.15	46	4713.47	73	7581.28
20	1548.41	47	4837.81	74	7650.15
21	1658.42	48	4961.64	75	7713.88
22	1770.16	49	5084.82	76	7771.96
23	1883.50	50	5208.29	77	7823.50
24	1998.36	51	5328.90	78	7867.26
25	2114.53	52	5449.61	79	7901.24
26	2232.01	53	5569.36	80	7920.00
27	2350.64	54	5687.99		

Dome capacity 6.00 gallons per inch.
Outage Table for Standard 8,050 Gallons Capacity Car Tank.
Table for gauging tanks by the inch. Capacity in U. S. gallons of a $78^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head, 243 gallons. Length of tank, 31' $10 \frac{1 / 4{ }^{\prime}}{}{ }^{\prime \prime}$.

Inches	Gallons	Inches	Gallons	Inches	Gallons
,	23.18	27	2447.86	53	5799.53
2	54.59	28	2573.08	54	5920.70
3	100.65	29	2699.27	55	6040.30
4	15387	30	2826.66	56	6159.02
5	21571	31	2954.68	57	6275.09
6	282.54	32	3083.27	58	6389.68
7	355.29	33	3212.28	59	6503.05
8	431.29	34	3341.94	60	6615.04
9	51191	35	3472.16	61	6722.17
10	596311	36	3603.20	62	6826.81
11	681.52	37	3735.00	63	6929.01
12	775.14	38	3867.38	64	7030.15
13	870.74	39	4000.38	65	7129.00
11	${ }^{9} 96859$	40	4133.38	66	7223.34
15	106973	41	426576	67	7314.39
17	1172.98 1278.57	12	4397.56	68	7402.87
18	1385 ${ }^{1270}$	4.3 44	4528.60	69	7487.97
$1: 1$	1497.69	45	4788.48	71	764688
20	1611 Of	46	4917.49	72	7721.31
21	1725, 65	47	5046.08	73	7789.58
22	18.1172	48	5174.10	74	7854.54
21	19650 2080 204 184	49	5301.49	75	7911.72
2	220121	${ }_{51}$	5427.68 5552.90	76	7962.83 8000
26	2323 3:3	52	5676.83	78	8033.10

Dome capacity is 11.532 gallons per inch.

TANK CAR OUTAGE TABLES (Continued)

Outage Table for Cars Nos. EIRX-3101 to 3150, inclusive, and 3180 to 3198, inclusive, of Empire Refineries, Inc. Table for gauging 8,060 gallons capacity Car Tank by the half inch. Capacity in U. S. gallons of a $77^{\prime \prime}$ diameter tank. Length of tank $31^{\prime} 8^{\prime \prime}$. Official dome capacity, including dish head, 2745 gallons.

Inches	Gallons	Inches	Gallons	Inches	Gallons
1/2	8	1/2	2456	1/2	5854
1	20	3	2520	5	5916
$1 / 2$	38	121	2584	$1 / 2$	5978
2	57	4	2648	6	6039
1/2	80	1/2	2712	1/2	6100
3	104	,	2776		6160
$1 / 2$	131	1/2	2840	12	6220
4	159	6	2905	8	6280
1/2	189	1/2	2970	1/2	6339
$5^{1 / 2}$	221	7	3036		6397
1/2	255	1/2	3102	1/2	6455
6	290	8	3168	10^{2}	6513
$1 / 2$	326	162	3234	$11 / 2$	6570
7	364	9	3300	11	6627
$8^{1 / 2}$	403	$10^{1 / 2}$	3366	$5^{1 / 2}$	6684
8	443	10^{1}	3432	5 feet	6739
1/2	484	$1 / 2$	3498	$1 / 2$	6794
9	526	11	3564	1	6848
1/2	569	$1 / 2$	3630	1/2	6902
10	614	3 feet	3696	2	6955
$1 / 2$	659	1/2	3762	1/2	7008
11	706	1	3829	3	7060
12	753	12	3896	${ }^{1} 2$	7111
1 foot	801	2	3963	4	7161
1/2	849	1/2	4030 (': car)	1/2	7211
1	899	3	4097	5	7259
${ }^{1 / 2}$	949	$1 / 2$	4164	$6^{1 / 2}$	7307
2	1000	4	4231	6	7354
1/2	1052	1发	4298	7^{16}	7401
3	1105	5	4364	7	7446
1/2	1158	$6^{1 / 2}$	4430	$8^{1 / 2}$	7491
4	1212	6	4496	8	7534
1/2	1266	1/2	4562	$9^{1 / 2}$	7576
5	1321	7	4628		7617
1/2	1376	1/2	4694	$10^{\text {3/2 }}$	7657
6	1433	8	4760	10	7696
$8^{1 / 2}$	1490	$9^{1 / 2}$	4826	$1^{1 / 2}$	7734
7	1547	9	4892	11	7770
1/2	1605	10	4958	$1 / 2$	7805
8	1663	10^{-}	5024	6 feet	7839
${ }^{16}$	1721	11,	5090	12	7871
9	1780	11	5155	1	7901
$10^{1 / 2}$	1840	1^{12}	5220	2^{112}	7929
10	1900	4 feet	5284	2	7956
$11^{1 / 2}$	1960	1/2	5476 5348	1/1\%	8022 7980
$111 / 2$	2021	$1^{1 / 2}$	5348 5412	$3^{1 / 2}$	7980 8003
2 feet	2144	2	5540	$41 / 2$	8040
$1 / 2$	2206	$1 / 2$	5604	5^{1}	8052
1	2268	3	5667	5	8060
1/2	2330	$41 / 2$	5730

Dome Capacity is 11.5 gallons per inch.

TANK CAR OUTAGE TABLES (Continued)

Outage Table for Cars Nos. EIRX-2000 to 2016, inclusive, and 2018 to 2034, inclusive, of Empire Pefineries, Inc. Table for gauging 8090 gallons capacity car tank by the half inch. Capacity in U. S. gallons of an $83^{\prime \prime}$ diameter tank. Length of tank $28^{\prime} 2^{\prime \prime}$. Official dome capacity, including dish head, 158 gallons.

Inches	Gallons	Inches	Gallons	Inches	Gallons
		4	2397	8	5809
12	7	1/2	2456	1/2	5866
$1{ }^{-}$	18	5	2516		5923
12	33	$1 / 2$	2576	$1 / 2$	5980
2	51	6	2636	10	6037
12	70	16	2696	1/2	6094
3	92	7	2756	11	6150
12	117	$8^{1 / 2}$	2816	$1 / 2$	6206
4	143		2876		
1/2	170	1自	2936	5 feet	6262
5	198	9	2997	1/2	6318
$1 / 2$	229	1/2	3058	,	6374
6	261	10^{1}	3119	1/2	6428
${ }^{1} 2$	29.4	16	3180		6482
7	326	11	3241	1/2	6533
${ }_{8}{ }^{2}$	363	12	3302	3	6588
8	399			1/2	6641
${ }^{1 / 2}$	435	3 feet	3363	4	6693
9	473	1/2	3424	112	6745
$10^{1} \cdot$	513	1	3486	5	6797
10^{-}	55.1	1/2	3548	1/2	6848
11^{13}	596	2	3610	6	6898
11	636	$1 / 2$	3672	$r^{1 / 2}$	6948
1_{1}^{1} foot	678	3	3734	7	6998
1 foot	721	${ }^{1}$	3796	$8^{1 / 2}$	7046
1^{2}	803	1.	3858	8	7094
${ }_{1}{ }_{2}$	854	5^{2}	3982	$9^{1 / 2}$	7189
2	900	${ }_{6}^{1} 2$	4045 (1/2 car)	12	7235
3^{12}	917		4108	10	7280
${ }^{3}{ }^{1}$	995 1048	12	4170	$11^{1 / 2}$	7324
1	1091	12	4294	11	
$5^{1} 2$	1141	$8{ }^{-2}$	4356	$1 / 2$	7411
	1191	12	4418		
6^{12}	1241	9	4480	6 1/2	7495
6_{12}^{12}	1292	$10^{1 / 2}$	4542	$1 / 2$	7537
7^{2}	1396	10	4604 4666	$2^{1 / 2}$	7578
$8^{1} 2$	1148	$11^{1 / 2}$	4666 4727		7617
8	1501	1/2	4788	3	7655
9^{12}	155.1		4788	1/2	7691
${ }_{112}$	1667 1661	4 fret	4849	$4^{2 / 2}$	7762
11^{2}	1715	$1^{1 / 2}$	4910	1/2	7796
$11^{1} 2$	1771	1.	4971 5032		7829
11.	1827	$2{ }^{2}$	5032 5093	$6^{1 / 2}$	7861
12	1883	4, $1 / 2$	5154	$61 / 2$	7892 7920
		3	5214		7947
2 frat	1939	${ }^{16}$	5274	1/2	7973
	1995	${ }_{1}{ }_{1}$	5334	8	7998
12	20.5	5^{12}	5394	$9^{1 / 2}$	8020
., ${ }^{1}$	2109	${ }_{16}$	5454		8039
2	2166			$10^{1 / 2}$	8057
3^{12}	2223	${ }_{7} 1$	5574 5634	10	8072 8083
3	2989	7^{-}	5693	$11^{1 / 2}$	8083 8090

Dome Capacity, 6.582 gallons per inch.

TANK CAR OUTAGE TABLES (Concluded).

Outage Table for Standard 10,050 Gallons Capacity Car Tank.
Table for gauging tanks by the inch. Capacity in U. S. gallons of an $871 / 2^{\prime \prime}$ diameter tank (with stean coils). Official dome capacity, including dish in head, 326 gallons. Length of tank $31^{\prime} 6 \frac{1}{4} \mathbf{t}^{\prime \prime}$.

| Inches | Gallons | | lnches | Gallons | Inches |
| :---: | ---: | :---: | :---: | :---: | ---: | Gallons

Outage Table for Standard $\mathbf{1 0 , 0 5 0}$ Gallons Capacity Car Tank.

 Table for gauging tanks by the inch. Capacity in U. S. gallons of an $871 / 2^{\prime \prime}$ diameter tank. Official dome capacity, including dish in head, 326 gallons. Lengeth of tank, $31^{\prime} 61 / 4^{\prime \prime}$.| Inches | Gallons | Inches | Gallons | Inches | Gallons |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20.02 | 31 | 3174.20 | 61 | 7477.20 |
| 2 | 55.90 | 32 | 3313.20 | 62 | 7611.94 |
| 3 | 102.60 | 33 | 3453.61 | 63 | 7744.09 |
| 4 | 160.73 | 34 | 3594.91 | 64 | 7874.63 |
| 5 | 225.73 | 35 | 3737.11 | 65 | 8003.41 |
| 6 | 300.02 | 36 | 3880.26 | 66 | 8129.54 |
| 7 | 379.20 | 37 | 4024.67 | 67 | 8253.57 |
| 8 | 461.47 | 38 | 4170.06 | 68 | 8375.93 |
| 9 | 548.31 | 39 | 4315.62 | 69 | 8495.40 |
| 10 | 637.56 | 40 | 4461.47 | 70 | 8613.25 |
| 11 | 729.72 | 41 | 4608.08 | 71 | 8728.02 |
| 12 | 826.80 | 42 | 4754.74 | 72 | 8839.73 |
| 13 | 929.21 | 43 | 4901.77 | 73 | 8948.39 |
| 14 | 1034.44 | 44 | 5048.84 | 74 | 9056.22 |
| 15 | 1141.50 | 45 | 5196.28 | 75 | 9158.44 |
| 16 | 1252.09 | 46 | 5348.35 | 76 | 9257.51 |
| 17 | 1366.70 | 47 | 5489.99 | 77 | 9353.18 |
| 18 | 1483.62 | 48 | 5636.23 | 78 | 9445.58 |
| 19 | 1602.46 | 49 | 5782.39 | 79 | 9534.30 |
| 20 | 1723.04 | 50 | 5927.98 | 80 | 9619.34 |
| 21 | 1846.79 | 51 | 6072.86 | 81 | 9697.76 |
| 22 | 1973.75 | 52 | 6217.57 | 82 | 9774.15 |
| 23 | 2101.74 | 53 | 6360.64 | 83 | 9842.25 |
| 24 | 2230.82 | 54 | 6503.51 | 84 | 9904.97 |
| 25 | 2361.19 | 55 | 6645.66 | 85 | 9959.75 |
| 26 | 2492.21 | 56 | 6787.43 | 86 | 10005.59 |
| 27 | 2626.10 | 57 | 6928.32 | 87 | 10039.52 |
| 28 | 2762.08 | 58 | 7068.31 | $871 / 2$ | 10052.99 |
| 29 | 2898.32 | 59 | 7205.36 | | |
| 30 | 3035.76 | 60 | 7342.17 | | |
| Do | apacity | gallo | er incl | | |

CYLINDRICAL VESSELS, TANKS AND CISTERNS.

Liameter in Ft. and Ins., Area in Sa. Ft. and Capacity in U. S. Gals. for 1 Ft . in Depth.
(1 gallon=231 cubic inches $=1$ cubic foot $/ 7.4805=0.13368$ cubic foot.)

GAUGING TABLE FOR STANDARD 50-GALLON OIL BARREL.

Depth of Fluid, Inches	Laying on Side, Gallons	Standing on End, Gallons
1	0.27.	1.35
2	1.15	2.74
3	. 2.64 4.20
4.	. 4.50 5.72
5.	... 6.63 7.29
6.	8.93	8.91
7	.11.50	10.59
8	14.16	. 12.31
9.	16.90.	14.08
10.	19.70.	. . 15.90
11.	22.56	17.76
12	25.49	19.65
13	28.42	21.58
14.	. 31.28	23.53
15.	. 34.08	. 25.49
16	. 36.82	27.45
17	. 39.48	.29.40
18	. 42.00	. 31.33
19	. 44.35	. 33.22
20.	. 46.48	. 35.08
21.	. 48.34	36.90
22	49.83.	. 38.67
23.	. 50.71 ..	. 40.39
24.	. 50.98.	. 42.07
25.		43.69
26.		. 45.26
27		. 46.78
28.		48.24
29.		. 49.63
30.		50.98

CHEMICAL CONSTITUTION OF PETROLEUM.

Petroleum is composed of carbon and hydrogen in chemical combination known as hydrocarbons. In conjunction with the carbon and hydrogen there frequently is oxygen, nitrogen and sulphur in much smaller amounts.

In crude oils the amount of carbon varies from 80 to 89%, the hydrogen from 10 to 15%, oxvgen from 00 to 5.0%, nitrogen from 0.0 to 1.8%, and sulphur from .01 to 5.0%.

Typical ultimate analyses of petroleum products are as follows:

	Carbon	Hydrogen	Sulphur	Nitrogen	Oxygen
Pennsylvania Crude	86.06%	13.88%	0.06%	0.00%	0.00%
Texas Crude......	85.05	12.30	1.75	0.70	0.00
California Crude	84.00	12.70	0.75	1.70	1.20
Mexican Crude	83.70	10.20	4.15		
Oklahoma Crude.	85.70	13.11	0.40	0.30	
Kansas Crude (Towanda)	84.15	13.00	1.90	0.45	
Kansas Residuum.	85.51	11.88	0.71	0.32	0.63
Healdton (Oklahoma) Crude	85.00	12.90	0.76		
Kansas Air Blown Residuum	84.37	10.39	0.42	0.21	4.61
Byerlite Pitch	87.61	9.97	0.55	0.29	1.58
Grahamite. .	87.20	7.50	2.00	0.20	
Trinidad Asphalt	82.60	10.50	6.50	0.50	
Commercial Gasoline	84.27	15.73	0.00	0.00	0.00
Kerosene. .	84.74	15.26	0.01	0.00	0.00
Lubricating Oil (Paraffin)	85.13	14.87	0.01		
Lubricating Oil (Naphthene)	87.49	12.51	0.01		
Benzol....	92.24	7.76	0.00	0.00	0.00

Paraffin ($\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$) hydrocarbons largely compose the light or more volatile constituents of all petroleum. They are "saturated" hydrocarbons and have a very low ratio of specific gravity to distilling temperature, are not acted upon by concentrated sulphuric acid or by fuming sulphuric acid (oleum), are not nitrated by nitric acid and are extremely resistant to all chemical reactions. The chief differences in petroleum are in the heavy constituents, the heavy hydrocarbons of th paraffin series being found chiefly in Pennsylvania and some MidContinent oils.

Naphthenes $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right)$, ring or cyclic compounds, are less common hydrocarbons in lighter portions of petroleum, but are commonly found as heary hydrocarbons of petroleun. They have a higher ratio of specific gravity to distilling temperature than the paraffin compounds, are resistant to the action of sulphuric acid and some types may be distinguished by the "formolit" reaction.* Oils containing light naphthenes are found in Russia and Louisiana. All heavy oils contain naphthenes.
*Holde-Examination of Hydrocarbons.
$\mathrm{C}_{n} \mathrm{I}_{2 n}$ (NAPHTHENES) POLYMETHYLENE SERIES.
Boiling
Formula
Cyelopropane
(yclobutane
("yctopentanco
(${ }^{2}$ "olohexane
Cycloheptame
Mrthyl Cyrlopentane.
limethyl reyopentane
Mothyl Clyclohexane
Dimethyl Clyclohexane
'Trimethy'l Cyclohexine.
$\mathrm{C}_{3} \mathrm{H}_{\mathrm{f}}$ $\mathrm{C}_{4} \mathrm{H}_{8}$ $\mathrm{C}_{5} \mathrm{H}_{10}$ $\mathrm{C}_{6} \mathrm{H}_{12}$ $\mathrm{C}_{7} \mathrm{H}_{14}$ $\mathrm{C}_{6} \mathrm{H}_{12}$ $\mathrm{C}_{7} \mathrm{H}_{14}$ $\mathrm{C}_{7} \mathrm{H}_{14}$ $\mathrm{C}_{4} \mathrm{H}_{16}$ $\mathrm{C}_{9} \mathrm{H}_{18}$

Temperature
$-35^{\circ} \mathrm{C}=-31^{\circ} \mathrm{F}$
$+12^{\circ} \mathrm{C}=54^{\circ} \mathrm{F}$
$49^{\circ} \mathrm{C}=120^{\circ} \mathrm{F}$
$81^{\circ} \mathrm{C}=178^{\circ} \mathrm{F}$
$117^{\circ} \mathrm{C}=243^{\circ} \mathrm{F}$
$72^{\circ} \mathrm{C}=162^{\circ} \mathrm{F}$
$91^{\circ} \mathrm{C}=136^{\circ} \mathrm{F}$
$98^{\circ} \mathrm{C}=208^{\circ} \mathrm{F}$
$118^{\circ} \mathrm{C}=244^{\circ} \mathrm{F}$
$198^{\circ} \mathrm{C}=388^{\circ} \mathrm{F}$

Gravity
$.709=67.5^{\circ} \mathrm{Be}^{\prime}$ $.769=52.1^{\circ} \mathrm{Be}^{\prime}$ $.799=45.2^{\circ} \mathrm{Be}^{\prime}$ $.809=43.1^{\circ} \mathrm{Be}^{\prime}$ $.766=52.8^{\circ} \mathrm{Be}^{\prime}$ $.778=50.0^{\circ} \mathrm{Be}^{\prime}$ $.778=50.0^{\circ} \mathrm{Be}^{\prime}$ $.781=49.3^{\circ} \mathrm{Be}^{\prime}$ $.787=47.9^{\circ} \mathrm{Be}^{\prime}$

Aromatic or Benzene Hydrocarbons ($\mathrm{Cn}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-6}$) exist to some extent in certain California petroleums and have a very high ratio of specific gravity to distilling temperature. Gasoline made from the California petroleum is heavier than light gasoline with the same end point made from Mid-Continent petroleum. The aromatic compounds are acted upon by nitric acid forming nitro products. They are formed from paraffin and naphthene hydrocarbons by pyrogenic decomposition at temperatures above $1000^{\circ} \mathrm{F}$. The production of aromatic compornds from petroleum has not been commercially satisfactory on account of incomplete conversion and difficulty of freeing from paraffin hydrocarbons.

Olefines or Ethylenes ($\mathrm{CnH}_{2 n}$) are "unsaturated" hydrocarbons, rarely if ever existing naturally in crude oil, but commonly resulting from its exposure to high temperatures. These compounds contain less hydrogen and more carbon than paraffin hydrocarbons and are capable of taking in more hydrogen. They are removed from aromatic compounds, paraffin compounds and naphthene compounds by the action of concentrated sulphuric acid in the usual process of refining gasoline. These hydrocarbons give gasoline, to a large extent, its disagreeable odor before refining. Their combination with sulphur gives a more intense odor. Each of these groups of hydrocarbons is supposed to exist in a complete series, represented by the general formula given. The paraffin or methane series of "saturated" hydrocarbons has been fairly well worked out and is given in the table on page 186.

According to Hofer, the following olefines have been isolated from "North American" petroleum:

If the residue contains much wax, the crude is known as paraffin base oil, but if naphthenes or similar hydrocarbons predominate, it is an "asphalt" base oil. Practically the "asphalt" is determined by the solubility of the solid hydrocarbons in pentane and by the gravity and physical character of the residue. (See pages 501-2.)

Among the light hydrocarbons of petroleum, either existing naturally or pyrogenically prodeced, the relation of the specific gravity to the distilling temperature affords a simple and practical method of estimating the amount of olefin, paraffin and aromatic compounds. This relation is set forth in the curves on pages 232 and 236.

The value of crude oil is not measured by its ultimate analysis or by its "base" so much as by the amount of volatile constituents which it contains. The amount of volatile constituents obtained from various crude oils is shown on pages 179 to 190 .

PARAFFIN HYDROCARBONS IN PETROLEUM.

GASEOUS HYDROCARBONS (Natural Gas)						
	Baume'	Sp. Gr. Liquid		Melting	Boiling	Molecular
Name	Gravity	$15.5{ }^{\circ} \mathrm{C}$	Formula	Point	Point	Weight
Methane			C H_{4}	$-184.0{ }^{\circ} \mathrm{C}$	-165.	16.03
Ethane	194	0.432	$\mathrm{C}_{2} \mathrm{H}_{6}$	-171.4	- 93.0	30.05
Propane.	142	0.525	$\mathrm{C}_{3} \mathrm{H}_{4}$	-195.0	- 45.0	44.07
Butane.	109	0.585	$\mathrm{C}_{4} \mathrm{H}_{10}$	-135.0	+ 1.0	58.08

"GASOLINE" HYDROCARBONS

Pentane	92.2	0.630	$\mathrm{C}_{5} \mathrm{H}_{12}$		36.3	72.10
Hexane	78.9	0.670	$\mathrm{C}_{6} \mathrm{H}_{14}$		69.0	86.12
Heptane.	70.9	0.697	$\mathrm{C}_{7} \mathrm{H}_{16}$		98.4	100.13
Octane	65.0	0.718	$\mathrm{C}_{8} \mathrm{H}_{18}$		125.5	114.15
Nonane	59.2	0.740	$\mathrm{C}_{9} \mathrm{H}_{20}$	-51.0	150.0	128.16
Decane.	56.7	0.750	$\mathrm{C}_{10} \mathrm{H}_{22}$	- 31.0	173.0	142.18
Undecane	54.2	0.760	$\mathrm{C}_{11} \mathrm{H}_{24}$	- 26.0	195.0	156.20

HEAVY LIQUID HYDROCARBONS (Kerosene)

Duodecane	51.8	0.770	$\mathrm{C}_{12} \mathrm{H}_{26}$		12.0	214.0	70.22
Tridecane.	46.8	0.792	$\mathrm{C}_{13} \mathrm{H}_{28}$	-	6.0	234.0	184.24
Tetradecane.	45.0	0.800	$\mathrm{C}_{14} \mathrm{H}_{30}$	+	5.0	252.0	198.25
Pentadecane	43.5	0.807	$\mathrm{C}_{15} \mathrm{H}_{32}$		10.0	270.0	212.26
Hexadecane.	41.8	0.815	$\mathrm{C}_{16} \mathrm{H}_{34}$		28.0	287.0	226.27
Heptadecane	40.3	0.822	$\mathrm{C}_{17} \mathrm{H}_{36}$		22.0	295.0	240.28
Octadecane.	38.6	0.830	$\mathrm{C}_{18} \mathrm{H}_{38}$		28.0	317.0	254.30

HEAVY SOLID HYDROCARBONS

				(vacuo)	
Eicosane. 37.2	0.837	$\mathrm{C}_{20} \mathrm{H}_{42}$	37.0	117.5	282.34
Tricosane....... 36.5	0.841	$\mathrm{C}_{23} \mathrm{H}_{48}$	48.0	138.0	325.38
Tetracosane		$\mathrm{C}_{24} \mathrm{H}_{50}$	51.0	145.5	338.39
Pentacosane		$\mathrm{C}_{25} \mathrm{H}_{52}$	54.0	152.5	352.41
Hexacosane		$\mathrm{C}_{26} \mathrm{H}_{54}$	56.0	160.0	366.43
Octocosane		$\mathrm{C}_{27} \mathrm{H}_{56}$	59.4	167.0	370.45
Nonocosane		$\mathrm{C}_{29} \mathrm{H}_{55}$	60.0	173.5	384.47
Conocosane		$\mathrm{C}_{29} \mathrm{H}_{60}$	63.0	179.0	398.48
Ceryl........		$\mathrm{C}_{30} \mathrm{H}_{\text {fi2 }}$	65.6	186.0	422.49
Duotriacontane		$\mathrm{C}_{31} \mathrm{H}_{64}$	68.0	193.5	436.52
Tetratriacontane		$\mathrm{C}_{32} \mathrm{H}_{\text {fin }}$	70.0	201.0	450.53
Pentatriacontane 35 -		$\mathrm{C}_{34} \mathrm{H}_{70}$	72.0	215.0	478.56
Pentatriacontane 35.4	0.846	$\mathrm{C}_{35} \mathrm{H}_{72}$	75.0	222.0	492.58

There is no natural petroleum composed exclusively of the paraffin series of hydrocarbons, even Pennsylvania and Garber, Oklahoma, crude nils having members of other series. The main body of the light petroleum is made up of paraffin hydrocarbons and the heavy residues are largely marle up of maphthenos.

(Typical samples, analyses by Kansas City Testing Laboratory)					
			Automobile	Naphtha and	Fuel
	Specific	Baume ${ }^{\prime}$	Gasoline	Kerosene	Resi-
Source	Gravity	Gravity	\%/by Vol.	$\%$ \%y Vol.	
Arkansas-El Dorado	. 81	34.8	30.0%	20.0%	50.0%
California-Heavy	. 984	12.3	0.0	12.3	82.7
Santa Maria.	900	25.7	20.0	20.0	60.0
Kansas-Moran, Allen Co	871	30.7	15.0	17.5	67.5
Neodesha (Wilson Co.)	860	33.3	25.0	17.0	58.0
Paola	873	30.6	20.5	19.5	60.0
Peabody	860	33.3	20.0	20.0	60.0
Sallyards (Butler Co.)	835	38.0	30.0	22.5	47.5
Towanda (Butler Co.)	850	34.7	20.5	27.5	52.0
Kentucky	876	42.0	40.0	20.0	40.0
Wayne Co	835	37.7	28.0	21.0	51.0
Louisiana, Homer	832	38.6	30.0	25.0	45.0
Pine Island.	902	25.4	0.0	25.0	75.0
Mexico-Panuco	982	12.8	2.0	8.0	90.0
Tuxpan	935	19.8	15.0	15.0	70.0
Montana-Winnett.	777	50.6	55.0	40.0	5.0
Bozeman (Big Horn Co.)	942	18.7	2.5	17.5	80.0
Oklahoma-Beggs .	862	32.7	15.0	21.8	63.2
Billings	812	42.8	40.0	22.5	37.5
Bixby..	845	36.0	25.0	20.0	55.0
Cushing	823	40.1	35.0	15.0	50.0
Duncan.	857	33.7	20.0	22.5	57.5
Garber, Garfield Co.	780	49.5	55.0	15.8	29.2
Healdton.	920	22.1	8.5	17.5	74.0
Kingwood	. 829	39.2	30.0	20.0	50.0
Newkirk	. 822	40.3	32.5	24.0	43.5
Osage Co	. 836	37.7	25.0	20.0	55.0
Pennsylvania (light)	802	44.5	37.5	12.7	49.8
Russia.	874	30.2	15.0	20.0	65.0
South Dakota-Mule Creek	. 863	32.5	2.5	27.5	70.0
Texas-Beaumont	. 912	23.4	4.0	16.0	80.0
Breckenridge	. 811	42.0	35.0	25.0	40.0
Burkburnett.	824	40.1	41.0	20.0	39.0
Mexia.	842	36.6	5.0	50.0	45.0
Ranger	829	39.2	30.0	25.0	45.0
San Antonio	861	32.8	15.0	21.5	63.5
Wortham	800	45.5	37.5	35.0	27.5
West Virginia-Cabin Creek	788	48.0	36.0	24.0	40.0
Wyoming--Big Muddy . . .	860	33.0	10.0	25.0	65.0
Elk Basin	805	44.3	45.0	20.0	35.0
Ferris Dome.	831	38.8	30.0	20.0	50.0
Grass Creek	801	45.1	45.0	20.0	35.0
Hamilton Dome.	891	27.3	17.5	15.0	67.5
Lander Co.	909	24.0	13.0	13.0	74.0
Lance Creek	815	42.1	32.5	27.5	40.0
Lost Soldier	865	33.8	0.0	35.0	65.0
Maverick Springs	918	22.6	0.0	250	75.0
Pilot Butte..... .	836	37.7	20.0	35.0	45.0
Rock Creek	838	37.4	30.0	15.0	55.0
Salt Creek	838	37.3	25.0	20.0	55.0
Canada-Fort Norman.	833	38.0	30.0	32.0	38.0

SULPHUR, ASPHALT, CYLINDER STOCK AND GASOLINE IN IMPORTANT CRUDE PETROLEUMS.

The following tables give an index of the constitution of important cride petroleums.

The values are chiefly from the reporis of investigations of the Bureau of Mines. The item marked "carbon residue" refers to the carbon determined by the Conradson method on the residue from the distillation. It is an approximate measure of the amount of asphalt in the oil. Asphalt is a very broad term csually in practical testing comprising waxy material. Asphalt with good ductility and cementing properties is obtainable from the petroleums of high carbon content. Cylinder stock of good quality is obtainable from the oils of low carbon and low sulphur content.

Source of Crude	Gravity	$\begin{aligned} & \text { Gasoline } \\ & \text { to } 392^{\circ} \mathrm{F} \end{aligned}$		Carbon Residue	Sulphur
New York-					
Alleghany Co.	$.828=39.1^{\circ} \mathrm{Be}^{\prime}$	30.0	$=57.2^{\circ} \mathrm{Be}^{\prime}$	2.9\%	0.10\%
Pennsylvania-					
McKean Co	$.823=40.1^{\circ} \mathrm{Be}^{\prime}$	32.5	$=59.4^{\circ} \mathrm{Be}^{\prime}$	2.6	0.10
Venango Co	$.819=40.9^{\circ} \mathrm{Be}^{\prime}$	29.6	$=57.7^{\circ} \mathrm{Be}^{\prime}$	2.1	0.10
Venango Co	$.832=38.3^{\circ} \mathrm{Be}^{\prime}$	24.4	$=5.4 .0^{\circ} \mathrm{Be}^{\prime}$	2.0	0.08
Franklin..	$.863=32.2^{\circ} \mathrm{Be}^{\prime}$	9.0	$=39.9{ }^{\circ} \mathrm{Be}^{\prime}$	2.2	0.09
Alleghany and Washington Counties.	$.800=45.0^{\circ} \mathrm{Be}^{\prime}$	37.8	$=61.0^{\circ} \mathrm{Be}^{\prime}$	1.6	0.08
Green Co.	$.815=41.8^{\circ} \mathrm{Be}^{\prime}$	29.0	$=57.9^{\circ} \mathrm{Be}^{\prime}$	1.6	0.08
Composite	$.811=42.6^{\circ} \mathrm{Be}^{\prime}$	33.9	$=60.7^{\circ} \mathrm{Be}^{\prime}$	3.2	0.08
West Virginia -					
Maryland Pool	$.805=43.9^{\circ} \mathrm{Be}^{\prime}$	38.3	$=60.7^{\circ} \mathrm{Be}{ }^{\prime}$	2.1	0.28
Eureka Pool..	$.806=43.7^{\circ} \mathrm{Be}^{\prime}$	37.7	$=60.7^{\circ} \mathrm{Be}^{\prime}$	2.4	0.24
Cahin Creek	$.797=45.7^{\circ} \mathrm{Be}^{\prime}$	40.5	$=61.8^{\circ} \mathrm{Be}^{\prime}$	1.2	0.19
Kelly Creek	$.799=45.2{ }^{\circ} \mathrm{Be}^{\prime}$	39.6	$=61.5^{\circ} \mathrm{Be}{ }^{\prime}$		0.11
Washington Co	. $805=43.9^{\circ} \mathrm{Be}^{\prime}$	33.5	$=59.4^{\circ} \mathrm{Be}^{\prime}$	3.1	0.05
Corning... .	$.838=37.1^{\circ} \mathrm{Be}^{\prime}$	27.8	$=59.2{ }^{\circ} \mathrm{Be}^{\prime}$	7.4	0.10
North Lima	$.835=37.7^{\circ} \mathrm{Be}^{\prime}$	31.0	$=56.9^{\circ} \mathrm{Be}^{\prime}$	6.2	0.55
Oklahoma -					
Big Heart	. $8446=35.5^{\circ} \mathrm{Be}^{\prime}$	28.0	$=55.7^{\circ} \mathrm{Be}^{\prime}$	5.3	0.19
(${ }^{\text {cushing. }}$	$.828=39.1^{\circ} \mathrm{Be}^{\prime}$	37.5	$=58.4^{\circ} \mathrm{Be}^{\prime}$	6.8	0.12
Krntucky- 0.12					
Ross Creek	$.838=37.1^{\circ} \mathrm{Be}^{\prime}$	35.9	$=58.2{ }^{\circ} \mathrm{Be}^{\prime}$	8.4	0.12
Sow Creek.	$.866=31.7^{\circ} \mathrm{Be}^{\prime}$	19.7	$=51.6^{\circ} \mathrm{Be}^{\prime}$	6.5	0.13
Big Sinking	$.844=35.9^{\circ} \mathrm{Be}^{\prime}$	31.2	$=56.4^{\circ} \mathrm{Be}^{\prime}$	7.5	0.14
Compton Jool	$\begin{aligned} & .842 \\ & .869\end{aligned}=36.3^{\circ} \mathrm{Be}^{\prime}$	30.8	$=57.4{ }^{\circ} \mathrm{Be}^{\prime}$	5.3	0.23
Magland.	$.869=31.1$${ }^{\circ}{ }^{\circ} \mathrm{Be}{ }^{\prime}$	35.9	$=56.4^{\circ} \mathrm{Be}^{\prime}$	6.4	0.49
Hlinois...	$.902=25.2^{\circ} \mathrm{Be}^{\prime}$ $.863=32.2{ }^{\circ} \mathrm{Be}^{\prime}$	12.6	$=52.5^{\circ} \mathrm{Be}^{\prime}$	17.7	0.31
Indiana - 0.24					
Lima Ponl	$.846=35.5^{\circ} \mathrm{Be}^{\prime}$	26.0	$=55.9^{\circ} \mathrm{Be}^{\prime}$	6.0	0.48
("olorath - 0.48					
Floproner	$.880=29.1^{\circ} \mathrm{Be}^{\prime}$	8.9	$=54.7^{\circ} \mathrm{Be}{ }^{\prime}$	6.0	0.17
Rangely	$.819=40.9^{\circ} \mathrm{Be}^{\prime}$	34.6	$=57.2^{\circ} \mathrm{Be}^{\prime}$	2.6	0.06
K゙ansty - 0.6					
Aususta Sallyards	$.865=31.9^{\circ} \mathrm{Be}^{\prime}$	24.2	$=5.4 .0^{\circ} \mathrm{Be}^{\prime}$	10.2	0.41
Sunmet fu-ld	$.878=29.5^{\circ} \mathrm{Be}$	21.5	$=47.4^{\circ} \mathrm{Be}^{\prime}$	16.4	0.73
Muxiro - $21.5=47.4 \mathrm{Be}^{\circ} \mathrm{Be}$					
fanueo					
Tuxpan .	. $935=19.8{ }^{\circ} \mathrm{Be} \mathrm{e}^{\prime}$	11.0	$=51.0^{\circ} \mathrm{Be}$ $=60.0^{\circ} \mathrm{Be}^{\prime}$	$\begin{aligned} & 23.0 \\ & 19.0 \end{aligned}$	5.34

SULPHUR, ASPHALT, CYLINDER STOCK AND GASOLINE IN IMPORTANT CRUDE PETROLEUMS-(Continued).

Source of Crude	Gravity	$\begin{aligned} & \text { Gasoline } \\ & \text { to } 892^{\circ} \mathrm{F} \end{aligned}$		Carbon Residue	$\begin{aligned} & \text { Sul- } \\ & \text { P iur } \end{aligned}$
Montana-					
Winnett.	$.781=.49 .3^{\circ} 1 \mathrm{Be}^{\prime}$	63.2	$=57.4^{\circ} \mathrm{Be}^{\prime}$	trace	0.36
Wyoming -					
Hamilton Dome	$.903=25.0^{\circ} \mathrm{Be}^{\prime}$	17.6	$=57.7^{\circ} \mathrm{Be}^{\prime}$	19.0	2.09
Shannon	$.909=24.0^{\circ} \mathrm{Be}^{\prime}$	3.1	$=37.1^{\circ} \mathrm{Be}^{\prime}$	5.1	0.20
Newcastle	$.840=36.7^{\circ} \mathrm{Be}^{\prime}$	31.6	$=55.7^{\circ} \mathrm{Be}^{\prime}$	7.5	0.15
Salt Creek	$.841=36.5^{\circ} \mathrm{Be}^{\prime}$	29.3	$=56.7^{\circ} \mathrm{Re}^{\prime}$	6.1	0.18
Rock Creek	$.843=36.1^{\circ} \mathrm{Be}^{\prime}$	31.4	$=58.2^{\circ} \mathrm{Be}^{\prime}$	6.8	0.27
Lost Soldier	$.875=30.0^{\circ} \mathrm{Be}^{\prime}$	16.7	$=44.1{ }^{\circ} \mathrm{Be}^{\prime}$	6.5	0.11
Mule Creek	$.867=31.5^{\circ} \mathrm{Be}^{\prime}$	11.7	$=52.3^{\circ} \mathrm{Be}^{\prime}$	4.8	0.14
Big Muddy	$.863=32.2^{\circ} \mathrm{Be}^{\prime}$	22.2	$=53.7^{\circ} \mathrm{Be}^{\prime}$	6.0	0.17
Ferris.	$.842=36.3^{\circ} \mathrm{Be}^{\prime}$	31.1	$=57.4{ }^{\circ} \mathrm{Be}^{\prime}$	5.5	0.19
Warm Spring	$.987=11.8^{\circ} \mathrm{Be}^{\prime}$	5.4	$=49.9{ }^{\circ} \mathrm{Be}^{\prime}$	21.2	2.61
Lander. . .	$.913=23.33^{\circ} \mathrm{Be}^{\prime}$	11.0	$=55.4^{\circ} \mathrm{Be}{ }^{\prime}$	15.1	2.62
Dallas	$.914=23.2{ }^{\circ} \mathrm{Be}^{\prime}$	12.8	$=51.3{ }^{\circ} \mathrm{Be}^{\prime}$	18.9	2.42
Pilot Butte.	$.818=35.1^{\circ} \mathrm{Be}^{\prime}$	24.0	$=53.0^{\circ} \mathrm{Be}^{\prime}$	5.5	0.22
Maverick Springs.	$.922=21.8^{\circ} \mathrm{Be}^{\prime}$	8.6	$=53.0^{\circ} \mathrm{Be}^{\prime}$	17.9	2.46
Plunkett....	$.846=35.5^{\circ} \mathrm{Be}^{\prime}$	21.0	$=49.7^{\circ} \mathrm{Be}^{\prime}$	2.1	0.55
Greybull	$.803=44.3{ }^{\circ} \mathrm{Be}^{\prime}$	38.6	$=59.7^{\circ} \mathrm{Be}^{\prime}$	2.3	0.08
Grass Creek	$.809=43.1^{\circ} \mathrm{Be}^{\prime}$	42.6	$=58.9^{\circ} \mathrm{Be}^{\prime}$	4.6	0.14
Elk Basin	$.827=39.3^{\circ} \mathrm{Be}^{\prime}$	40.5	$=57.2{ }^{\circ} \mathrm{Be}^{\prime}$	5.3	0.14
Osage...	$.837=37.3^{\circ} \mathrm{Be}^{\prime}$	34.8	$=57.7^{\circ} \mathrm{Be}^{\prime}$	5.2	0.29
Lance Creek	$.823=40.1^{\circ} \mathrm{Be}^{\prime}$	33.5	$=55.7^{\circ} \mathrm{Be}^{\prime}$	2.0	0.18
Missouri-					
Kansas City.	$.874=30.2^{\circ} \mathrm{Be}^{\prime}$	16.0	$=52.0^{\circ} \mathrm{Be}^{\prime}$	4.3	0.45
Texas-					
Burkburnett	$.821=40.9^{\circ} \mathrm{Be}^{\prime}$	37.5	$=60.5^{\circ} \mathrm{Be}^{\prime}$	6.5	
Ranger.	$.829=39.2^{\circ} \mathrm{Be}^{\prime}$	30.0	$=57.4^{\circ} \mathrm{Be}^{\prime}$	2.2	0.10
Mexia.	$.842=36.6^{\circ} \mathrm{Be}^{\prime}$	12.0	$=53.2{ }^{\circ} \mathrm{Be}{ }^{\prime}$	2.4	0.23
Wortham (Currie)	$.800=45.5^{\circ} \mathrm{Be}^{\prime}$	32.0	$=60.8^{\circ} \mathrm{Be}^{\prime}$	1.8	0.08
Groesbeek.	$.839=37.2^{\circ} \mathrm{Be}^{\prime}$	17.5	$=56.6^{\circ} \mathrm{Be}^{\prime}$	3.5	0.30

COLOR OF CRUDE OILS.

	Gravity	Col
Cab	$48.0^{\circ} \mathrm{Be}^{\prime}$	8
Lander, Wyo	$43.4{ }^{\circ} \mathrm{Be}{ }^{\prime}$	100
Stevens Co., Tex	$42.0{ }^{\circ} \mathrm{Be}^{\prime}$	150
Grass Creek, Wyo	$45.1^{\circ} \mathrm{Be}^{\prime}$	570
Elk Basin, Wyo	$44.3{ }^{\circ} \mathrm{Be}^{\prime}$	670
Ranger, Tex	$39.2{ }^{\circ} \mathrm{Be}^{\prime}$	1,100
Lance Creek, Wyo	$42.1{ }^{\circ} \mathrm{Be}^{\prime}$	1,270
Bull Bayou, La	$38.0{ }^{\circ} \mathrm{Be}^{\prime}$	1.350
Winnett, Mon	$50.6{ }^{\circ} \mathrm{Be}^{\prime}$	1.350
Garber, Okla	$49.5{ }^{\circ} \mathrm{Be}^{\prime}$	1,670
Ferris Dome, Wyo	$38.8^{\circ} \mathrm{Be}^{\prime}$	2,250
Homer, La	$38.6{ }^{\circ} \mathrm{Be}^{\prime}$	3,020
Pilot Butte, W yo	$37.7^{\circ} \mathrm{Be}^{\prime}$	3,200
Caddo, La		3,900
Big Muddy, Wyo	$33.0{ }^{\circ} \mathrm{Be}^{\prime}$	4,745

Gravity	Color
$37.3^{\circ} \mathrm{Be}^{\prime}$	5,100
$33.8^{\circ} \mathrm{Be}^{\prime}$	5,100
$22.1^{\circ} \mathrm{Be}^{\prime}$	5,420
$37.4^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$	6,550
$32.5^{\circ} \mathrm{Be}^{\prime}$	6,730
$36.6^{\circ} \mathrm{Be}^{\prime}$	7,285
$40.1^{\circ} \mathrm{Be}^{\prime}$	9,000
$25.4^{\circ} \mathrm{Be}^{\prime}$	10,200
$29.7^{\circ} \mathrm{Be}^{\prime}$	13,000
$22.6^{\circ} \mathrm{Be}^{\prime}$	39,400
$27.3^{\circ} \mathrm{Be}^{\prime}$	47,750
$19.8^{\circ} \mathrm{Be}^{\prime} 68,000$	
$12.8^{\circ} \mathrm{Be}^{\prime} 156,000$	
$18.2^{\circ} \mathrm{Be}^{\prime} 51,000$	

Gravity Color
Salt Creek, Wyo $37.3^{\circ} \mathrm{Be}^{\prime} \quad 5,100$ Lost Soldier, Wyo...... $33.8^{\circ} \mathrm{Be}^{\prime} \quad 5,100$ Healdton, Okla $22.1^{\circ} \mathrm{Be}^{\prime} \quad 5,420$ Rock Creek, Wyo....... $37.4^{\circ} \mathrm{Be}^{\prime} \quad 6,550$ Edgemont, S. D......... $32.5^{\circ} \mathrm{Be}^{\prime}$ 6,730

Mexia, Tex..........	$36.6^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$	7,285
Burkburnett, Tex	.	$40.1^{\circ} \mathrm{Be}^{\prime}$
9,000		

Pine Island, La 29.4. ${ }^{\circ}{ }^{\circ} \mathrm{Be}^{\prime} \quad 13,000$
Maverick Springs, Wyo. $22.6^{\circ} \mathrm{Be}^{\prime} 39,400$
Hamilton Dome, Wyo . . $27.3^{\circ} \mathrm{Be}^{\prime} 47,750$
Tuxpan, Mexico $19.8^{\circ} \mathrm{Be}^{\prime} 68,000$
Panuco, Mexico
Soap Creek, Mont...... $18.2^{\circ} \mathrm{Be}^{\prime} 51,000$

See page 427 for method of determining color.

Regional Character of Crude Oils as Shown by the Gravity of the Fraction Distilling from 250° C. -275° C. (482° F. -527° F.).

Gravity

> Saybolt Viscosity at 100° F. (Vacuum Distilled

New York and
West Virginia
Eastern Ohio.
Western Ohio
Kentucky.
Indiana
Illinois.
Kansas
Oklahoma
Wyoming
California

PROPERTIES USEFUL IN THE DISTILLATION OF IMPORTANT CRUDE PETROLEUMS.

$\begin{aligned} & \text { SOURCE } \\ & \text { OF CRUDE } \end{aligned}$			$\begin{aligned} & \text { A } \\ & \dot{n} \\ & \dot{\Xi} \\ & \dot{\Xi} \end{aligned}$		$\begin{aligned} & \text { B } \\ & \text { N } \\ & \text { U } \\ & 80 \\ & 10 \end{aligned}$	$\begin{array}{r} 1 \\ \circ \\ 80 \\ \hline-0 \end{array}$						
		34	140°	212°	73.6	30.0	60.7°	46.5°	35.3	$462^{\circ} \mathrm{F}$	$35.6{ }^{\circ}$	50.0
Winn	7	50.6	180°	235°	68.9	65.0	$58.2{ }^{\circ}$	47.8°	66.2	$412^{\circ} \mathrm{F}$	$38.5{ }^{\circ}$	93.9
Homer, Louisiana	832	38.6	98°	194°	80.6	$30^{\circ} 0$	$63.4{ }^{\circ}$	50.2°	37.5	$473^{\circ} \mathrm{F}$	$41^{\circ}{ }^{1}$	44.8
Pine Island, I ouisia	902	25.4	365°	$471{ }^{\circ}$	37.2	2.0	39.0°	38.0°	0.0		$28.5{ }^{\circ}$	25
Sallyards, Kansas	836	37.8	84°	179°	78.7	31.3	$59.8{ }^{\circ}$	46.8°	37.8	$454^{\circ} \mathrm{F}$	$35.8{ }^{\circ}$	53.0
Cushing, Oklaho	824	40.2	120°	179°	75.0	37.5	$59.3{ }^{\circ}$	49.9°	41.2	$437^{\circ} \mathrm{F}$	37.0°	58.8
Moran, Kansas	877	29.7	180°	342°	56.4	13.3	$52.9{ }^{\circ}$	$44.5{ }^{\circ}$	2.5	$300^{\circ} \mathrm{F}$	$36.8{ }^{\circ}$	36.6
Garber, Oklahom	780	49.9	110°	165°	81.0	57.5	58.8°	$42.4{ }^{\circ}$	61.2	$425^{\circ} \mathrm{F}$	$34.0{ }^{\circ}$	75.0
Kingwood, Oklahom	829	39.2	140°	220°	68.8	30.5	$58.0{ }^{\circ}$	47.1°	30.5	$410^{\circ} \mathrm{F}$	$38.4{ }^{\circ}$	50.0
Billings, (Oklahom	812	42.8	116°	191°	76.9	42.0	59.7°	46.7°	47.5	$450^{\circ} \mathrm{F}$	36.9°	62.5
Bixhy, Oklahom	845	36.0	121°	213°	72.1	25.1	$58.0{ }^{\circ}$	46.6°	25.1	$410^{\circ} \mathrm{F}$	37.3°	45.0
Bristow, Oklahom	824	40.2	100°	$183{ }^{\circ}$	78.8	39.5	$50.2{ }^{\circ}$	$46.3{ }^{\circ}$	45.0	$455^{\circ} \mathrm{F}$	$35.4{ }^{\circ}$	62.5
Burkhurnett, Te	821	40.9	121°	197°	74.8	40.0	59.7°	$46.5{ }^{\circ}$	44.9	$437^{\circ} \mathrm{F}$	36.7°	62.4
Ranger, Texas	829	39.2	154°	239°	69.2	31.7	57.0°	$47.0{ }^{\circ}$	28.4	$385^{\circ} \mathrm{F}$	37.0°	58.0
Wortham, Texas	800	45.5	100°	237°	75.1	37.5	$59.4{ }^{\circ}$	$50.4{ }^{\circ}$	43.0	$448^{\circ} \mathrm{F}$	41.5°	71.0
Grorsbeck, Texas	839	37.2	130°	$293{ }^{\circ}$	62.9	20.0	$55.7{ }^{\circ}$	$49.9{ }^{\circ}$	13.5	$365^{\circ} \mathrm{F}$	39.0°	54.0
Mrexia, Texas	842	36.6	220°	314°	55.4	15.0	$52.5{ }^{\circ}$	$49.2{ }^{\circ}$			39.6°	50.0
Big Muddy, Wyo	860	33.0	165°	210°	61.8	20.8	$54.5{ }^{\circ}$	$45.0{ }^{\circ}$	14.5	$350^{\circ} \mathrm{F}$	36.0°	38.0
Osagre, Wyoming. .	819	41.3	110°	186°	75.1	33.0	58.0°	$52.2{ }^{\circ}$	33.0	$410^{\circ} \mathrm{F}$	36.6°	55.0
Bance Croek, Wyoming	815	42.1	170°	216°	70.1	33.0	$58.0{ }^{\circ}$	$46.8{ }^{\circ}$	33.0	$410^{\circ} \mathrm{F}$	$38.6{ }^{\circ}$	57.5
Salt C'reok, Wyoming	838	37.1	119°	218°	71.2	27.5	$57.3{ }^{\circ}$	45.7°	26.0	$392^{\circ} \mathrm{F}$	37.6°	51.2
(iraks C'rorek, Wyoming	801	45.1	110°	$178{ }^{\circ}$	74.2	44.0	59.1°	45.1°	47.5	$454^{\circ} \mathrm{F}$	$36.2{ }^{\circ}$	65.0
Filk Basin, Wyoming...	805	44.3	88°	170°	78.4	45.0	59.0°	$45.1{ }^{\circ}$	48.0	$390^{\circ} \mathrm{F}$	$36.0{ }^{\circ}$	65.0
Ferris Homre, Wyomin	831	38.8	94°	192°	75.7	28.5	$59.6{ }^{\circ}$	$46.2{ }^{\circ}$	32.5	$441^{\circ} \mathrm{F}$	$38.0{ }^{\circ}$	49.5
Lost Soldier, Wyoming	864	33.8	172°	282°	53. 5	18.7	$46.5{ }^{\circ}$	$39.4{ }^{\circ}$	0.0	441 F	$32.4{ }^{\circ}$	40.0
Thork Creek, Wyoming	838	37.4	96°	194°	76.6	28.7	58.50	$44.8{ }^{\circ}$	30.0	$426^{\circ} \mathrm{F}$	37.0°	46.0
lander, Wyoming. .	809	43.4	95°	187°	76.9	37.3	$58.5{ }^{\circ}$	$44.5{ }^{\circ}$	38.5	$420^{\circ} \mathrm{F}$	36.6°	60.0
${ }^{\text {Tuxpan, M }}$ I'nnueo, Mrico	934	20.0	135°	184°					14.4	$395^{\circ} \mathrm{F}$	36.0°	32.5
I'nnuco, Mexien	82	12.6			67.0	$\begin{array}{\|r\|r\|} 15.0 \\ 8.3 \end{array}$	$\left\lvert\, \begin{aligned} & 59.8 \\ & 49.8\end{aligned}\right.$	47.2	14.4 2.5	$395^{\circ} \mathrm{F}$	36.0°	32.5

Typical Refinery Practice.

There is much variation in the practice of petroleum distillation in different refineries. This depends to a large extent upon the character of the crude oil used, the market to which the refiner sells and the ability of the refiner as to knowledge and equipment.

The following outlines the progressive distillation and treatment of crude oil in a typical refinery: (See figures 23 and 24).

Crude Benzine (Gasoline and Naphtha) includes all of the light distillate which vaporizes up to $410^{\circ} \mathrm{F}$. In the ordinary Mid-Continent or Texas petroleum, $420^{\circ} \mathrm{F}$ indicates a gravity of the stream of distillate from the condenser in the receiving house of $46.5^{\circ} \mathrm{Be}^{\prime}$ to $47.0^{\circ} \mathrm{Be}^{\prime}$. The gravity of the total distillate at this point varies with different types of crude. In some crudes this will be as high as 64.0° gravity, in others as low as 50°. For example, Burkburnett crude distilled up to $410^{\circ} \mathrm{F}$ has a gravity of $59.7^{\circ} \mathrm{Be}^{\prime}$ of the total benzine and a stream gravity of $46.5^{\circ} \mathrm{Be}^{\prime}$; Bixby, Okla., crude benzine at $410^{\circ} \mathrm{F}$ has a gravity of $580^{\circ} \mathrm{Be}^{\prime}$ and a stream gravity of $46.7^{\circ} \mathrm{Be}^{\prime}$; Cushing, Okla., crude benzine at $410^{\circ} \mathrm{F}$ has a gravity of 59.7° and a stream gravity of 47.0° Be'; Billings, Okla., crude gives a gravity of $60^{\circ} \mathrm{Be}^{\prime}$ at $410^{\circ} \mathrm{F}$ and a stream gravity of $46.5^{\circ} \mathrm{Be}^{\prime}$; Ranger, Tex., crude oil gives a benzine gravity at $410^{\circ} \mathrm{F}$ of $56.6^{\circ} \mathrm{Be}^{\prime}$ and a stream gravity of $46.7^{\circ} \mathrm{Be}^{\prime}$. The gravity of crude benzine depends upon the initial boiling point of the crude, the relative proportion of the different paraffin constituents and the chemical series of hydrocarbons to which the crude belongs. (See page 236.)

The crude benzine is run off with direct fire under the still, though after a temperature of $220^{\circ} \mathrm{F}$ is reached some open steam may be put in. The steam decidedly sweetens the product and brings over the benzine at a lower temperature. In the use of steam, the distillation must be entirely governed by the gravity of the stream in the receiving house and not by temperatures. In cases where the crude is of good quality, it is not necessary to treat the benzine as it may merely be redistilled with steam coils. In many cases the refiner puts a good dephlegmator over on his crude still and makes a marketable gasoline without either treating it with acid or redistilling it with steam.

When a high sulphur or low grade petroleum is treated, the distillate is put into an agitator with sulphuric acid, the mixing being perfected by blowing air through the acid in the bottom of the agitator, thus contacting it with all portions of the benzine. The acid is drained out and the benzine washed with water. Caustic soda or "doctor" solution is added to neutralize the acid and the benzine is thoroughly washed to remove the last traces of caustic or sulfonates. The benzine is redistilled in a steam still to give a gasoline of 58 to 60 gravity and about 430 end point, this depending largely upon the perfection of the dephlegmator. The last portion of the distillate is naphtha if a gasoline of high Baume' is desired. High gravity crudes are blended with low gravity crudes to eliminate the naphtha fraction.

Kerosene or Water White Distillate comes over just after the crude benzine, with the gravity of the stream in the receiving house

Fif - 3 I luw shent for Complete fetroleum Refinery.
at about 37.0° and a vapor temperature of $572^{\circ} \mathrm{F}$. This will give a kerosene ordinarily of a 41° gravity, but this again varies greatly with the type of the oil. For example, a certain Wyoming crude oil under these conditions gives a 31.0° kerosene, whereas Cushing, Okla. and Bixby, Okla., crude oils give a 41.0° to 42.0° gravity kerosene. Pine Island cracked oil gives a $33-34^{\circ}$ Be' kerosene and Wortham, Tex., light crude gives a 46° Be' gravity kerosene. In distilling kerosene from the crude it is desirable to stop before there is discoloration from decomposition or cracking. Cracking may be very largely prevented and kerosene very greatly sweetened by using open steam throughout the entire distillation. The water white distillate or first run kerosene is now treated with acid and caustic in the agitator and exposed to heat, air and light in a shallow tank or bleacher in which all water is settled out. If the kerosene after treatment is not water white or has too high an end point, it may be redistilled with superheated open steam. The residue in the still may be mixed with the solar oil.

Solar Oil or Distillate Oil is taken out immediately following the kerosene, being a crude distillate not subjected to refining and sold for use in explosion engines, as a high grade special fucl oil or for cracking stock. The making of this product depends upon the market. It may be about a 36 gravity product or it may be combined with gas oil or straw oil.

Gas Oil is taken immediately following the distillate oil or kerosene and its distillation is continued until the residuum in the still has a gravity of 23 to $26^{\circ} \mathrm{Be}$. It is distinctly a destructive distillation and the yield depends largely upon the method and rate of firing. Gas oil is used in making gas and contains a considerable amount of olefins and cracked products, and is not refined except for special purposes. It is also used as cracking stock. By the Burton process or the Cross process, gas oil commercially yields 60 to 65 per cent of gasoline. If a gas oil fraction low in olefins (straw oil) is desired, it is necessary to distill using open steam and direct fire. Straight firing gives a more fluid residue on account of cracking.

Residuum or tar is sold as fuel oil or it may be used to produce lubricating oil. In the latter case, it may be put into tar or tower stills and run down to coke (see figure 25). If the crude oil contains no wax, then the lubricants may be made by vacuum, steam or gas distillation, and the distillate is only filtered through Fuller's earth for use.

Wax distillate is collected following the gas oil and furnishes the stock from which lubricating oils and wax are made. Wax distillate usually has a gravity of $30-32^{\circ} \mathrm{Be}^{\prime}$, viscosity $50-80$ at 100° F and a cold test of $55-100^{\circ} \mathrm{F}$. The amount from different crudes varies from none up to 35 per cent. About 10 per cent is a usual amount.

The wax distillate is cooled and the solidified wax pressed out at a low temperature under a high pressure. The wax-free oil, known as "pressed distillate" is then reduced in a still to the desired viscosity lubricating stock, When reducing, considerable steam is used in the distillation in order to prevent the oil from "cracking" or as stillmen frequently say, from "burning." Heavy benzine, gas oil

Fig. 24-Main Features of the Crude Oil Nistillation I'nit.
and light lubricating distillate are obtained as overhead products, the residue being the base for the heavy lubricating oil. The light lubricating distillate contains volatile products, which must be removed. This is performed by reducing as before with fire and steam to the viscosity desired.

The reduced lubricating stocks are further refined by treating and filtering. The oils are agitated, by means of air, with strong sulphuric acid in large agitators. It has been found that better results are obtained if the acid is added in small portions instead of adding the acid all at once. A small quantity, known as "water acid" usually one pound per barrel of oil treated, is added and agitated with the oil for a short time. The agitation is then discontinued and the acid sludge is permitted to settle, after which it is drawn off. Then about four pounds of new acid, known as the "first body acid" is agitated with the oil. The agitation is again stopped and the acid sludge drawn off. The larger portion of the acid, "second body acid" is then added. This quantity varies with the nature of the oil treated but is frequently 4 to 10 pounds per barrel of oil. This is then agitated an hour or more with the oil, after which a sufficient quantity of water is added to coagulate the asphaltic material in the oil. This operation is known as "coking." The acid sludge is drawn off as quickly as possible and the asphaltic material or "coke" permitted to settle. If the proper quantity of water is not added, the asphaltic material becomes finely divided and is difficult to separate from the oil. The oil which is still acid is pumped into another agitator where it is neutralized with caustic soda, a 5° Baume solution being used. After the acid has been neutralized, the caustic soda is permitted to settle and is drawn off. The oil is then freed of moisture by heating to about 120 to $140^{\circ} \mathrm{F}$ and then blowing with air until the oil is bright. During the neutralization, the oil sometimes becomes emulsified. The emulsion is often broken by heating or sometimes by heating and agitating with a demulsifying compound. The oil should be treated in such a manner that a minimum quantity of salts are formed during this process as these cause the finished oil to have a poor emulsion test. Th acid treatment the finished oil to have a poor emulsion test. The acid treatment meet color specifications. The oil is then filtered through Fuller's earth until the desired color is obtained. The filtering also improves the emulsion test. After filtering, the oil is ready for the market.

Refiners frequently manufacture two grades of lubricating oil, a light and a heavy oil. These oils generally have the following tests:

	Light Oil	Heavy Oil
Gravity	$250-32.0^{\circ} \mathrm{Be}$	20.0-27.0 ${ }^{\circ} \mathrm{Be}{ }^{\prime}$
Flash point	$300-400^{\circ} \mathrm{F}$	$375-425^{\circ} \mathrm{F}$
Fire test	$400-460^{\circ} \mathrm{F}$	460-500 ${ }^{\circ} \mathrm{F}$
Viscosity at $100^{\circ} \mathrm{F}$	50-150	200-400
Cold test	10-30 F	20-35 ${ }^{\circ} \mathrm{F}$
Color (N. P. A.)	2	3, dark red

I゙i天. 2 L Combination Pipe and Tower Still.

All lubricating oils should have a fair emulsion test anid a low carbon residue. Many purchasers of lubricating oils demand a light colored oil, but a good color does not necessarily signify a good lubricant.

Paraffin Wax is also obtained from the wax distillate cut. The wax distillate is cooled to about $5^{\circ} \mathrm{F}$ in chillers by means of a cold brine solution. The solidified mass is granclated and carried forward to the presses by a helicoid conveyor. The wax is then separated from the oil by foreing the cooled mass of oil and wax through filter presses under a high pressure, approximately 350 pounds per square inch. The crude wax remains upon the canvas filter and the oil drops into the pan below.

The crude wax known as "slack wax" is removed from the press and conveyed to a tank where it is melted. The slack wax contains a large percentage of oil, which must be removed. This is done by a process known as "sweating." The "sweaters" are large shallow pans which contain wire screens a few inches above the botton. Sufficient water is placed in the pan to cover the screen. The melted wax is then pumped on the water and permitted to solidify slowly. When solid, the water is drawn off at the bottom of the pan, the cake of wax being supported by the screen. The temperature of the sweater room is gradually increased by means of steam in closed steam coils.

The oil known as "foots oil" first separates from the wax followed by the low melting point or "intermediate wax." The wax from the sweater is known as "scale wax." The scale wax usually has a yellow color, which is removed by treating and filtering. The scale wax is melted and treated with a few pounds of 66° Baume' sulphuric acid, usually with 1 and 3 pounds in succession. The acid is drawn off and the remaining acid in the wax neutralized with 1 to 3° Baume' caustic soda. The alkali is settled from the wax, the temperature being maintained at about $140^{\circ} \mathrm{F}$ during the entire process. The melted wax is then filtered through Fuller's earth to the desired color. Wax has a specific gravity of about 09 , a melting point of 120 to $140^{\circ} \mathrm{F}$ and not more than 1 per cent of oil and moisture.

After the wax distillate has been removed from the crude oil, a fraction containing considerable amorphous wax, known as "wax tailings" distills over. The wax tailings are not passed through the condenser coils, but are permitted to pass directly from the vapor line to a small tank known as the "wax pot." They are of little value but may be used for cracking stock.

Crude oil which has a bright green color is distilled with considerable steam in order that a heavy oil may be obtained after the gas oil and a portion of the wax distillate have been removed. This product is known as Cylinder Stock. Cylinder stock should have a high flash and fire test; the color should be green to red, not brown nor black. If a brighter color is desired, the oil is treated and filtered.
Cylinder stock from Mid Continent crude oils usually has the following tests:

ty .. $19.0-23.0^{\circ} \mathrm{Be}^{\prime}$	
Flash point	$490-600^{\circ} \mathrm{F}$
Fire test	$575-700^{\circ} \mathrm{F}$
Cold test	40-70 ${ }^{\circ} \mathrm{F}$
Viscosity at $212^{\circ} \mathrm{F}$	130-250
Color	brown or green

When asphalt is desired the residue from the gasoline and kerosene may be distilled by blowing superheated steam through it until the desired consistency is reached. Asphalt base oils or cracked paraffin base oils are necessary to make first class asphalt. An outline of the methods used for producing asphalts and road oils is given on page 367 . Frequently, particularly for road oils, the stock remaining after cracking heavy gas oil is run down to a semi-solid or solid consistency. This gives a specially valuable road oil on account of its high asphalt content, good hardening or drying properties, low viscosity and excellent penetration.

For refining by cracking see pages 204 to 242.
For illustration of a refinery operation, see flow sheets on pages 23 and 222.

Color and Odor in Refined Petroleum.

Most distillates from petroleum contain sufficient foreign matter to give an undesirable odor or a yellowish to red color.

The odor in natural distillates is due ordinarily to sulphur compounds, characteristic of which is hydrogen sulphide. Gasoline or light hydrocarbons produced by cracking have a more or less offensive odor even though sulphur is not present in appreciable quantity. In a general way, color is present in proportion as the odor is more disagreeable. The color of petroleum products is thought to be partly due to nitrogen compounds. Light hydrocarbons produced by cracking have a higher color the larger the amount of nitrogen in the heavy oils cracked, as a general rule. Cracked products from paraffin hydrocarbons such as those from Oklahoma give a yellowish color in the distillate above $300^{\circ} \mathrm{F}$ though they may be colorless below $300^{\circ} \mathrm{F}$. California and Mexican cracked gasoline gives a red color, which is not noticeable immediately upon distilling, but becomes more intense as the gasoline is exposed to the action of the air. This coloring matter on standing largely settles out or is oxidised so that the redistilled gasoline may be free from color.

Kerosene, the first refined product of petroleum marketed on a large scale, was a yellow or dark red liquid. It was first produced from coal, and it was found in 1857 that "coal oil" could be deodorized and decolorized by treatment with sulphuric acid and this is the process that is in general use at the present time. $66^{\circ} \mathrm{Be}^{\prime}$ sulphuric acid is ordinarily used, as it reacts upon the unsaturated compounds, the sulphur compounds and the nitrogenous compounds in the oil by forming substances which dissolve largely in the sulphuric acid. The shrinkage of the oil treated may vary from almost nothing up to 10 per cent, depending upon the character of the oil being refined. In ordinary natural distillates, one pound of acid per barrel is commonly sufficient, but with cracked oil as much as 10 pounds of acid are often required. Even then the treatment is often not sufficiently severe and oleum or Nordhausen sulphuric acid, which contains an excess of sulphur trioxide is necessary. This is the case with California oil. After treatment with sulphuric acid, thorough washing and neutralization with caustic soda is always necessary. Other substances used for neutralizing the acid and acid sulfonates are soda ash, lime, silicate of soda and sodium plumbite.

Other chemicals may be quite successfully used in removing the odor of cracked gasoline, among these being sodium plumbite, copper oxide, manganese dioxide, potassium permangate, sodium chromate, aluminum chloride, chlorine and stannic chloride.

Dry hydrochloric acid gas (hydrogen chloride, HCl) and aluminum chloride are often highly effective in treating gasoline to remove the color.

The "bloom" or fluorescence of mineral oils is supposed to be due to the presence of asphalt-like or pitchy material in colloidal condition. This is overcome by the use of mono-nitro-naphthalene $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}$) in small amounts.

The most useful agent in the improvement of the color of refined petroleum oil is fuller's earth. Chemically, fuller's earth is a hydrous silicate of alumina, containing small quantities of other substances such as calcium, magnesia, and iron. Usually it contains about 15 per cent of combined water.

The ability of fuller's earth to remove color from oil is purely physical in character: Fuller's earth is not a definite chemical compound and many varieties of fuller's earth will give equally varying results. A sample of fuller's earth which is perfectly satisfactory for bleaching vegetable oils may not be satisfactory for the bleaching of mineral oils. Some fuller's earths have so marked an oxidizing action on vegetable and animal oils that they cause the oil to catch fire spontaneously when air is blown through the filter presses to remove the adhering oil. This type of fuller's earth is of course not satisfactory for vegetable oils but is quite satisfactory for mineral oils. This is why the Florida earth is almost exclusively used for bleaching mineral oils.

Fuller's earth for refining petroleum oil is usually bolted to definite sized grains and is placed on the market on the basis of 15-30 mesh, 30-60 mesh, 60-80 mesh, etc. The coarser sizes are in greatest demand for the reason that after treatment of the oils, they are easier to clarify. The finer sizes are more effective in bleaching but are more difficult to clarify. The fine material may be used for the decolorization of gasoline. Fuller's earth is ordinarily used but slightly for decolorizing kerosene, though it is customary to treat kerosene with a small proportion of fuller's earth to aid in removing the turbidity.

In its use, fuller's earth of the grade chosen is placed in a tall cylindrical percolator with closed, rounded ends. Through this column about 15 feet in height, the oil is forced under sufficient pressure to allow it to run freely from the bottom. The fuller's earth is classified according to the color which comes through. The percolator carries ordinarily from 18 to 25 tons at one time. The decolorization capacity of fuller's earth varies from 30 barrels for one ton of earth down to 7 barrels for one ton of earth on each treatment. Since fuller's earth may be used satisfactorily from 10 to 16 times, the amount of fuller's earth consumed varies from one ton of fuller's earth to 500 barrels of oil down to one ton of fuller's earth for 60 barrels of oil. In each treatnent, when the fuller's earth has be(come uscless for decolorizing, the percolator is blown out with air to remove as much of the oil as is possible and the residue is washed with naphtha to recover the oil adhering to the particles. The extractor is then blown out with steam to remove the residual matter. The naphtha is recovered by distillation and the residual oil is retreated in the following batches. The recovered fuller's earth is conveyed to a rotary kiln similar to those used in burning Portland cement. The earth is heated at a low red temperature, about $900^{\circ} \mathrm{F}$, to revivify the earth. About 3 per cent of the material is lost in burning. It is usual to burn the earth before using it for bleachmg., thus removing all of the moisture and water of hydration. Great care must be taken that the temperature of incipient fusion is not reached.

Fuller's earth is also highly effective in the treatment of off color naphthas, benzines and gasolines where fairly good results can often be had by treatment in the same manner as in the case of illuminating and lubricating oils. The best results can be had by distilling while agitating with fuller's earth. In this manner, yellow pressure distillates, such as are obtained in cracking, can be decolorized completely by one distillation if proper towers are used. While this makes water white gasoline it does not greatly improve the odor and the usual treatment is necessary for eliminating the odor. On the other hand, a very light dilute acid treatment may be used for improving the odor and this may be followed by the distillation with fuller's earth.

Good results may be had by the use of Bentonite* in the decolorization of petroleum. This material is a hydrous silicate of alumina or zeolite. The material used for examination was greenish white in its natural state with a greasy consistency and formed a perfect suspension with water. The samples used for test were dried at 300° F. After drying the material was white. The composition is as follows.

	Natural	Dried	Ignited
Moisture	. 35.33%	0.00	0.00
Combined water	4.61	7.13	0.00
Silica	. 38.70	59.85	64.45
Alumina	15.49	23.96	2580
Iron Oxide	2.18	3.38	3.64
Lime	0.83	1.29	1.39
Magnesia	1.81	2.80	3.01
Sulphur	0.71	1.07	1.15
Alkalies	0.34	0.52	0.56

By distilling pressure benzine of very dark color once with this material of 100 mesh fineness a water white gasoline is obtained.
*See Engineering and Mining Journal, Vol. 112, p. 819, November 19, 1921 and Vol. 112, Page 860, November 26, 1921.
*See A. Seidell J. Am. Chem. Soc., Vol. 40, p. 312, January, 1918.

Petroleum Emulsions and Their Dehydration.

Producers of petroleum are visually little concerned with the refining of petroleum except as they receive a price dependent upon the refining properties. Often particularly in the case of asphaltic or heavy waxy crude oils a large amount of water, brine and colloidal mineral matter is suspended in the oil. Oil in such condition may contain as much as 60 to 90 per cent of water. These emulsions are variously spoken of as B. S., sediment, roily oil, cut oil and tank bottoms. Much of this B. S. is often asphaltic and waxy matter precipitated by the mixing of crudes or the lowering of the temperature when the oil exudes from the sand due to the release of pressure. Most crude oil as it comes from the ground carries some water but anything less than 2 per cent is accepted by the pipe line companies or the refineries. The actual production of emulsions probably occurs when the oil and the water mix as they exude through the fine interstices in the sand.

The main emulsifying agents are probably hydrous silicates of alumina which though in very small quantities form colloids with water, asphaltenes or naphthenic acid which form colloidal solutions with the oil and colloidal oxide of iron which separates out from oil bearing brines. Any finely divided solid may, however, act as an emulsifying agent. The chief requirement for a stable emulsion is that the solid substance insoluble in one fluid and insoluble or slightly soluble in the other, separate on the surface of the globule constituting the internal phase. A common condition is that the liquid in which the emulsifying agent is less soluble constitutes the internal phase. For example, metal soaps such as calcium oleate and copper oleate are more soluble in oil than in water and the oil is therefore in the external phase. Even in these cases, however, the emulsion may separate into two layers of emulsion, in the lower of which, the water is in the external phase and the upper of which, the water is in the internal phase. If the crude oil as naturally existing in the oil sand and containing a small amount of naphthenic acid or similar substance while being forced by pressure through the interstices in the sand is brought into contact with water containing calcium bicarbonate, the corresponding calcium soap is precipitated and forms a film on the globules of water, thus tending to produce a more or less permanent emulsion.

There are two general methods of removing water from oil in which it is emulsified. One is by vaporization of the water, the other is by encouragement of the coalescence of the water globules. Vaporization is usually the method employed and merely consists in heating the oil in pipes to a temperature of approximately 300° F' and discharging it into a hot still or vaporizing container. The Water thus goes completely into the vapor phase and condenses in the coil together with any light oil. This condensate shows no tendency whatever to again emulsify, on account of the absence of cemulsifying agents and on account of the low viscosity of the oil.

The same effect may be accomplished without coils by heating the oil to a pressure of about 100 pounds and condensing the vapors
including all of the water vapor at the same pressure. This is the same method as that for producing synthetic gasoline by pressure distillation. At the ordinary refinery, the oil is heated to a temperature not exceeding $212^{\circ} \mathrm{F}$ and the water separates and is drawn out through the tar plug. This, however, can only be done in the case of the lighter crudes.

Various methods are used to induce coalescence of the water globules. In all of these, the oil is heated. Often by heating alone, there is sufficient settling out of the water to make the oil acceptable. A temperature of $160^{\circ} \mathrm{F}$ is commonly used. As an aid to this sedimentation, chemicals are frequently successfully employed. A common formula is the use of a sodium soap containing resin, wax and sodium silicate in small quantity. Sodium carbonate alone is occasionally sufficient. The most recent method of coalescing the water globules is the application of the centrifuge. This is used in many large producing plants in the Gulf Coast and Mid Continent region. The Cottrell Electric Precipitation method is claimed to be quite effective and it is stated that it requires a consumption of only about 100 watts of electricity per barrel of oil treated.

References on Dehydration of Petroleum.

C. V. Fornes, Petroleum Age, 10, 33, 1921.
E. E. Ayres, Petroleum World, 18, 406, 1921; 18,401.
J. H. Wiggins, National Pet. News, 13, No. 26, 59, 1921.
C. P. Buck, Oil and Gas Journal, 20, 80, 1921.

Chemical Nature of Cracking of Oil.

When crude oil is subjected to ordinary distillation by fire the light products naturally present in the oil are distilled off as such up to a temperature of about $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$ comprising both the gasoline and the kerosene. Above this temperature, the hydrocarbons undergo partial decomposition while distilling, with the result that some light products are produced and distilled along with the heavy products. Olefins as well as paraffin compounds of lower molecular weight than the oil being heated are formed. By vigorous firing the entire oil residue may be distilled, leaving only a variable amount of residual carbon as a product of decomposition. The amount of carbon and gas formed by this pyrogenic decomposition is greater with the asplaltic or naphthene petroleums than with the paraffin base petroleums. A typical heavy Mid Continent petroleum gives 4.5 per cent of carbon and 4.0 per cent of gas on distillation to coke or carbon. With pure paraffin base oils the amounts of carbon and gas formed are comparatively slight. Mex.can oils from Panuco give 20 per cent of coke.

This property of all heavy petroleums in decomposing into hydrocarbons of lower molecular weight by heating is generally known as cracking. The chemical reactions involved in cracking are not definite. It was originally supposed that cracking involved the formation of a large amount of olefins according to the following reaction: (Redwood)

$$
\mathrm{C}_{n} \mathrm{H}_{2 n+2} \quad=\mathrm{C}_{n-m} \mathrm{H}_{2 n-m)}+2
$$

$+\mathrm{CmH}_{2 \mathrm{~m}}$
a specific illustration of which would be $\mathrm{C}_{15} \mathrm{H}_{32}$
r'entadecane
$=\mathrm{C}_{8} \mathrm{H}_{18}$

+ Heptylene
$+\mathrm{C}_{7} \mathrm{H}_{14}$
$=$ Octane

This reaction does not, h:wever, accord with the facts, since gas and carbon are always formed in varying amount. A reaction which corresponds to the yields as experimentally found under certain conditions is the following:

$$
2 \mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2} \quad=2 \mathrm{C}_{\mathrm{n}-\mathrm{m}}^{2} \mathrm{~m}_{2}^{\prime \mathrm{n}-\mathrm{m})+2} \quad+\mathrm{mCH}_{4}+\mathrm{mC}
$$

or as a specific illustration

$$
\begin{array}{llll}
\mathrm{C}_{4} \mathrm{H}_{32} & \mathrm{C}_{8} \mathrm{H}_{18} & +7 \mathrm{CH}_{4} & +7 \mathrm{C} \\
\text { Pentadecane } & \text { Octane } & \text { + Methane } & \text { +Carbon }
\end{array}
$$

Yot under certain other conditions the amount of gas formed is very small, indicating that the following reaction was partly carried out.

$$
=(2 n+2) \mathrm{C}_{m \mathrm{n}} \mathrm{H}_{n n+2} \quad+2(n-\mathrm{m}) \mathrm{C}
$$

or as an illustration
9) $\mathrm{C}_{1} \mathrm{H}_{2}$
$=16 \mathrm{C}_{8} \mathrm{H}_{18}$
$+7 \mathrm{C}$

$$
=\text { Octane } \quad+\text { Carbon } .
$$

This last reaction is also indicated by the large yields of gasoline obtained from some crude oils.
l'ure paraffin wax of melting point of $130^{\circ} \mathrm{F}$ and specific gravity of 0.892 on repeated cracking confinet under pressure up to 57 atmospheres at temperature of $400^{\circ} \mathrm{C}$ and with a vapor space twice the volume of the licquid, yielded 32.5 per cent by volume of gasoline of $0.721-63.4^{\prime} \mathrm{Be}^{\prime}$ gravity or 29.1 per cent by weight by each treatment or a total of 91.7 per cent by weight, or 104 per cent by volume.

The amount produced on first six treatments was as follows:

First	29.1\%	n
Second	. 19.9%	by weight of original paraffin
Third	. 14.5%	by weight of original paraffin
Fourth	9.9\%	by weight of original paraffin
Fifth	6.8\%	by weight of original paraffin
Sixth	4.7\%	by weight of original paraffin
	84.9\%	

The gasoline produced consisted of paraffin hydrocarbons as shown in fig. 42.

That the cracking of oil is not simply a decomposition of the hydrocarbon molecules is shown in fig. 44. These curves show the relation between the distilling temperature and the specific gravity of water white Cabin Creek distillate. Before cracking, it had an end point of about $540^{\circ} \mathrm{F}$ and its heaviest ends had a specific gravity of 0.815 . After cracking, the end point was above $640^{\circ} \mathrm{F}$ and the end gravity above 0.900 . Both heavier and higher boiling hydrocarbons as well as lighter and lower boiling hydrocarbons were produced simultaneously. There must have been polymerization to yield hydrocarbons of both higher boiling point and higher specific gravity. By continued cracking there may be made from water white distillate, solid and ductile asphaltic cement of typical conchoidal fracture.

The gases produced by cracking likewise are not simple split. off hydrocarbons but vary according to the method of cracking. In liquid phase cracking, the chief variation is in the olefin and hydrogen content. In a general way, there seems to be a tendency for low percentages of hydrogen to be associated with low percentages of olefins. A typical gas made in a Burton still has the following composition:

Methane and Ethane $\left(\mathrm{CnH}_{2 n+2}\right)=82.0 \%$
Olefins $=8.5 \%$

Hydrogen $=9.5 \%$

One of the problems in cracking is to limit the amount of hydro gen. This has been partially done by allowing the hydrogen to remain in contact with the cracked distillate under high pressure and at a temperature somewhat below the ordinary temperature of cracking (see U. S. Patent 1,255,138). (See Figs. 72 and 73.)

Figures 39 and 40 shows some of the relative properties of light hydrocarbons made by various prozesses used more or less in a commercial way for the production of gasoline from heavy oil.

Classification of Systems of Cracking.

I-Vapor Phase.
A. Atmospheric pressure.
(1) High temperature. Oil gas, Pintsch gas at very high temperature. Blaugas and liquefiable gas at high temperature $\left(1200^{\circ} \mathrm{F}\right)$. Gasoline substitutes such as Greenstreet process-cherry red temperature.
(2) Low temperature ($700-900^{\circ} \mathrm{F}$).
B. Increased Pressure.
(1) High temperatures. Rittman at $950^{\circ} \mathrm{F}$ and 200-300 pounds. Hall at $1100^{\circ} \mathrm{F}$ and 75 lbs.
(2) Low temperatures ($750-900^{\circ} \mathrm{F}$).

II-Liquid Phase.
A. With distillation (distillation necessary).
(1) Atmospheric pressure.
(a) Without chemicals. Atwood (1860)-illuminating oil practice.
(b) With chemicals. Aluminum chloride and related chemicals (McAfee, Gray).
(2) Above atmospheric pressure-no differential pressures. Dewar \& Redwood, Dubbs, Burton, Bacon \& Clark, E. M. Clark, Jenkins, Fleming.
(3) Very high pressure-distilling at reduced pressure. Benton.
B. Without distillation (necessarily high pressure).
(1) Intermittent. Palmer, Snelling, Hubbard.
(2) Continuous.
(a) Identical heating and reaction zones.
(b) Separated heating and reaction zones.

The above outline of the general systems of cracking gasoline is not based upon any general mechanical arrangement. Most of the patents relating to the cracking of oil cover mechanical arrangement. Of more than 1,000 patents on this subject, very few of them are basic.

Those systems that heat the oil vapor at atmospheric pressure are principally used for making gas. On account of the low specific heat of the oil vapor the temperatures are very high and are not subject to exact control. The result is that the product contains a large percentage of olefins and aromatics and a large proportion of the heavy oil stock is converted into fixed gas. Possibly the only chance of making a first class gasoline according to these systems is to heat the vapor at a temperature of from 700 to $900^{\circ} \mathrm{F}$. This involves a very large apparatus or one in which the oil vapor is put through at a very high rate of speed. The difficulties in temperature control are so great that they have not yet been satisfactorily overcome, although some experimental work is being done in the design of furnaces for holding the vapors at the limited temperature required.

Much of the pioneering work in the cracking of oil was done in heating in the vapor phase under increased pressure. These also have the fault that the temperatures are ordinarily kept too high; $1100^{\circ} \mathrm{F}$ and a pressure of 75 pounds are typical. Increase of pressure is of interest because of the deceased cost of operation. Likewise low temperatures of from 750 to $900^{\circ} \mathrm{F}$ with vapor phase cracking might prove successful but the question of carbon deposition on the walls of the tubes present a new difficulty.

The really successful processes that have proved profitable are those in which the cracking is accomplished by applying the heat to the liquid phase of the oil. The original work on cracking by Atwood in 1860 was done at atmospheric pressure and it has been the practice ever since that time to increase the amount of illuminating oil by refluxing while distilling. This method, however, does not accomplish enough in the production of gasoline unless some chemical agent is added which causes the reaction of cracking to go on at a lower temperature. The most common chemical used for this purpose is technical dry aluminum chloride, the operation of which is explained more fully further on. By this process, completely refined gasoline may be made with one operation. Other chemicals such as tin chloride, ferric chloride, manganic chloride, zinc chloride and phosphorus pentoxide have the same effect but to a lesser degree.

The method by which a large proportion of the synthetic gasoline is now made is by distillation at pressures considerably above the atmospheric pressure. The reaction and distillation take place in the same still. An enormous amount of refluxing is necessary and the gasoline must be removed as fast as it is formed. An enormous amount of heat is lost by reason of this refluxing and the reaction is considerably retarded, but nevertheless, the distillation is a necessity as otherwise excessive pressure would develop.

By the use of very high pressure, more reaction can be accomplished in a shorter time and methods exist whereby this is done followed by distillation at a lower pressure.

The most recent development, however, has been the accomplishment of the cracking without distillation as a separate and distinct refinery operation. This is necessarily carried on at a high pressure and most of these processes provide for intermittent operation. Intermittent operation is of course not commercial in handling a cheap material like petroleum as a very long period of time is necessary for cooling between operations. Continuous systems have been devised in which the heating zone and the reaction zone have been one and the same. This brought on difficulties in continuing the operation for long periods of time without the formation of an excess of carbon. Possibly one of the most basic patents has been developed in which the heating zone is separate and distinct from the reaction zone. This allows an operation to be continuous for a period of from 3 to 15 days without the necessity of cleaning carbon as the reaction zone may be changed without interfering with the heating zone.

Electrical processes continue to attract considerable attention chiefly because of their novel claims rather than because of any

G. L. BENTON.

process of refining crode petroledm oil.
No. $342,564$.

Fik. efi- Penton Process for Cracking.
virtues which they possess. Electrical processes have not been demonstrated as having any commercial value though heat from electrical sources is doubtless as effective in cracking as heat from cheaper sources. No true catalytic processes have been developed for the cracking of oil. No substance has been found which will cause the cracking reaction to go on any more rapidly than occurs in the case of cracking in the liquid phase with high pressure and without distillation. The highest speed probably attained by the use of aluminum chloride is 5 per cent conversion per hour whereas with high pressure and without distillation, conversion can readily be carried out at the rate of 2 per cent per minute. Many chemical substances, however, are effective in producing a sweeter and whiter product.

Advantages of Liquid Phase Cracking.

All processes of making gasoline which have not involved the treatment of the oil strictly in the liquid phase are said to have met with only a questionable degree of success.

While the cracking of oil in the vapor phase would be highly desirable if the product and other conditions were satisfactory, it has been claimed by many that the advantages of applying the heat to the liquid phase are as follows:

1. A lower temperature is sufficient to induce cracking.
2. The rate of reaction is greatly increased, being greater the higher the pressure within certain limits.
3. A product containing smaller amounts of olefins and aromatics is produced.
4. A higher yield of refined gasoline is obtained.
5. There is a better economy of heat.
6. There is a selective action on the oil or heavy portions of the petroleum by reason of the automatic conversion of the desired product into the vapor phase, thus freeing it from further liability to decomposition.
7. There is a high oil capacity with small plant dimensions.
8. There is a perfect control of temperatures.
9. There is a rapid and more complete absorption of heat from the furnace and less tendency to local overheating on account of the much higher specific heat of oil than of the oil vapor.
10. There is the possibility of operating either by intermittent charging or by continuous treatment and distillation.
11. The carbon is deposited in a suspended condition in the oil and not on the retaining walls.
12. There is the possibility of the use of the automatically developed pressure for mechanical and condensing purposes.

The chief disadvantage in cracking oil in the vapor phase and under high pressure seems to be the danger attendant upon a possible failure of steel parts, but this is entirely overcome with proper design.

The following special physical properties of hydrocarbons enter into the considerations of liquid phase cracking:

Gasoline Hydrocarbons.
Critical Pressure
Critical Temperature Atmospheres
Pentane .. $390^{\circ} \mathrm{F}$. 24
Hexane .. $450^{\circ} \mathrm{F}$. 22
Heptane-.-.. $515^{\circ} \mathrm{F}$. 20
Octane .. $565^{\circ} \mathrm{F}$. 18
Nonane ... $640^{\circ} \mathrm{F}$. 16
Decane ... $680^{\circ} \mathrm{F}$. 15
Undecane .. $720^{\circ} \mathrm{F}$. 14
Kerosene Hydrocarbons.
Duodecane ... $760^{\circ} \mathrm{F}$. 13
Tridecane .. $860^{\circ} \mathrm{F}$. 10.5
Tetradecane ... $900^{\circ} \mathrm{F}$. 9
The critical temperatures are somewhat increased by the presence of the heavier hydrocarbons so that at pressures above about 150 lbs . per square inch only gasoline and gaseous hydrocarbons would be removed from the liquid phase. With pressures below this there would be some difficulty in maintaining the lighter kerosene in the liquid phase.

References: See Fig. 41 on vapor pressure of gasoline. Denig, Chem. \& Met. Engr., Vol. 25, p. 751; Young, Sci. Proc. Roy. Dub. Soc., 12, 374.
(No Model.),

J. DEWAR \& B. REDWOOD.
 APPARATOS FOR THE DISTILLATION OP MINERAL OILS AND LIKE PRODUCTS.

No. 426.173.

Development of Commercial Practice in Cracking of Oil.

It has been stated that the commercial cracking of oil was accidentally discovered in the winter of 1861 by a stillman at Newark, New Jersey. However, this is probably not the case, since a patent was granted to Luther Atwood, of New York, May 15, 1860, No. 28,246, in the U. S. Patent Office, which provides for the production of light hydrocarbon illuminating oils from heavy oils, paraffin, etc. The apparatus provides for the cooling of the heavy oil vapors and their return to the still for further cracking. This is all carried out at atmospheric pressure.

The first record of pressure distillation is apparently set forth by James Young in his patent, No. 3,345 (English) of 1865, in which a distillation is described as being conducted in a vessel having a loaded valve or a partially closed stop-cock through which the confined vapors escape under any desired pressure. Under these conditions, distillation takes place at higher temperatures than the normal boiling points of the heavy hydrocarbons and partial cracking results. The patent was taken out for treatment of shale oil and in practice a pressure of 20 pounds to the square inch was recommended.

The first extremely high pressure process was that of Benton, U. S. Patent No. 342,564, May 25,1886 . In this the oil is heated at a temperature of from 700° to $1,000^{\circ} \mathrm{F}$. through a pipe leading to a low pressure expansion chamber, where it was vaporized, and then the vapors were condensed. The pressure used was as high as 500 pounds per square inch.

A rery important patent in the present develomment of cracking processes is that issued to Dewar \& Redwood, which is partly described as follows:

Specifications and Claims of Dewar and Redwood.

[^2]"Our invention relates to a method of conducting the distillation 1,y suitable apparatus in such a manner that we get the benefit of regular vaporization and condensation under high pressure, and that "W. may at the same time get such advantage as can be obtained from
W. M. BURTON

MaNOEACTUEE OF GASOLENE.
APFLICATION FILED JJLY 3,1912
1,049,667.
Patented Jan 7, 1913.

Fig. 2S-Burton Process for Cracking.
cracking. For this purpose, we arrange a suitable boiler or retort, and a condenser in free communication with one another, without interposing any valve between them; but we provide a regulated outlet for condensed liquid from the condenser. We charge and keep charged the space in the boiler or retort and condenser that is not occupied by liquid with gas under considerable pressure, it may be with air or it may be with carbonic-acid gas or other gas that cannot act chemically on the matter treated. The distillation and condensation beng thus conducted under considerable pressure, which can be regulated at will, we obtain from the heavy residue a quantity of more or less light oil suitable for illuminating and other purposes, which cannot be obtained by distillation under atmospheric pressure. We may also arrange the still-head or upper part of the boiler or retort so as to operate according to the cracking method above referred to, the cracking in this case taking place under high pressure instead of being carried on under atmospheric pressure."
"The apparatus for effecting distillation in the manner described may be arranged in various ways. The accompanying drawings show one form of apparatus for this purpose.
"By a pipe and cock or a scitably loaded safety-valve $D_{\bar{n}}$, gas may be withdrawn from the space above the liquid in the column D_{2}.
"By regulating the heat and pressure to which the retort is subjected, the character of the distillate may be varied and thus oils more or less light can be obtained to suit various uses. Also the proportions of the parts may be varied, and if necessary, means of cooling may be applied to the still-head C_{2}.
"Having thus described the nature of our invention and the manner of carrying the same into effect, we claim-the hereindescribed method of distilling mineral oils and like products, which consists in both vaporizing them and condensing the generated vapor under a regulated pressure of air or gas substantially as specified."

THE BURTON PROCESS.

This is the process by which much of the artificial gasoline now on the market is made. Dr. Wm. Burton states that the total Burton still capacity is cight million gallons with an output of two million gallons of gasoline per day in 1921.

The drawing in the patent is shown in fig. 28.
In the practical operation of this process, a very hot furnace is required on account of the very great radiation of heat from the return conduit 7.

Novelty in this process is claimed to lie in the maintenance of pressure on the condenser, though this is done in the Dewar $\&$ Redwood process with inert gas. The fact is, however, that the Burton procerss is being successfully operated on a large scale and presumably with profit. In one of the Burton patents $(1,105,961)$ it is claimed that $6.31 / 2 \%$ of the original charge of oil is converted into gasoline.

The actual operation of the Burton process has been described as follows:

The stills have a capacity of 200-250 barrels each, and are heavy, horizontal steel cylinders, with walls one-half inch thick, thoroughly insulated with asbestos. From the top of the still are long run-backs, exposed to the air, which return for cracking any undecomposed oil. The stills, the run-backs and the condenser are all maintained under a pressure of about eighty-five pounds per square inch, the oil being heated to a temperature of about $750^{\circ} \mathrm{F}$. Each still is charged every forty-eight hours, the yield being about 50% of $48-52^{\circ}$ "pressure distillate." The carbon tends to be of a granular or mealy nature, rather than hard and adherent, and is cleaned out after each run.

Fig. 29-Modified Burton Still Practice.
Important modifications of the Burton process are shown in the Clark patents, $1,119,496,1,129,034$, and $1,132,163$; A. S. Hopkins, $1,199,464$; R. E. Humphreys, $1,122,002,1,122,033$, and $1,119,700$.

One of the Clark modifications allows the application of heat to tubes and seeks to overcome the danger of heating a large bulk of oil directly.

The Hopkins patent provides for introducing fresh oil supply into the run-back 7 with a heat exchanger effect.

One of the Humphreys patents provides for plates in the bottom of the still to prevent the bad effect of carbon and to give a large metallic heating area. One provides for starting stills under pressure.

The original Burton claims are as follows (Patent 1,049,667, filed July 3, 1912):
"1. The method of treating the liquid portions of the paraffin series of petroleum distillation having a boiling point upward of $500^{\circ} \mathrm{F}$. to obtain therefrom low-boiling point products of the same
series, which consists in distilling at a temperature of from about 650 to about $850^{\circ} \mathrm{F}$. the volatile constituents of said liquid, conducting off and condensing said constituents and maintaining a pressure of from about 4 to about 5 atmospheres on said liquid of said vapors throughout their course to and while undergoing condensation.

This patent is claimed to be a prior invention to that of W. M. Burton:
"This invention relates to improvements in treating oil and refers more particularly to a process of subjecting the oil to heat and pressure.
"Among the salient objects of the invention are to provide an improved method of treating oil wherein both the vaporization and condensation take place under the pressure of the generated vapors; to provide a method which is particularly adapted for the removal of the finely divided particles of water from emulsified hydrocarbon oils; to provide a method which will permit of the oil being continuously subjected to the required heat and pressure in both the still and condenser without the interruption of its flow.
"As for example, in oil containing about 28% of water (which is the case of oil of the Santa Maria field of California), a pressure of about 25 pounds, and a temperature of $325^{\circ} \mathrm{F}$., more or less, has given very good results, as regard the segregation of the water, although I have performed my operation under pressure ranging from three to two hundred and fifty pounds above atmospheric.
"Claim 9. The herein described process of treating hydrocarbon oil which eonsists in subjecting stch oil in a receptacle to a temperature in excess of $300^{\circ} \mathrm{F}$., permitting the volatilized products generated from the oil under treatment to pass freely to a condenser where they are condensed, and maintaining substantially the entire pressure exceeding ten pounds to the square inch in both the receptacle and condenser during the whole process solely by the vapors generated from the material under treatment."

ILLUSTRATIVE COMMERCIAL OPERATION OF DUBBS PROCESS.

(Furnished by Gustav Egloff of Universal Oil Products Co.)

A. On Fuel Oil.--Two typical runs on fuel oil were a 15.6 Baume Gravity Mexican Fuel resulting from the topping of a southern field Mexican crude oil and a fuel oil of 25 Baume Gravity from a mixture of Healdton, Peabody and Cushing crude oil were cracked in a coil, thirty-six continuous tubes, each twenty feet long 4-in. diameter and heated in a furnace. The liquid from the last trbe passes into one end of a $30-\mathrm{in}$. expansion chamber, the vapors from which enter a dephlegmator, where they are partially condensed and the reflux returned to heating coil. The pressure distillate condensed passes on to a run-down tank from the receiver. The residuun from the expansion chamber is continuously drawn off during operation. The operating pressure of the Mexican Fuel Oil was 110 pounds and for the Mid-Continent Fuel Oil 135 pounds. It is noteworthy that in the illustrative runs the carbon produced on the Mid-Continent Fuel Oil was 2.77 tons while the Mexican Fuel Oil produced 5.86 tons of carbon, and that these amounts were successfully handled and were deposited outside of the heating zone where no damage to the apparatus was possible. The detailed data of the two illustrative runs follows:

		Mid-Continent Fuel Oil		
Hours fire to steam			F	$41 / 2$
Hours on stream			13	21
Pressure (pounds)			10	135
Total Charge (gallons)		21,0		30,213
Pressure Distillate		10,8		18,355
Percent Pressure Distillat			51.45	60.75
Residuum		7,9		10,348
Percent Residuum of Char			37.55	34.25
Percent Gasoline (Navy Spe			26.23	26.3
Baume Gravity .-.......................			58.4	59.6
(Gallons Per Hour)				
Raw Oil		1,6		1,439
Pressure Distillate			33	874
Gasoline			25	379
Tons Carbon Produced			5.86	2.77
Percent by Weight Oil Cracked to Carbon....			6.69	2.44
Raw Oil, per Day... 4				486
Gasoline, per Day... 118 128 B. On Gas Oil.-The Gas Oil runs were made in a cracking unit				
composed of forty-eight 4-in. diameter tubes $20-\mathrm{ft}$. lengths in coils of				
twelve each connected to a common header. The heated oil passed				
into a 16-in. diameter exp	nsion ch	hamber, from	m which th	the a $16-\mathrm{m}$. dameter expansion chamber, from which the vapors
traveled to the bottom of	a dephle	gmator, w	herein they	are frac-
tionated and the reflux condensate returned to the cracking coils,				
while pressure distillate oil	is collec	cted in a r	eceiver from	m which it
passes on to a run-down tank. While pressure distillate oil is being				
collected, the residuum from the 16-in. expansion chamber is being				
drawn off and collected in a run-down tank. Four typical runs in the commercial unit are tabulated as follows:				
Hours Fire to StINENT GAS OIL (35.3 BAUME GRAVITY).				
Hours on Stream.	$1961 / 2$	336	$2631 / 2$	$1541 / 4$
Pressure (Pounds)	135	135	135	135
Total Charge (Gallons)..	7,031	139,684	123,550	105,352
Pressure Distillate	4,578	86,053	17,485	64,747
Percent Pressure Distillate	6271	61.61	62.7	61.5
Residuum	0,664	54.566	46,345	42,398
Percent Residuum of				
Charge	35.23	39.06	37.5	40.2
Percent Gasoline (Navy				
Spec.)	33.16	26.23	28.9	26.2
Baume Gravity	58.5	58.3	580	58.0
	(Gallons Per Hour on Stream)			
aw Oil	443	416	469	683
Pressure Dist	278	256	294	420
Trans Caline Produc	147	119	136	179
Percent ly Weight Oil 0.5				
Cracked (to Carbon)	0.4	0.16	0.3	0.21
Raw Oil, per Day	240	228	2525	334
(iasoline, Bhls. per Day	79.4	58.8	73	87

THE CROSS PROCESS.

This process is a system of producing a synthetic crude oil. The patents thoroughly cover that type of process in which there is no material distillation and in which the reaction zone and the heating zone are separate and distinct. Distillation is avoided to prevent retardation of the cracking. The heating zone is free from carbon as the oil is discharged into the reaction zone before carbon can separate out.

A test run on $10,000 \mathrm{bbls}$. of $33^{\circ} \mathrm{Be}^{\prime}$ gas oil was as follows: Gas oil used.. 10,475 bbls. $=100.00 \%$ Gasoline .. 6,789 bbls. $=64.8 \%$ Fuel oil residue... 2,600 bbls. $=248 \%$ Loss-gas and carbon.. 1,086 bbls. = 104%

Some important facts about the operation of the Cross process are as follows:

1. Heat is applied to the oil in tubes arranged in series. The tubes are placed horizontally in a heavily constructed, well insulated furnace in such manner that should a tube fail, the only damage is from loss of the tube as the small amount of oil discharged is burned and mostly goes up the chimney or is discharged into a tank.
2. The oil is pumped through the tubes in one direction only and no oil that has undergone reaction with the separation of carbon is returned to the tubes.
3. Decomposition does not take place in the tubes sufficiently to deposit an excessive amount of carbon.
4. The heated oil is passed from the tubes to a reaction chamber where conversion of the heavy oil into gasoline takes place and where the carbon is deposited.
5. No heat is applied to the reaction chamber but this chamber 2s well as all parts of the plant are heavily insulated against losses af heat to the atmosphere.
6. No distillation takes place from the reaction chamber or from any portion of the system as this would retard the conversion by reason of its cooling effect.
7. A small amount of oil is in the apparatus at one time.
8. About one-half barrel of oil is pumped through per minute. About 15 minutes is required for the reaction. Seven hundred barrels of oil are treated per day in one unit of the process.
9. The treated oil and the gas produced come out together, any gasoline in the vapor phase being absorbed back into the oil when cooled together, or distillation of the hot oil is carried out in the ordinary tower still without cooling and with very little additional firing.
10. Plant operation is very simple, requiring careful observation but little manipulation by the attendants.
11. No oil level devices are required. Pressure relicf valves regulate the oil level at the point of discharge.
12. The treated oil or synthetic crude requires no more treatment than the pressure distiliate and bottoms as made in the pressure distillate system of cracking.

13. The factors of safety on the steel stresses in the different parts of the plant are approximately $5: 1$.
14. The fittings on the end of the tubes are outside of the furnace and the openings of these tubes are quickly closed and opened without loss of time.
15. In the normal operation, the plant is kept on stream for 6 days and is cleaned on the 7th day. The complete cycle is 1 week with the treatment of about 4,500 barrels of oil.
16. One or more units of the Cross process may be added to any refinery merely as an adjunct without any change in ordinary refinery operation. With this process added, a greater still capacity is necessary for a given amount of crude oil or greater yields may be obtained with the same still capacity and with a smaller amount of crude oil available.

The scheme of operation is shown by the diagram in figure 32.
The steam pump (1) forces the charging stock against the pressure in the apparatus through line (2) passing it from above dawnward through the preheating tubes (3) in the upper part of the furnace. No decomposition or cracking takes place in these upper tubes since they merely serve as fuel economizers while the pressure in the apparatus is sufficient to maintain the oil in the liquid condition. The oil passes from these preheater tubes into the lower furnace tubes (4) starting in at the bottom. In this furnace, the main absorption of heat takes place. The oil temperature is registered as it issues from the heating tubes at the point (13). The temperature of the oil and the character of the oil under treatment govern the rate of pumping At the point (13) all of the heat has been applied io the tubes but the oil has not yet been converted as the time element is lacking It is therefore discharged into the reaction chamber (7) where it is held a sufficient length of time for an equilibrium to be reached between the vapor phase and the liquid phase. Ordinarily, this requires less than 15 minutes. The discharge line through the valve (8) is set at the liquid level and perfectly controls this level without any other automatic device than an ordinary relief valve. The oil is then discharged out through the cooling coil (9) line under a pressure of approximately 40 pounds and into the gas separator (10) from which the gas goes out through the line (11) and the oil is discharged through the line (12) to storage. This synthetic crude is run in the ordinary skimming plant in the usual manner.

A flow sheet for a complete gasoline plant in which all of the crude is made into gasoline and fuel oil is shown in figure 33. It is of course not advisable to run all of the residue into gasoline as a point is eventually reached at which the fuel oil becomes so heavy that the gasoline yields are relatively poor. The yields that can be obtained from various crudes may be calculated from the formulae on page 242.

CROSS PROCESS PLANT No. 1 (Small Reaction Chamber).Run No. 44, Jan. 21, 22, 23, 24, 25, 1922.
3,030 bbls. oil used.
2,909 bbls. cracked oil delivered.
727 bbls. gasoline produced.
91 bbls. fuel used.
$1 / 8 \mathrm{bbl}$. fuel used per bbl. of gasoline produced.
96 hours on stream.
98 hours on fire.
31.5 bbls. cracked per hour.
.95 bbl. fuel per hour
$915^{\circ} \mathrm{F}$ maximum oil temperature.
$900^{\circ} \mathrm{F}$ average oil temperature.
$1,375^{\circ} \mathrm{F}$ maximum furnace temperatore.
$765^{\circ} \mathrm{F}$ maximum stack temperature
$700^{\circ} \mathrm{F}$ average stack temperature.
RESULTS OF ONE UNIT CROSS PROCESS PLANT No 1(Small Reaction Chamber) For Month of January, 1922.
15,427 bbls. gas oil used @ $\$ 1.575$ $\$ 24297.53$
420 bbls. fuel used @ $\$ 1.575$ 661.50
Total payroll charge for month 1,363.79
Storeroom charges for month 55.78
Fixed charge, 31 days @ \$3200 99200
Steam, air, etc., 31 days @ $\$ 20$ c0 620.00
Distilling and treating $14,852 \mathrm{bbls}$. @ $\$ 0.35$ 5,201.70
Total charge \$33,192.30
CREDITS:
4,186 bbls. gasoline @ $\$ 6.09$ \$25,492.74
10,622 bbls. oil returned @ $\$ 147$ 15,614.34
Total credits $\$ 41,108.08$
Less charges 33,192.30
Estimated profit for month $7,914.78$
COMPARATIVE COSTS OF MAKING GASOLINE.
While there is much variation in the absolute cost of making gasoline by any process, the following outlines comparative costs of operation of one unit of three principal systems: No satisfactory information is available for vapor phase processes.

| | Synthetic
 crude
 system |
| :--- | :--- | | Pressure |
| :---: |
| distillate |
| system |$~$| Aluminum |
| :---: |
| chloride |
| system |

Fig. 34-Double Unit Cross Process Plant.

Fig. 34 -Double Unit Cross Process Plant (continued).

Refinery Engineering Data on Distilling and Cracking of Petroleum.

The total capacity of a horizontal still is approximately $\left.0.14 \mathrm{~d}^{2}\right]$, d being the diameter and l the length of the still in feet.

The heating area of a horizontal still is $1,0472 \mathrm{dl}$ on the assumption that one-third of the shell is fired. In continuous stills a larger area may be fired on account of a higher minimum oil level.

Continuous stills give a greater crude oil capacity than batch stills on account of the time required for charging and discharging batch stills. The amount of benzine or crude gasoline distilled is 1.5 d 1 barrel per day with continuous operation and with no other products distilled.

The approximate amount of gasoline from crude oil stills per day per square foot of still bottom area not including charging time or time for bringing to distillation temperature is 1.0 barrel. This may vary according to the intensity of firing and the character of the crude.

The approximate total fuel consumption in producing one gallon of $58^{\circ} \mathrm{Be}^{\prime}$ gasoline in a still by cracking at 85 pounds pressure is 50,000 B.T.U. or 0.4 gallon of fuel oil.

The total fuel consumption by cracking in tubes at 600 pounds pressure in producing one gallon of $58^{\circ} \mathrm{Be}^{\prime}$ gasoline is 26,000 B.T.U. or 0.20 gallon of fuel oil.

The report of the Western Petroleum Refiners' Association of September, 1919, on a pressure distillation process operating at 135 pounds per square inch pressure may be analyzed as follows:
0.164 gallons of $58^{\circ} \mathrm{Be} e^{\prime}$ gasoline was produced per square foot of heating area per hour after the oil was brought to the cracking temperature.
0.8 gallon of fuel oil equivalent to 112,000 B.T.U. was required to produce 1 gallon of $58^{\circ} \mathrm{Be}^{\prime}$ gasoline.

200 cubic feet of gas was produced for each barrel of $58^{\circ} \mathrm{Be}^{\prime}$ gasoline.
7.0 pounds of still carbon was produced per barrel of $58^{\circ} \mathrm{Be}^{\prime}$ gasoline.

A typical composition of the so-called carbon deposited in cracking stills is as follows. This sample was extracted with $70^{\circ} \mathrm{Be}^{\prime}$ petroleum naphtha before testing:

Moisture (volatile at $105^{\circ} \mathrm{C}$)	0.00\%
Volatile ($500^{\circ} \mathrm{C}$)	13.08
lixed carbon	80.42
Ash	6.50
	100.00\%
Sulphur	1.83\%

Fig. 35-Volume of Oil Vapors at Different Temperatures.

The following data represents the operation covering a long period of time of a very extensively used process for cracking oil, based on one still.
Gallons of oil charged..8,000
Gallons of oil run in...8,800

Average time feeding in oil...
Total hours distilled... 37 hours
Pounds coal used to distill...11.000 lbs. per run
Total distillate produced.. 5,295 gallons
Total 58.5° gasoline produced..018 gallons
\% distillate ... 54 04\%
$\%_{\%} 58.0^{\circ} \mathrm{Be}^{\prime}$ gasoline in distillate... 57.0
It $58.5^{\circ} \mathrm{Be}^{\prime}$ gasoline of oil treated...................................... 30.8%
Amount of distillate per hour of distilling 143.1 gallons
\% distillate of total charge per hour of distillation.......... 1.46%
Amount of $58.5^{\circ} \mathrm{Be}^{\prime}$ gasoline per hour of distilling........... 816 gallons
$\%$ of $58.5^{\circ} \mathrm{Be}^{\prime}$ gasoline per hour of distilling................... 0.83%
Area of still bottom... 270 sq. ft.
Gallons of $58.5^{\circ} \mathrm{Be}$ gasoline per hour per sq. ft. of heat-
ing area ... 0302
Pounds of coal per gallon of gasoline ($58.5^{\circ} \mathrm{Be} \mathrm{e}^{\prime}$.............. 3.625 lbs .
Equivalent gallons of fuel oil per gallon of $58.5^{\circ} \mathrm{Be}^{\prime}$ gasoline

$$
0.25
$$

CALCULATION OF HEAT EXCHANGES IN REFINERY CONDENSERS.

In calculating amount of water required for condenser, use the following formula:

$$
\mathrm{w}=\frac{200 \mathrm{~g}}{\mathrm{t}_{2}-\mathrm{t}_{1}}
$$

$\mathrm{w}=$ gallons of water required per hour.
$t_{1}=$ incoming temperature of condensed water.
$\mathrm{t}_{2}=$ outgoing temperature of condenser water.
$\underline{g}=$ gallons of gasoline to be condensed per hour.
Heat absorbed in condensing 1 gallon of gasoline to $60^{\circ} \mathrm{F}=1,550$ B.T.U.

Heat absorbed in condensing 1 gallon of kerosene to $60^{\circ} \mathrm{F}=2,400$ B.T.U.

Heat absorbed by oil in distilling off 50% from it as gasoline and kerosene is 2,100 B.T.U. per gallon of crude oil. Heat absorbed by oil in distilling to coke is approximately 3,000 B.T.U. per gallon.

Amount of condenser surface required to properly condense one gallon of gasoline per hour $=2 \mathrm{sq}$. ft.; 1 gallon of kerosene per hour $=1$ sq. ft . This is lessened with cold water and with larger quantities of water and varies with the length and cross section of the condenser tubes.

The cross section of the vapor line should be .05 sq . in. per gallon of gasoline per hour. The cross section of the condenser tubes may be reduced $1 / 2$ after first $1 / 3$ of length and $1 / 4$ more after second $1 / 3$ of length.

The same water used for condensing the benzine or gasoline fraction in crude distillation may be used to condense the kerosene fraction.

Fig. 36 -Volume of Oil Vapors and Steam at Different Temperatures

Aluminum Chloride in the Production of Gasoline.

When the heavy fractions of petroleum distillates such as kerosene, gas oil, lubricating oils or paraffins are slowly heated with a small quantity of perfectly dry aluminum chloride, the salt dissolves, imparting a dark color to the solution. If this dark liquor is then submitted to slow fractional distillation at a temperature below that at which aluminum chloride volatilizes, a sweet water white, light distillate is obtained having all of the properties of high grade light gasoline that has been subjected to complete refining with sulphuric acid.

The first use of aluminum chloride for its "catalytic" action in hastening the synthesis or decomposition of hydrocarbons is set forth in the well known Friedel \& Crafts reaction in a British patent of 1877. Aluminum chloride has long been known to have special action on various types of hydrocarbons in forming complex compounds of the hydrocarbons with the

Fig. 37--Yiclds on Distillation of Heavy Oils in the Presence of Aluminum aluminum chloride. The heating of aluminum chloride with unsaturated hydrocarbons or olefins such as amylene leads to the formation of saturated hydrocarbons or paraffins of the series $\mathrm{CnH}_{2} \mathrm{n}+2$. This series of hydrocarbons is the one which predominates in refined gasoline made from paraffin base petroleum. This is set forth in a paper by Engler \& Routala in 1909 in which amylene gives yields of pentane, hexane, heptane, octane and decane by the action of aluminum chloride. These are the usual paraffin hydrocarbons in gasoline. The nature of artificial gasoline obtained by the use of aluminum chloride varies with the nature and origin of the petroleum products treated.

According to Pictet, kerasene oil of Galicia furnishes 50% and Russian oil, 40% of its weight in the form of light gasoline. The practical use of aluminum chloride as a means of refining petroleum and producing gasoline has been set forth by A. M. McAfee in U. S. Patent No. 1,127,465 of February 9, 1915. The character of the McAfee patent is set forth by the following claim:

CLAIM1 14: "In the treating of petroleum oil, the process which comprises heating such oil with aluminum chloride for 36 to 48 hours while removing vapors of secondary gasoline, cooling and separating oil and aluminum chloride."

It has been the experience of the writer that the action of aluminum chloride at high pressures is not effective in producing gasoline at any faster rate or with any greater facility than with the use of high temperature and pressure alone. However, when the light gasoline is removed as rapidly as it is formed by distillation at atmospheric pressure or slightly above, the rate of formation of gasoline is infinitely increased over that obtainable in exactly the same condition without the use of aluminum chloride.

At very high pressures, heavy hydrocarbons may be converted into gasoline at a rate of 1% per minute or a 30% conversion in one-half hour.

Fig. 38-Comparison of Distillation Curves of Aluminum Chloride Gasoline with Natural Gasoline.

In the experiments set forth herewith, it was assumed that 3.3% of gasoline produced per hour would be a practical rate for a large still. The amount of aluminum chloride considered necessary for attaining this rate is from 5% to 10% and in these tests 8% or 24 pounds per barrel of freshly prepared anhydrous aluminum chloride were used. The stock used for the test was the same as that used in charging the Burton pressure stills, being a mixed gas oil containing about 15% of olefins.
The following table shows the normal distillation of this gas oil without aluminum chloride and at the rate of 3.3% per hour.

Distillation of Burton Still charging stock at rate of 3.3% per hour without the use of aluminum chloride. Gravity of original charge $=.864=32.3^{\circ} \mathrm{Be}^{\prime}$.

\%	Time	Temp. ${ }^{\circ} \mathrm{F}$.	Gravity of Fraction	Gravity of Total Over	Oil Temp., ${ }^{\circ} \mathrm{F}$.
0	11:06	262			410
5	12:30	300	$52.7^{\circ} \mathrm{Be}^{\prime}$	$52.7^{\circ} \mathrm{Be}^{\prime}$	480
10	1:00	370	41.1	46.7	530
15	1:30	490	39.0	44.1	540
20	3:00	499	37.8	42.6	550
25	4:00 P.M.	508	36.2	41.3	560
30	9:07 A.M.	518	35.2	40.2	570
35	9:21	530	33.8	39.2	580
40	9:27	542	33.4	38.6	585
45	9:35	550	32.8	38.0	595
50	9:47	558	32.5	37.4	610
55	10:00	570	31.9	36.8	625
60	10:06	582	31.1	36.4	640
65	10:13	598	30.4	36.0	655
70	10:15	612	29.8	35.4	670
75	10:21	628	29.3	35.0	680
80	10:34	636	28.2	34.6	690

Fig. 39-Comparison of Gravity of Fractions of Aluminum Chloride Gasoline and Gasoline from other sources.

| C. | Temp. |
| ---: | :---: |${ }^{\circ} \mathrm{F}$.

Gravity of $\begin{array}{lc}\begin{array}{l}\text { Gravity of } \\ \text { Fraction } \\ \text { Start }\end{array} & \begin{array}{c}\text { Gravity of } \\ \text { Total Over }\end{array} \\ \text { Initial B.P. } & \ldots \ldots \ldots \\ 69.1^{\circ} \mathrm{Be} & 69.1^{\prime} \mathrm{Be}^{\prime} \\ 62.0 & 65.4 \\ 57.9 & 62.9 \\ 54.7 & 60.9 \\ 54.5 & 59.5 \\ 52.3 & 58.2 \\ 52.5 & 56.4 \\ 52.0 & 56.9 \\ 50.9 & 55.2 \\ 52.1 & 55.1 \\ 53.5 & 55.0\end{array}$

Distillation was carried on at rate of
The next table shows the distillation of the same oil with the 8% of aluminum chloride. In the distillation with aluminum chloride, the rate of 3.3% per hour was fairly closely adhered to until such a temperature was obtained in the oil at which the aluminum chloride began to volatilize. To prevent this, a temperature was maintained from this point on, such that the aluniinum chloride would not volatilize. At approximately 60%, it was not possible to get further gasoline distillate without carrying over tarry matter or aluminum chloride compounds. 30% of 58.2° Be^{\prime} gasoline, water white and free from olefins was obtained and 60% of $55^{\circ} \mathrm{Be}^{\prime}$ water white naphtha was obtaincd.

Distillation of Burton Still Charging Stock at rate of 3.3% per hour with the use of 8% of aluminum chloride. Gravity of original charge $=.864=32.3^{\circ} \mathrm{Be}^{\prime}$.
ible Distillation possible. Distillation was then continued at the fastest possible rate that would allow cracking without volatilizing the aluminum chloride.

In Fig. 37 is a graph showing the vapor and oil temperature at different stages of the distillation with and without the use of aluminum chloride.

Fig. 38 shows the quality of the gasoline made by the use of aluminum chloride compared with the quality of normal gasoline of the same end point.

Fig. 39 shows the relation of the specific gravity of various naphthas or gasolinc compared with the naphtha or gasoline produced with the use of aluminum chloride. It is to be noted in these curves that the lower specific gravity and lower boiling point fractions are much the same as the corresponding paraffin hydrocarbons from other sourees but that at specific gravity of about 800 the product by use of aluminum chloride is more strictly of a paraffin nature.

Fig. 40 sets forth the olefin content of gasoline made by different processes for treating heavier petroleum hydrocarbons.

Curve No. 1 is that using aluminum chloride which is essentially free from olefins.

Curve No. 2 shows the olefin content of Burkburnett crude oil.

Curve No. 3 shows the olefin content of gasoline produced by very high pressure cracking.

Curves No. 4 and No. 5 shows the olefin content of gasoline made by cracking at 80 to 100 pounds.

Curves No. 6 and No. 7 show the olefin content of gasoline produced by cracking at high temperature, such as vapor phase processes.

Important Literature on the Subject.

Friedel \& Crafts-Aluminum chloride for chemical reactions. British Patent No. 4,769-1877.
C. Engler \& O. Routala-The action of aluminum chloride on amylene. Ber. 42-pages 4,613-20-1909.

Wm. Steinkopf \& Michael Freund-The formation of naphthenes and paraffins from olefins by synthesis of the latter with aluminum chloride-Ber. 47-pages 411-20-1914.
A. M. McAfee-Aluminum Chloride in the production of gasoline and its recovery. U. S. Patents Nos. 1,099,096, 1914; 1,127,465, 1915; $1,144,304,1915 ; 1,202,081,1916 ; 1,277,092,1918 ; 1,277,328-9,1918$.

Pictet \& Lerczynska- The action of aluminum chloride on petroleum. Bull. Soc. Chim. No. 19, pages 326-34-1914.
A. M. McAfee-Improvements of high boiling petroleum oil and manufacturing of gasoline by the action of aluminum chloride. Journal of Industrial \& Engineering Chemistry, Sept., 1915.
W. E. Henderson \& W. C. Gangloff-Action of anhydrous aluminum chloride upon unsaturated compounds. Journal of American Chemical Society No. 38, pages 1,382-4-1916. Journal of. Am. Chem. Soc. No. 39, pages $1,420-7-1917$.
A. M. McAfee-Manufacture of gasoline. Metallurgical \& Chemical Engineering No. 13, pages 592-7-1915.
G. W. Gray-Manufacture of gasoline by the use of aluminum chloride. U. S. Patents No. 1,193,540-1-1916.

Alexander and Taber-Producing low boiling hydrocarbons by heating vapors with $\mathrm{Al} \mathrm{Cl}_{3}, \mathrm{Fe} \mathrm{Cl}_{3}$, or $\mathrm{Zn} \mathrm{Cl}-\mathrm{U}$. S. Patent, 1,381,098June 14, 1921.

Danckwardt—Pat. No. 1,373,653-Apr. 5, 1921.

	Eielod	(f)			-0, ${ }^{\text {a }}$								cod			化右								
		,	or		cose	rer		erp	cor		0	- 0	Pos	orr										
		Ees			$(26$	$B \mathrm{~B}$	e) rese		-und	ded		inco	¢rata	art										
																,								
	ints	erth?			fore																			
5																								
	410																							
												-		1										
							10^{9}					4				S								
30																${ }^{7}$								
																(i)								
										1.						0								
													U			/								
													u											
20															π									
												1												
														6)										
10													10											
												,	1											
													$4 \frac{1}{\ln m}$											
	50°	Cl				sicl				500				350						45				-

[^3] Trmperatures.

Hydrocarbons

 o. 3
0. 868
1.3 c. 우운웅
 に

No. $\mathbf{1}=$ Mir-Continent fuel oil average of 48 cars on
No. $2=$ Heavy Kansas crute oil from Allen County, No. ${ }^{3}$ 三 Garber residuum from Enin, Oklal.
No. $5=$ California crutle oil.

Oil used.
Specifie gravity Baume gravity Amount, ce.

Max. Pressure, Atmos. Maximum Temperature, ${ }^{\circ} \mathrm{C}$ Pressure (a) $400^{\circ} \mathrm{C}$., Atms Pressure after cooling Gas, \% by weight. Oil recovered, ce. Specific gravity. Baume gravity... Viscosity @ $70^{\circ} \mathrm{F}$ \% Volume. \% Shrinkage. Speeific gravity Baume gravity Residuum, \% Specific gravity Baume gravily....
Viseosity @ $70^{\circ} \mathrm{F}$.

California lieat treated and
skimmed.
Hualdton crude.
Mid-Continent k
Mid-Continent kerosene
Md-Continent oras oil.
Mrxican flux oil (natural)
|i || || ||

Effect of Varying Pressure on the Products of Cracking.

KEROSENE.

Using kerosene of specific gravity 08155 in vessel with relation of vapor space to oil of 2 to 1 .

Pressure, atmospheres.............. 30	40	55	75	90
\% distillate to $410^{\circ} \mathrm{F}$................. 28.0	32.5	380	43.7	459
Shrinkage, volume \%/................ 0.0	0.4	2.4	5.0	7.0
Specific gravity of cracked oil.. . 810	. 808	. 807	. 806	. 805
Specific gravity of residue....... . 828	. 833	. 845	. 871	. 888
Cold pressure, atmospheres...... 2.5	4.0	65	10.0	11.8

FUEL OIL.

Fuel oil with specific gravity of 0.908 in vessel with relation of vapor space to oil of 2 to 1 .

Pressure, atmospheres............... 30	40	55	75	90
\%o distillate to $410^{\circ} \mathrm{F}$................. 14.3	22.3	25.4	325	38.7
Shrinkage, volume \%................ 30	3.3	9.0	12.0	14.0
Specific gravity of cracked oil .879	. 869	. 862	. 837	. 818
Specific gravity of residue........ . 914	. 918	. 926	. 930	. 932
Cold pressure, atmospheres.....- 5	6	10	13	15.5

Fig. 43-Relation of Gravity to Percent Distilled of Water White Distillate Before and After Cracking.

Properties of Water White Kerosene Distillate Before and After Cracking.

Fi_{6}	Distilling Temperature		Gravity of Stream	
	Before Cracking	After Cracking	Before Cracking	After Cracking
0	$294{ }^{\circ} \mathrm{F}$.	Room		
2.5	355	Room		
5.0	363	$80^{2} \mathrm{~F}$.	$.766=53.2^{\circ} \mathrm{Be}^{\prime}$. $614=98.9^{\circ} \mathrm{Be}^{\prime}$
7.5	366	105	$.767=52.9^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$ $.768=52.7^{\circ} \mathrm{Be}^{\prime}$	$.634=91.7^{\circ} \mathrm{Be}^{\prime}$.654 $64.8{ }^{\circ} \mathrm{Be}^{\prime}$
10.0	367	130	$.768=52.7^{\circ} \mathrm{Be}^{\prime}$	$.654=84.8{ }^{\circ} \mathrm{Be}^{\prime}$
12.5	370	158	$769=52.5^{\circ} \mathrm{Be}^{\prime}$	$67=80.6^{\circ} \mathrm{Be}^{\prime}$
15.0	379	188	$770=52.2^{\circ} \mathrm{Be}^{\prime}$	$.680=76.6^{\circ} \mathrm{Be}^{\prime}$
17.5	381	218	$.771=52.0^{\circ} \mathrm{Be}^{\prime}$	$.695=72.1^{\circ} \mathrm{Be}^{\prime}$
20.0	382	237	$.772=51.8^{\circ} \mathrm{Be}^{\prime}$	$.710=67.8^{\circ} \mathrm{Be}^{\prime}$
22.5	384	256	$773=51.5^{\circ} \mathrm{Be}^{\prime}$	$720=65.0^{\circ} \mathrm{Be}^{\prime}$
25.0	391	269	$774=513^{\circ} \mathrm{Be}^{\prime}$	$730=63.3^{\circ} \mathrm{Be}^{\prime}$
27.5	395	282	. $774=51.3{ }^{\circ} \mathrm{Be}^{\prime}$	$739=59.9^{\circ} \mathrm{Be}^{\prime}$
30.0	399	296	$775=51.0^{\circ} \mathrm{Be}^{\prime}$	$749=57.4^{\circ} \mathrm{Be}^{\prime}$
32.5	402	310	$.776=50.8^{\circ} \mathrm{Be}^{\prime}$.756 $=55.6{ }^{\circ} \mathrm{Be}^{\prime}$
35.0	406	319	$.777=50.6^{\circ} \mathrm{Be}^{\prime}$	$.764=53.7{ }^{\circ} \mathrm{Be}^{\prime}$
37.5	408	328	$.777=50.6^{\circ} \mathrm{Be}^{\prime}$	$769=52.5^{\circ} \mathrm{Be}^{\prime}$
40.0	410	340	$.778=50.3^{\circ} \mathrm{Be}^{\prime}$	$775=510^{\circ} \mathrm{Be}^{\prime}$
42.5	414	352	$779=50.1^{\circ} \mathrm{Be}^{\prime}$	$.777=50.6^{\circ} \mathrm{Be}^{\prime}$
45.0	417	359	$.780=49.9^{\circ} \mathrm{Be}^{\prime}$	$.780=49.9^{\circ} \mathrm{Be}^{\prime}$
47.5	420	366	$.780=49.9^{\circ} \mathrm{Be}^{\prime}$	$.782=49.4^{\circ} \mathrm{Be}^{\prime}$
50.0	423	371	$.781=49.6^{\circ} \mathrm{Be}^{\prime}$	$.785=48.7^{\circ} \mathrm{Be}^{\prime}$
52.5	425	376	$.782=49.4^{\circ} \mathrm{Be}^{\prime}$	$787=48.3^{\circ} \mathrm{Be}^{\prime}$
55.0	431	386	$.783=49.2^{\circ} \mathrm{Be}^{\prime}$	$790=47.6^{\circ} \mathrm{Be}^{\prime}$
57.5	433	396	$.784=48.9^{\circ} \mathrm{Be}^{\prime}$	$.792=47.1^{\circ} \mathrm{Be}^{\prime}$
60)	437	405	$.785=48.7^{\circ} \mathrm{Be}^{\prime}$	$.793=46.9^{\circ} \mathrm{Be}^{\prime}$
125	440	414	$.786=48.5^{\circ} \mathrm{Be}^{\prime}$	$795=46.4^{\circ} \mathrm{Be}^{\prime}$
65.0	444	418	$.787=48.3^{\circ} \mathrm{Be}^{\prime}$	$798=45.8 \mathrm{Be}^{\prime}$
67.5	448	422	$788=48.0^{\circ} \mathrm{Be}^{\prime}$	$798=45.8^{\circ} \mathrm{Be}^{\prime}$
70.0	453	429	$.789=47.8^{\circ} \mathrm{Be}^{\prime}$	$.800=45.4^{\circ} \mathrm{Be}^{\prime}$
72.5	457	436	$.790=47.6{ }^{\circ} \mathrm{Be}^{\prime}$	$802=44.9^{\circ} \mathrm{Be}^{\prime}$
750	462	443	$.792=47.1^{\circ} \mathrm{Be}^{\prime}$	$.805=44.2^{\circ} \mathrm{Be}^{\prime}$
775	468	450	$793=46.9^{\circ} \mathrm{Be}^{\prime}$. $808=43.6^{\circ} \mathrm{Be}^{\prime}$
80 ()	473	459	$.794=46.7^{\circ} \mathrm{Be}^{\prime}$. $812=42.7^{\circ} \mathrm{Be}^{\prime}$
825	479	468	$795=46.4^{\circ} \mathrm{Be}^{\prime}$	$817=41.7^{\circ} \mathrm{Be}^{\prime}$
850	485	484	$797=46.0^{\circ} \mathrm{Be}^{\prime}$	$823=40.4^{\circ} \mathrm{Be}^{\prime}$
87.5	493	500	. $800=45.3{ }^{\circ} \mathrm{Be}^{\prime}$	$830=38.9^{\circ} \mathrm{Be}^{\prime}$
900	506	52.3	$803=44.7^{\circ} \mathrm{Be}^{\prime}$	$837=37.5^{\circ} \mathrm{Be}^{\prime}$
	516	547	$807=43.8^{\circ} \mathrm{Be}^{\prime}$	$851=34.7^{\circ} \mathrm{Be}^{\prime}$
450	533	600	$.812=42.7^{\circ} \mathrm{Be}^{\prime}$	$.866=31.9^{\circ} \mathrm{Be}^{\prime}$
1375	560	648		$936=19.6^{\circ} \mathrm{Be}^{\prime}$
100) 0	608	700		

FRACTIONAL GRAVITY DISTILLATION ANALYSIS OF COAI. TAR BENZOL.

Laboratory Number, 44118; Specific Gravity, $0.880 ;{ }^{\circ} \mathrm{Be}^{\prime}$ U. S., 29.0°; Cold Test, $40^{\circ} \mathrm{G}$.

7	Time	$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{F} \text {. } \end{aligned}$	Gravity of Fraction	Gravity of Total Over	Gravity of Stream
	3:25				
0	3:31	173 178			
5	3:37	179	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$
10	3:42	180 180	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$
10		180			
15	3:47	180	$0.883=28.7^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$
20	3:51	180	$0.882=28.9^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$
		180			
25	3:56	180	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$
30	4:00	181	$0.882=28.9^{\circ}{ }^{\text {. }} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$
35	4:05	181	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$
		182			
40	4:10	182	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$
45	4:15	182	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$
		182			
50	4:19	182	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
55	4:23	183	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
		183	0.880 ${ }^{\text {a }}$. $3^{\circ} \mathrm{Be}$	$0.881=29.10{ }^{\circ}$	$0.880=23.8{ }^{\circ}$
60	4:28	184	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
65	4:33	184	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	0. $880=29.3{ }^{\circ} \mathrm{Be}^{\prime}$
65	4:83	185	$0.880=29.3^{\circ} \mathrm{Be}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
70	4:38	186	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
75	4:43	187	$0.880=29.3{ }^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$
		188			
80	4:48	189	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.881=29.1^{\circ} \mathrm{Be}^{\prime}$	$0.879=29.4^{\circ} \mathrm{Be}^{\prime}$
85	4:53	192	$0.879=29.4^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.879=29.4^{\circ} \mathrm{Be}^{\prime}$
90	4:57	196	$0.879=29.4^{\circ} \mathrm{Be}^{\prime}$		
		205		$0.880=29.3^{\circ} \mathrm{B}$	$0.877=29.8^{\circ} \mathrm{Be}^{\prime}$
95	5:01	216			
100	5:10	225	$0.876=30.0^{\circ} \mathrm{Be}^{\prime}$	$0.880=29.3^{\circ} \mathrm{Be}^{\prime}$	$0.876=30.0^{\circ} \mathrm{Be}^{\prime}$

FRACTIONAL GRAVITY DISTILLATION ANALYSIS

of Benton Process Gasoline; Specific Gravity, 0.758 ; ${ }^{\circ} \mathrm{Be}^{\prime}$ U. S., 54.7 ${ }^{\circ} \mathrm{Be}^{\prime}$ Tag, 55.1°; Olefins, 16.0%.

\%	Time	$\begin{gathered} \text { Temp. } \\ \stackrel{\circ}{\mathrm{F} .} . \end{gathered}$	Gravity of Fraction	Gravity of Total Over	Gravity of Stream
	10:09				
0	10:14	85 155			
5	10:22	164	$0.694=72.4^{\circ} \mathrm{Be}^{\prime}$	$0.694=72.4{ }^{\circ} \mathrm{Be}^{\prime}$	$0.694=72.4^{\circ} \mathrm{Be}^{\prime}$
10	10:28	176	$0.695=72.1^{\circ} \mathrm{Be}^{\prime}$	$0.694=72.4^{\circ} \mathrm{Be}^{\prime}$	$0.689=71.2^{\circ} \mathrm{Be}^{\prime}$
15	10:35	184	$0.701=70.3^{\circ} \mathrm{Be}^{\prime}$	$0.696=71.8^{\circ} \mathrm{Be}^{\prime}$	$0.705=69.2^{\circ} \mathrm{Be}^{\prime}$
		193			
20	10:42	199	$0.710=67.8^{\circ} \mathrm{Be}^{\prime}$	$0.700=70.6^{\circ} \mathrm{Be}^{\prime}$	$0.714=66.6^{\circ} \mathrm{Be}^{\prime}$
25	10:48	211	$0.718=65.5^{\circ} \mathrm{Be}^{\prime}$	$0.704=69.5^{\circ} \mathrm{Be}^{\prime}$	$0.722=64.4^{\circ} \mathrm{Be}^{\prime}$
30	10:54	216	$0.727=63.1^{\circ} \mathrm{Be}^{\prime}$	$0.707=68.6^{\circ} \mathrm{Be}^{\prime}$	$0.731=62.0^{\circ} \mathrm{Be}^{\prime}$
35	10.58	228	$0.735=610^{\circ} \mathrm{Be}^{\prime}$	$0.711=67.5^{\circ} \mathrm{Be}^{\prime}$	
35	10:58	238	$0.735=61.0^{\circ} \mathrm{Be}$	$0.711=67.5{ }^{\circ} \mathrm{Be}$	$0.738=60.2^{\circ} \mathrm{Be}$
40	11:03	244	$0.742=59.2^{\circ} \mathrm{Be}^{\prime}$	$0.715=66.4{ }^{\circ} \mathrm{Be}^{\prime}$	$0.745=58.4^{\circ} \mathrm{Be}^{\prime}$
45	11:09	2484	$0.748=57.6^{\circ} \mathrm{Be}^{\prime}$	$0.719=65.3{ }^{\circ} \mathrm{Be}^{\prime}$	$0.751=56.9^{\circ} \mathrm{Be}^{\prime}$
		258			
50	11:14	264	$0.755=55.9^{\circ} \mathrm{Be}^{\prime}$	$0.722=64.4{ }^{\circ} \mathrm{Be}^{\prime}$	$0.758=55.1^{\circ} \mathrm{Be}^{\prime}$
55	11:19	270 278	$0.761=54.4^{\circ} \mathrm{Be}^{\prime}$	$0.729=62.6^{\circ} \mathrm{Be}^{\prime}$	$0.770=52.2^{\circ} \mathrm{Be}^{\prime}$
		283			
60	11:25	290	$0.767=52.9^{\circ} \mathrm{Be}^{\prime}$	$0.729=62.6^{\circ} \mathrm{Be}^{\prime}$	$0.770=52.2^{\circ} \mathrm{Be}^{\prime}$
65	11:29	297	$0.773=51.5^{\circ} \mathrm{Be}^{\prime}$	$0.732=61.8^{\circ} \mathrm{Be}^{\prime}$	$0.776=50.8^{\circ} \mathrm{Be}^{\prime}$
70	$11 \cdot 34$	312 320	$0.779=50.1^{\circ} \mathrm{Be}^{\prime}$	0. $736=60.7^{\circ} \mathrm{Be}^{\prime}$	0.781 $=49.6^{\circ} \mathrm{Be}^{\prime}$
70	11:34	328	$0.779=50.1{ }^{\circ} \mathrm{Be}$	$0.736=60.7^{\circ} \mathrm{Be}$	$0.781=49.6{ }^{\circ} \mathrm{Be}$
75	11:41	336	$0.784=48.9^{\circ} \mathrm{Be}^{\prime}$	$0.739=59.9^{\circ} \mathrm{Be}^{\prime}$	$0.788=48.0^{\circ} \mathrm{Be}^{\prime}$
80	11:46	348 362	$0.793=46.9^{\circ} \mathrm{Be}^{\prime}$	$0.742=59.2^{\circ} \mathrm{Be}^{\prime}$	$0.797=46.0^{\circ} \mathrm{Be}^{\prime}$
85	11:53	371 388	$0.801=45.1^{\circ} \mathrm{Be}^{\prime}$	$0.746=58.1^{\circ} \mathrm{Be}^{\prime}$	$0.808=43.6^{\circ} \mathrm{Be}^{\prime}$
		406			
90	11:59	428 460	$0.815=42.1^{\circ} \mathrm{Be}^{\prime}$	$0.749=57.4^{\circ} \mathrm{Be}^{\prime}$	$0.823=40.4^{\circ} \mathrm{Be}^{\prime}$
95	12:05	492	$0.832=38.5^{\circ} \mathrm{Be}^{\prime}$	$0.754=56.1^{\circ} \mathrm{Be}^{\prime}$	

Remarks: 36 cc. residuum; loss, $1 / 2 \%$.

Formulae for Calculating the Cost of Manufacture of Natural and Synthetic Gasoline.

Key to Symbols.

$B e^{\prime}=$ gravity of crude oil in degrees Baume'.
$\mathrm{n}=$ per cent of natural gasoline of 58 gravity in the crude.
$c=$ value of crude oil at refinery in dollars per bbl.
$\mathrm{f}=$ value of fuel oil at refinery in dollars per bbl .
$\mathrm{s}=$ value of gas oil at refinery in dollars per bbl.
$\mathrm{a}=$ per cent of artificial or synthetic gasoline in crude.
(1) \% artificial gasoline obtainable by commercial cracking.

$$
[100-n][25+1.45(\mathrm{Be}-10-.3 \mathrm{n})]
$$

$\mathbf{a}=$
Total gasoline $=\mathrm{n}+\mathrm{a}$
(2) Cost of gasoline per gallon when made by skimming only $=$

$$
\mathrm{c}+35-\mathrm{f}(.95-.01 \mathrm{n})
$$

.42 n
(3) Cost of gasoline per gallon when made by cracking and skinı$\operatorname{ming}=$

$$
\mathrm{c}+.40+\mathrm{a}(.0202+.015 \mathrm{f})-\mathrm{f}(.95-.01 \mathrm{n})
$$

$$
.42(a+n)
$$

(4) Cost of gasoline per gallon when made by cracking gas oil = $\$ 2.02+1.41 \mathrm{~s}-.05 \mathrm{f}$

42
 ILLUSTRATION OF ABOVE FORMULAE.

(1) Total gasoline from crude oils.

> Gravity Natural Artificial Total

Mexia, Texas crude $37^{\circ} \mathrm{Be}^{\prime}$

5	68
40	37

Burkburnett, Texas 40
Ranger, Texas 38
Mexico, Panuco 12
Tuxpan, Mexico 17.5
$25 \quad 49$
77
$5 \quad 34$

74
(2) Cost of gasoline by skimming only-

$$
\begin{aligned}
& \mathrm{c}=\$ 2.00 \text { per bbl. } \\
& \mathrm{n}=25 \% \mathrm{Be}^{\prime}=37 \\
& \mathrm{f}=\$ 1.00 \text { per bbl. }
\end{aligned}
$$

$$
\frac{2.35-(.95-.25)}{.42)(25)}
$$

(3) Cost of gasoline by skimming and cracking-using values given above.

$$
2.00+.40+47.4(.0202+.015)-(.95-.25)
$$

$=11 \mathrm{c}$ per gallon
$42(47.4+25.0)$
(4) Cost of gasoline made from gas oil.

$$
\text { With } \mathrm{s}=\$ 1.25 \text { and } \mathrm{f}=\$ 1.00
$$

Cost of cracked gasoline.
$\$ 202+1.75-.05$

Costs of Refining Petroleum.

(By Benner in "Petroleum," May, 1920)
COST
(Figured on Daily Basis)

2,000 barrels crude per day @ $\$ 3.75$ per barrel.	\$7,500.00
Pipe line charges, 30 c per barrel.........	600.00 250.00
Fuel power and water	200.00
'Taxes and insurance..	30.00
Incidentals	5000
Plant depreciation	00
	\$8,680.00
OUTPUT	\$8,
(Figured on Daily Basis Burkburnett Crude)	
Gasoline, 34 per cent, 28,560 gals. © 21c per gal. (wholesale)	5,997.60
Kerosene, 12 per cent, 10.080 gals. @ 1tc per gal. (wholesale)	1,411.20
Fuel oil, 50 per cent, 1,000 bbls. @ \$2.60 per bbl. (wholesale).	2,600.00
	\$10,00s.so
Loss, 1 per cent. ${ }_{\text {Daily }}$	
Yearly profit	48,44000

Profits from Petroleum Refining.

(By F. W. Freeborn in Oil \& Gas Journal, 1920)

Profits of Skimming Plant (1916)
Based on Market Price Aug., 1916, and Cliarging $\approx, 500$ IBhls. of Crude Oil l'er ¿H-1Iour Inay.

YIELD PER DAY.

Total sales per day.
$\$ 9,402.75$

COST PER DAY.

Fuel oil to burners \& stills, 397 bbis. $\$ 1.89$.

Chemicals for treating oil and water...
Total cost per day.. . . $35,967.83$
Net profit per day . $\$ 3,434.32$
Net profit per barrel.. 1.37
Cost to refine one barrel of crude.. 33 S

Profits of Skimming Plant, 1920 (Freeborn)

Eased on Market Prices April, 1920, and Charging 2,500 Barrels of Crude Oil Per 24-Hour Day.

Yield Per Day.

Cost Per Day.

lasual on market pricesof Apral, 1920 , and hontling distillate from $2, i n 0$ barrels of antle onl per day. Distillate handled 33 of of crude run. (Freeborn.)

Yield Per Day.

Light lubricating oil	15 m	8.347 .5	gals.	II	311.35	\$	2,921.63
Mrulium luhricating oil	11%	6,121.5	gals.	(1)	. 3.5		2,142.52
Ha ary lubricating oil	4%	5.0 กS. 5	gats.	6	. 45		$\underline{2,253.5}$
Ilatior motor ail	$5{ }_{50}$	-,7¢9.5	gals.	(13)	. 60		1,669.50
lataffir. Wax	6%	3,339	gals.				
		$\bigcirc 2.026$	lbs.	(11)	0.8		1,769.98
F*uel all	48%	26,712	gais.	(a)	. 0725		1,936.62
l.oss	6%	3,339	gals	(a)	. 60		0.00
	100%	55,650	gals.				

Cost Per Day.

Total Costs.

Crude oil run $2,500 \mathrm{bbls}$. $\$ 4.00$

$\$ 10,000.00$

Electric light for power and motors.............................. . . 25.00
Chemicals and fuller's earth... ${ }^{2}$. 2 $^{5} .00$
Salaries charged to operation...................................... 550.00
Tolal costs
12.15760

Net profits per day... $\quad 9.046 .10$
Net profit per barrel.
3.61

Cost to refine one barrel
Net profit operating on 80% time basis................................... $2,641,461,20$

Profits From Filtering and Cold Settling Plant (Freeborn)

Filtering and Cold Settling Plant for miaking Eright Stocks from Cylinder Stock. installed in conjunction with Skimming Plants having a charging capocity of $2,500 \mathrm{bbls}$. of crude per day. Yield of Cylinder stock from crude will average from 10% to 20%. The following figures based on $15 \%_{c}$
15% of $2,500-375$ bbls. or 15,750 zallons to be handled. Co'd seitled
stock, 15% or 15,750 gal. (a) $\$ 0.75 \ldots$
$\$ 11 . \$ 12.50$
Cost to produce:
Fuel oil-3i5 bbls, @ \$3.05... 1.113 .75
Steam and electric power.. 10.00
Chemicals and fuller's earth..................................... 175.00
Salary charged to operation. 95.00
Loss of 56° naphtha in mix and wash...................... 141.00

Net profit per vear figuring on operating sos or 292 ravs.......... 2, 963,143.00
The necessary equipment to be adder to a skimmins plant to make bright stocks from cylinder stocks, such as refrigerating plant, filtering plant, cold settling tanks and steam stills for reclaiming naphtha from cold settled stocks and filter wash, will cost approximately $\$ 151.146 .25$.

Net profits per day $\$ 10,147.75 \times 292$ days. S0\% time- $\$ 2,963,143.00$.

Cost of Construction (Freeborn).

This represents a profit on the investment of much more than 1000%.
The question is often asked, what will a refinery cost? We are giving below in a general way these costs. These include neither tank airs mor working capital but only cost of refinery ready to operate.

We have assumed a capacity of 2,500 harrels and will sig that a smaller plant will cost a little more and a larger one a little less per barrel Topping plant 2,500 bbls.@ $\$ 100$ per barrel or Complete refinery, 2,500 bbls. © $\$ 300$ per harrel nr 0 on Complete lubricating plant-Added to present topping plant of 2,500
bbls. would be $\$ 800$ per bbl. of lubricants which is 6a, bhls, or. . 500.000 .00 Filtering and cold settling plant-Added to 2,500 bbl. topping plint,
$\$ 400$ per bbl. for 400 bbls. or.
$160,000.00$

COSTS OF REFINING IN 1922.

In 1922 (April) it may be assumed that a skimming plant will cost $\$ 100$ par barrel per day capacity including limited storage hut not including pipe lines outside of refinery or tank cars. It costs approximately 50 cents to distill a barrel of crude oil to coke. The cost of making, barrel of gasoline by cracking is $\$ 2$ to $\$ 5$ and $11 / /$ to $13 / 4$ barrels of gas oil is required to make it . With gas oil at $\$ 1.40$ per barrel, the total cost of a barre: of cracked gasollne is $\$ 3.75$ to $\$ 10.00$. With fuel oil at $\$ 1.00$ and gas oil at $\$ 1.26$ a plant in Illinois is able to make 600 barrels of gasoline per day at a total cust of $\$ 3.70$ per barrel.
The profit derived from a refinery depends upon:
The price of crude oil.
The location of the particular refinery in respect to availability of crude oll and the markets for the refined products.

The general market for refined products.
The quality of the crude oil avallable.
The amount of fuel oil, gas oil and unprofitable products.
The method of refining and refinery management.
The working and reserve capital.
The refinery making the most profit as a general rule is the one that makes the greatest amount of gasoline and lubricating oils as they are the most stable products of petroleum.

COST OF REFINING CALIFORNIA PETROLEUM.
 (Report of Federal Trade Commission, 1921)

The cost of refining crude petroleum is shown in detail for five companies named for the period 1916-June 30, 1919, and for two companies from 1914 to the latter date. The cost of refining a barrel of crude petroleum including the cost of the crude for all companies combined increased from $\$ 0.738$ per harrel in 1916 to $\$ 1.259$ for the first half of 1919. The crude petroleum costs ar. taken at the actual cost of production, or at purchase price, if bought. There Was a wide range in the costs for individual companies. In 1916, the lowest cost for a particular company was $\$ 0.602$ and the highest $\$ 0.845$. In 1919 , the lowest cost was $\$ 0.95$ and the highest $\$ 1.631$. The companies showing high costs are those purchasing a large proportion of the crude petroleum they refine.

The principal element of cost for a barrel of refined petroleum products is the raw material-crude patrcleum-even when the crude is charged to the refinery at its cost of production plus transportation cost. On this basis, the raw material represented 79.4% of the total cost in 1914 and abrut 74% in 1919. The refintry operating expense was about 13.5% in 1914 and 17.7% in 1919. While the general and administrative and depreciation combined were 7.1% in 1914 and 8.3\% in 1919. The refining labor cost is a very small factor in the cost ot a harrel of refined petroleum products, and during the period coverod, it varied from only $\$ 0.012$ in 1914 to $\$ 0.046$ in 1919.

Gasoline.

Gasoline as now found on the market is a mixture of petroleum hydrocarbons, having an initial boiling point of from $70^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$, an end boiling point of from $360^{\circ} \mathrm{F}$ to $450^{\circ} \mathrm{F}$, gravity of 55° to $61^{\circ} \mathrm{Be}^{\prime}$.,

Fig. 47-The Demand for Gasoline.
a sweet to oily aroma, a water white color, specific heat of 0.50 , and heat of vaporization of 130 B.T.U. per pound.

The particular hydrocarbons composing it belong to a general group known as the paraffins. Other types of hydrocarbons are occasionally present in a very small amount. These are known as olefins and as benzenes or aromatics. The olefins are removed by a thorough treatment with sulphuric acid, but the benzenes remain if originally present.

Ordinary gasoline made by the natural distillation of Mid-Continent crude oil will contain several or all of the following substances:

\quadNoiling	Specific gravity	
1. Pentane	$97^{\circ} \mathrm{F}$	0630
2. Hexane	$156^{\circ} \mathrm{F}$	0.670
3. Heptane	$209^{\circ} \mathrm{F}$	0697
4. Octane	$258^{\circ} \mathrm{F}$	0.718
5. Nonane	$302^{\circ} \mathrm{F}$	0.740
6. Decane	$343^{\circ} \mathrm{F}$	0.750
7. Undecane	$383^{\circ} \mathrm{F}$	0.760

Baume' vaporization calgravity ories pergram

92.2°	840
78.9°	80.5
79.9°	74.0
65.0°	71.5
59.2°	67.5
56.7°	64.5
54.2°	61.5

The following aromatic compounds are produced by pyrogenic decomposition of heavy hydrocarbons and rarely exist naturally in crude petroleum.

They are produced by the cracking of oil in the vapor phase and at high temperatures and occur in artificial or what has been called "synthetic" gasoline. Their chief origin is in byproducts from the coking of coal.

Name
Benzol ($\mathrm{C}_{6} \mathrm{H}_{6}$)
Toluol ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$)
Boiling Point Specific gravity Baume gravity

Xylene ($\mathrm{C}_{6} \mathrm{H}_{1}\left(\mathrm{CH}_{3}\right)_{2}$
$176^{\circ} \mathrm{F}$
0.880
29.1°

A small amount of these hydrocarbons in commercial gasoline very materially affects the gravity.

The character of gasoline is governed almost entirely by its use for automobiles. It is also used to some extent for stove gasoline and for cleaning purposes, in which case it has lower end point and a higher Baume' gravity.

Gasoline originates from one or more of the following sources:

1. The natural product distilled from crude oil. This constitutes about 70% of the total on the market (1921).
2. As a condensate from natural gas and known as casinghead gasoline. This constitutes about 5% of all gasoline and is always incorporated with heavy hydrocarbons such as naphtha or with gasoline distilled from a heavy crude or with gasoline made by cracking.
3. The light hydrocarbons produced by the pyrogenic decomposition of heavy petroleum residua. This constitutes about 25% of the market gasoline and tends to have a slight amount of aromatic compounds.

The most desirable properties of gasoline are low end point and a low initial boiling point, the usual refiner's practice being to call everything gasoline which distills up to a temperature of $410^{\circ} \mathrm{F}$. This practice in a light crude gives a $58^{\circ} \mathrm{Be}^{\prime}$ product, although in the unusually light crudes a 61° product is obtained and in heavy crudes a gravity as low as 54° may be obtained. Light crudes such as those from Mexia, Tex., give as high as 20% of naphtha without any gasoline but when this naphtha is blended with about 25% of casinghead gasoline it gives a good motor gasoline.

Figure 39 shows the relation of the boiling point to the specific gravity of ordinary market gasoline. Gasolines containing considerable olefins, aromatics or naphthenes have a higher relation of specific gravity to boiling point than do gasolines composed entirely of paraffin hydrocarbons.

Figure 49 shows the relation of the boiling temperature to the percentage distilled over in ordinary commercial gasoline. These curves show that the gravity alone is not a good measure of the quality of a gasoline. For example, a 58° gravity gasoline in one case has an initial boiling point of less than $100^{\circ} \mathrm{F}$ and in another case has an initial boiling point of $190^{\circ} \mathrm{F}$. A naphtha blended with casinghead will have a very high gravity test, but will show a very low initial boiling point and a very high end point.

COMPARISON OF GASOLINE SAMPLES COLLECTED BY BUREAU OF MINES.

January, 1921 and July, 1921.

District	Date	First Drop	20\%	50\%	90\%	$\begin{aligned} & \text { End } \\ & \text { Point } \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { B. } \end{aligned}$
New York.	Jan., 1921	117	206	264	363	417	265
	July, 1921	125	208	265	365	422	268
Difference.		+8	+2	+1	+2	$+5$	+3
Washington.	Jan., 1921	118	201	259	385	439	270
Washington	July, 1921	130	204	263	387	442	274
Difference.		+12	$+3$	$+4$	+2	+3	+4
Pittsburgh.	Jan., 1921	92	171	248	391	430	244
	July, 1921	112	181	247	382	435	259
Difference.		+20	+10	-1	-9	$+5$	+15
Chicago	Jan., 1921	117	191	248	387	439	264
	July, 1921	125	202	261	389	444	273
Difference	July, 1921	+8	$+11$	+13	+2	$+5$	+9
New Orleans .	Jan., 1921	123	211	270	366	428	279
	July, 1921	131	214	279	376	427	279
Difference.		+8	+3	$+9$	$+10$	-1	$+7$
St. Louis.	Jan., 1921	114	202	271	381	444	274
	July, 1921	128	205	268	383	441	276
Diference	July, 1921	+14	+3	-3	+2 97	-3	+2
Salt Lake City	Jan., 1921	112	206	282	397	439	285
	July, 1921	126	200	256	353	401	259
San Francisco.	Jan., 1921	124 +121	-6 210	-267	-455	-38	$\stackrel{26}{265}$
	July, 1921	129	206	258	355	421	265
Difference		+8	-4	-9	+1	+4	Same
8 Districts .	Jan., 1921	113	197	261	378	431	265
	July, 1921	125	201	261	376	432	269
Difference.		+12	$+4$	Same	-2	+1	+4
Federal Specifications.	Nov. 25, 1919	140	221	284	374	437	

N゙ig. 19—Distillation Curves of Gasoline Sold in 1921 (U. S. B. M.)

THE COMBUSTION OF GASOLINE.

 Average Results of Tests on Eleven 5-passenger Cars. (See J. I. and E. Chem. Jan. 1921, Page 51.)| CONDITION
 OF TEST | Miles per
 Gallon | Completeness of Combustion | Lbs. Air per Lb. of Gasoline | Analysis of Exhaust Gas Per Cent by Volume | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | CO_{2} | O_{2} | CO | CH_{4} | H_{2} | N_{2} |
| Engine racing | | 70 | 12.2 | 9.1 | 1.5 | 6.9 | 0.8 | 3.0 | 78.8 |
| Engine idling. | | 69 | 11.8 | 8.9 | 1.4 | 7.6 | 0.6 | 3.7 | 77.8 |
| Three per cent grade (up) | | | | | | | | | |
| 15 miles per hour 10 miles per hour . . . | 13.2 | 75 | 12.6 | 10.2 9.9 | 1.1 | 5.7 | 0.6 | 2.6 | 79.8 |
| 10 miles per hour 3 miles per hour | 12.7 6.2 | 75 72 | 13.0 12.2 | 9.9 9.8 | 1.5 0.9 | 5.7 6.5 | 0.5 0.6 | 2.5 3.0 | 79.8 79.2 |
| Down 3\% grade- | | | | | | | | | |
| 15 miles per hour | 24.5 | 70 | 12.3 | 9.5 | 1.4 | 6.5 | 0.9 | 2.9 | 78.8 |
| 10 miles per hour | 22.8 | 70 | 12.3 | 8.6 | 1.4 | 7.0 | 0.7 | 3.1 | 79.2 |
| 3 miles per hour. | 9.9 | 72 | 12.9 | 9.5 | 1.5 | 6.0 | 0.7 | 2.7 | 79.6 |
| Level grade- | | | | | | | | | |
| 15 miles per hour | 16.9 | 76 | 14.4 | 9.3 | 2.2 | 5.6 | 0.8 | 2.8 | 79.3 |
| 10 miles per hour | 16.9 | 72 | 12.7 | 9.3 | 1.9 | 6.3 | 0.6 | 3.1 | 78.8 |
| 3 miles per hour. | 7.5 | 72 | 12.6 | 9.1 | 1.6 | 6.7 | 0.6 | 3.0 | 79.0 |

EFFECT OF CARBURETOR ADJUSTMENT ON GASOLINE CONSUMPTION AND EXHAUST GAS COMPOSITION.
Four-cylinder roadster, engine $41 / 8$ in. bore $\times 41 / 2$ in. stroke; Johnson carburetor; intake air and manifold heated; using gasoline $66.4^{\circ} \mathrm{Be}^{\prime}$ distillation $10 \%, 127^{\circ} \mathrm{F}$; $50 \%, 225^{\circ} \mathrm{F}$, dry $441^{\circ} \mathrm{F}$; average $239^{\circ} \mathrm{F}$. Tests at 15 miles per hour ascending a 3% grade of asphalt in good condition.
Gasoline consumption, miles per gallon
14.9
$13.9 \quad 10.6$
8.8

Exhaust gas analyses, per
cent-

$$
13.4
$$

12.0
10.2

O,
$1.7 \quad 1.4$
-0 1.2
$1.2 \quad 2.0$
03 11.6
$0.2 \quad 1.1$
0.0
0.8 1.0 0.0
83.5
$83.5 \quad 79.9$
6.4

Carburetor Adjustment, lbs. air per lb. gasoline
$14.5 \quad 14.2$
11.8
9.9

Per cent completeness of combustion

95
85
74
56
Condition of exhaust.........- clear clear slightly smoky smoky
Operation irregular smooth excellent poor power

TABLES FOR COMPUTING AUTOMOBILE HORSE POWER.

 (S. A. E. Horse Power Table.)| Four cycle
 Limit of error, | .005 |
| :---: | :---: | | Two cycle |
| :---: |
| Limit of erro |
| $\mathrm{HP}=\frac{\mathrm{D}^{2} \mathrm{~N}}{2.5}$ |$\quad \mathrm{HP}=\frac{\mathrm{D}^{2} \mathrm{~N}}{1.5151}$

$\mathrm{D}=$ diameter or bore of cylinder in inches.
$\mathrm{N}=$ number of cylinders.
LOLATILITV OF GASOLINE

AVERAGE COMPOSITION BY VOLUME OF EXHAUST GAS FROM TESTS OF 23 CARS AT 15 MLES PER HOUR.

	Level grad	Ascending 3\%
Carbon dioxide	8.9\%	9.6\%
Oxygen	2.3	1.3
Carbon monoxide	6.3	64
Methane	0.9	0.6
Hydrogen	3.0	29
Nitrogen	78.6	792
Total	100.0%	100.0\%

Exhaust gas at $65^{\circ} \mathrm{F}$ and 29.92 in Hg ., level grade $=988 \mathrm{cu} . \mathrm{ft}$. per gallon of gasoline.

ULTIMATE COMPOSITION OF GASOLINE.
Specific gravity ... 0.713
Carbon .. 84 3\%
Hydrogen ... 15.7%
Calorific value, 21,300 B.T.U. per $\mathrm{lb} .=130,000$ B.T.U. per gal.
EXHAUST GAS FROM 1 GAL. GASOLINE ON LEVEL GRADE TESTS CONTAINS:
$988 \times 63=62.2$ cu. ft. CO
$988 \times 0.9=9.1$ cu. ft. CH ${ }^{\prime}$
$988 \times 3.0=2.9 \mathrm{cu} . \mathrm{ft} . \mathrm{H}_{2}$

Fig. 52-Relation of Carbon Monoxide to the Gasoline Mixture in Gasoline Engines.

TOTAL HEAT IN UNBURNED GASES PER GALLON GASOLINE. $62.2 \times 320=19,900$ B.T.U.
$9.1 \times 1000=9,100$ B.T.U.
$29.6 \times 332=\frac{9,500}{38,500}$ B.T.U.
Gross B. T. U. per cu. ft. at $65^{\circ} \mathrm{F}$. and 29.92 in Hg . 38,500

$$
\overline{130,000}=29.6 \%
$$

29.6% of the total heat of the gasoline goes out in the exhaust in the form of combustible gases.

EFFICIENCY OF AUTOMOBILES MOVING ON LEVEL GROUND AT 35 MILES PER HR.

Water radiator and engine radiation..................................... 40%
Exhaust gas heat and pipe resistance of pipe...
Engine friction ... 6%
Engine power-transmitted ..
Transmission friction ... 3.5%
Rear tire friction.. 5.0%
Front tires and wheels..... 2.5%

The apparent flexibility of the engine is governed largely by reducing the last four items. This is largely accomplished by lubrication and tire inflation.

U. S. Specifications for Gasoline.

(Technical Paper 298 Bureau of Mines.)

AVIATION GASOLINE, FIGHTING GRADE.

General:

1. This specification covers the grade of gasoline used by the United States Government and its agencies as a fuel for fighting planes where the highest efficiency is required.
2. The gasoline shall be free from undissolved water and suspended matter.

Properties and Tests:

3. Color: The color shall be not darker than 25 Saybolt.
4. Doctor test: The doctor test shall be negative.
5. Corrosion test: One hundred ce of the gasoline shall cause no gray or black corrosion and no weighable amount of deposit when evaporated in a polished copper dish.
6. Unsaturated hydrocarbons: Not more than 1.0% of the gasoline shall be soluble in concentrated sulphuric acid.
7. Distillation range:

When 5% of the sample has been recovered in the graduated receiver, the thermometer shall not read more than $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$ or less than $50^{\circ} \mathrm{C}$. ($122^{\circ} \mathrm{F}$.).

When 50% has been recovered in the receiver, the thermometer shall not read more than $95^{\circ} \mathrm{C}\left(203^{\circ} \mathrm{F}\right)$.

When 90% has been recovered, in the receiver, the thermometer shall not read more than $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.

When 96% has been recovered in. the receiver, the thermometer shall not read more than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$. The end point shall not be higher than $165^{\circ} \mathrm{C}$. $\left(329^{\circ} \mathrm{F}\right.$.).

At least 96% shall be recovered as distillate in the receiver from the distillation.

The distillation loss shall not exceed 2% when the residue in the flask is cooled and added to the distillate in the receiver.
8. Acidity: The residue remaining in the flask after the distillation is completed shall not show an acid reaction.
9. The United States War Department requires the fighting grade to be colored red after inspection and acceptance.

All tests shall be made according to the methods for testing gasoline adopted by the Interdepartmental Petroleum Specifications Committee.

AVIATION GASOLINE, DOMESTIC GRADE.

General:

1. This specification covers the grade of gasoline used by the United States Government and its agencies for aviation fucl where the fighting grade is not required.
2. The gasoline shall be free from undissolved water and suspended matter.
Properties and Tests:
3. Color: The color shall be not darker that 25 Saybolt.
4. Doctor test: The doctor test shall be negative.
5. Corrosion test: One hundred ce of the gasoline shall cause no gray black corrosion and not weighable amount of deposit when evaporated in a polished copper dish.
6. Unsaturated hydrocarbons: Not more than 2.0% of the gasoline shall be solubie in concentrated sulphuric acid.
7. Distillation range:

When 5% of the sample has been recovered in the graduated receiver, the thermometer shall not read more than $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or less than $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

When 50% has been recovered in the receiver, the thermometer shall not read more than $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$.

When 90% has been recovered in the receiver, the thermometer shall not read more than $155^{\circ} \mathrm{C}\left(311^{\circ} \mathrm{F}\right)$.

When 96% has been recovered in the receiver, the thermometer shall not read more than $175^{\circ} \mathrm{C}\left(347^{\circ} \mathrm{F}\right)$.

The end point shall not be higher than $190^{\circ} \mathrm{C}$. ($374^{\circ} \mathrm{F}$.).
At least 96% shall be recovered as distillate in the receiver from distillation.

The distillation loss shall not exceed 2% when the residue in the flask is cooled and added to the distillate in the heceiver.
8. Acidity: The residue remaining in the flask after the distillation is completed shall not show an acid reaction.

All tests shall be made according to the methods for testing gasoline adopted by the Interdepartmental Petroleum Specifications Committee.

MOTOR GASOLINE ("NEW NAVY").

General:

1. This specification covers the grade of gasoline used by the United States Government and its agencies as a fuel for automobiles, motor boats and similar engines.
2. The color shall be not darker than No. 16 Saybolt.
3. A clean copper strip shall not be discolored when submerged in gasoline for 3 heurs at $122^{\circ} \mathrm{F}$.

Properties and Tests:
4. Distillation range:

When the first drop has been recovered in the graduated receiver, the thermometer shall not read more than $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

When 20% has been recovered in the receiver, the thermometer shall not read more than $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$.

When 50% has been recovered in the receiver, the thermometer shall not read more than $140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$.

When 90% has been recovered in the receiver, the thermometer shall not read more than $190^{\circ} \mathrm{C}\left(374^{\circ} \mathrm{F}\right)$.

The end point shall not be higher than $225^{\circ} \mathrm{C}\left(437^{\circ} \mathrm{F}\right)$.
At least 95% shall be recovered as distillate in the receiver from the distillation.

All tests shall be made according to the methods for testing qasoline adopted by the Interdepartmental Petroleum Specifications Committee.

TURPENTINE SUBSTITUTE.

General:

1. This specification covers the grade of mineral spirits used by the United States Government and its agencies for thinning paints and varnishes and as a substitute for turpentine.
2. This material shall be free from undissolved water and suspended matter.
Properties and Tests:
3. Color: The color shall be water white.
4. Spot test: It shall evaporate completely from filter paper in 30 minutes.
5. Flash point: The flash point shall not be lower than $30^{\circ} \mathrm{C}$ (86° F.). (Tag. Closed Tester.)
6. Sulphur: The sulphur test shall be negative.
7. Distillation range: Not over 5% shall distill below $130^{\circ} \mathrm{C}$ $\left(266^{\circ} \mathrm{F}\right)$.

Not less than 97% shall distill below $230^{\circ} \mathrm{C}\left(446^{\circ} \mathrm{F}\right)$.
8. Acidity: The residue remaining in the flask after the distillation is completed shall not show an acid reaction.

All tests shall be made in accordance with the methods for testing gasoline adopted by the Committee on Standardization of Petroleum Specifications.

Specifications for Natural Gasoline.

(Adopted by Association of Natural Gasoline Manufacturers.)

GRADE "A".
Not below $72^{\circ} \mathrm{Be}^{\prime}$
Not above $76^{\circ} \mathrm{Be}^{\prime}$
Not over $375^{\circ} \mathrm{F}$.
Water white
Not less than 90%
Not over 10 pounds
GRADE "C."
Not below $80^{\circ} \mathrm{Be}^{\prime}$
Not above $84^{\circ} \mathrm{Be}^{\prime}$
Not above $375^{\circ} \mathrm{F}$.
Water white
Not less than 85%
Not over 10 pounds
GRADE "E".
Gravity Not below $84^{\circ} \mathrm{Be}^{\prime}$ Not above $87^{\circ} \mathrm{Be}^{\prime}$
Initial boiling point.... Not below $65^{\circ} \mathrm{F}$.
End point.
Color.
Vapor tension.
(.......... 15 pounds maximum

GRADE "G".
Gravity
Color
Recovery
Vapor tension

GRADE "B".
Not below $76^{\circ} \mathrm{Be}^{\prime}$
Not above $80^{\circ} \mathrm{Be}^{\prime}$
Not over $375^{\circ} \mathrm{F}$.
Water white
Not less than 85%
Not over 10 pounds
GRADE "D".
Not below $80^{\circ} \mathrm{Be}^{\prime}$
Not above $84^{\circ} \mathrm{Be}^{\prime}$
Not above $330^{\circ} \mathrm{F}$.
Water white
Not less than 80%
12 pounds maximum
GRADE "F".
Not below $87^{\circ} \mathrm{Be} e^{\prime}$
Not above $90^{\circ} \mathrm{Be}^{\prime}$
Not below $60^{\circ} \mathrm{F}$.
Not above $330^{\circ} \mathrm{F}$.
Water white
Under maximum required by Bureau of Explosives.

Specified by seller
Water white
Not less than $85^{\circ} \%$
. Specified by seller

Specifications for Motor Natural Gasoline.

 (Adopted by Association of Natural Gasoline Manufacturers.)

NOTE. - All tests to be determined by methods of A. S. T. M. with additional provisions, condenser water temperature $32-34^{\circ} \mathrm{F}$.

Summary of Refined Oil Inspection Laws and Taxes.

ALABAMA.

Gasoline-The distillation test shall show an initial boiling point of $140^{\circ} \mathrm{F}, 18 \%$ over at $250^{\circ} \mathrm{F}$ or below and an end point below $437^{\circ} \mathrm{F}$. Tax on gasoline is $1 / 20 \mathrm{c}$ per gallon.

Kerosene-Shall have a fire test of $120^{\circ} \mathrm{F}$. or over. Tax on kerosene is $1 / 2 \mathrm{c}$ per gallon.

ARIZONA.
Has no requirements for quality of gasoline or kerosene, but levies a road tax of 1c per gallon on gasoline.

ARKANSAS.
Gasoline-The gravity shall be taken at $60^{\circ} \mathrm{F}$. and marked on the container. The tax on gasoline is 1c per gallon, to be applied on road improvements. Inspection tax of $1 / 8 \mathrm{c}$ per gallon.

Kerosene-Shall have a fire test of $150^{\circ} \mathrm{F}$. by Tagliabue open cup. Tax on kerosene, $1 / 8 \mathrm{c}$ per gallon.

CALIFORNIA.

Has no laws in regard to quality of gasoline or kerosene. Levies no general tax.

COLORADO.
Gasoline-Gravity shall be taken. Gasoline shall contain not more than 5% of solid matter. Road tax of 1c per gallon.

Kerosene-Shall have a flash point of not less than $90^{\circ} \mathrm{F}$. by Foster cup.

CONNECTICUT.

Has no gasoline laws. Levies a road tax of 1 c per gallon on gasoline.

Kerosene-Shall have a flash point of $110^{\circ} \mathrm{F}$., fire test, $140^{\circ} \mathrm{F}$. by Tag. open tester.

DELAWARE.

Has no gasoline laws. Levies no tax on gasoline.
Kerosene-Shall have burning point of $115^{\circ} \mathrm{F}$. by Tag. open tester.

FLORIDA.

Gasoline-Gravity shall be placed on the label. Road tax of 1c per gallon is levied on gasoline and an inspection tax of $1 / 8 \mathrm{c}$ per gallon on all petroleum products.

Kerosene-Shall be free from glue, water and suspended matter. The color shall be at least 21 Saybolt, flash point over $100^{\circ} \mathrm{F}$., end point shall be below $600^{\circ} \mathrm{F}$.

GEORGIA.
Gasoline-Container shall be properly labeled with the gravity and name of the product. Road tax of 1c per gallon is levied. General tax of $1 / 2 \mathrm{c}$ per gallon for oil inspection.

Kerosene-Shall have flash point of over $100^{\circ} \mathrm{F}$. by Elliott closed tester.

IDAHO.

Gasoline-Shall be of the quality standardized by the U. S. Bureau of Mines and shall be labeled and sold as to true name and grade. No tax levied.

Kerosene-Shall have fire test of over 120° F. by Tag. open tester.

ILLINOIS.

Gasoline-Must be branded "Condemned for illuminating purposes." No other requirements. No tax levied.

Kerosene-Shall have fire test of over $150^{\circ} \mathrm{F}$. by Tag. open cup.

INDIANA.

Gasoline-Gravity shali not be less than $56^{\circ} \mathrm{Be}^{\prime}$.
Kerosene-Shall have flash point of over $120^{\circ} \mathrm{F}$. by Foster cup.
IOWA.
Gasoline-Gravity shall be between $70^{\circ} \mathrm{Be}^{\prime}$ and $80^{\circ} \mathrm{Be}^{\prime}$ and shall distill from $150^{\circ} \mathrm{F}$. to $210^{\circ} \mathrm{F}$. All other products shall be branded "substitute for gasoline." Shall show percentage boiling below $135^{\circ} \mathrm{F}$., from $135^{\circ} \mathrm{F}$. to $210^{\circ} \mathrm{F}$., from $210^{\circ} \mathrm{F}$. to $302^{\circ} \mathrm{F}$., percentage above $302^{\circ} \mathrm{F}$. No tax levied.

Kerosene-Shall flash above 100° F. by Elliott closed tester. tester.
KANSAS.
Gasoline-Shall be water white, contain no acid, shall be sweet by the doctor test, have an end point of $450^{\circ} \mathrm{F}$. or below, 20% shall be distilled at $230^{\circ} \mathrm{F}$., 50% at $325^{\circ} \mathrm{F}$. Gravity test is required.

Kerosene-Shall flash at a temperature above $110^{\circ} \mathrm{F}$. by Foster cup. Tax levied on both gasoline and kerosene.
KENTUCKY.
Gasoline-No gasoline laws. Road tax of 1c per gallon is levied on gasoline.

Kerosene-Shall have fire test of over $130^{\circ} \mathrm{F}$. by Tag. open cup. An inspection tax of $1 / 20 \mathrm{c}$ per gallon is levied on all oil.

LOLISLANA.

Gasoline-No gasoline law except that 1c per gallon is levied for roads.

Kerosene-Shall have flash point above $125^{\circ} \mathrm{F}$. Any oil flashing below this temperature shall be labeled "dangerous and explosive."
MANE.
Casoline-Must be labeled "unsafe for illuminating purposes."
Krrosene-Must have a fire test above $120^{\circ} \mathrm{F}$. by Tag. open (cup. No provision is made for state inspection of oil, this being in charge of local government.
MARYBAND.
Has no laws governing quality of petroleum products.

MASSACHISETTS.

Kerosenc- liash point of $100^{\circ} \mathrm{F}$., fire test, $110^{\circ} \mathrm{F}$. or more by Tag. ojen cup. No other petroleum 1'equirements.

MICHIGAN.

Gasoline-Must be correctly labeled.
Kerosene-Flash point $120^{\circ} \mathrm{F}$. by Foster cup. Local laws in Detroit and other cities are such as to accept Navy specification gasoline.

MINNESOTA.

Gasoline-Shall have initial boiling point of $140^{\circ} \mathrm{F}$., 20% over at $221^{\circ} \mathrm{F} ., 50 \%$ at $315^{\circ} \mathrm{F} ., 90 \%$ at $420^{\circ} \mathrm{F}$., end point not over 450° F., residue not over $3 \%, 86 \%$ shall be recovered. Shall be marked "unsafe for illuminating purposes." Test shall be placed on label. Gasoline marked "high test" shall be a superior product.

Kerosene-Shall be water white, contain no glue, suspended matter or water, residue at $600^{\circ} \mathrm{F}$. shall not be over 5%. Flash point 100° F., fire test $120^{\circ} \mathrm{F}$. by Tag. open cup. Certificate as to qcality shall be on package. Inspection tax of 5 c per barrel is levied on all refined petroleum.

MISSISSIPPI.

Has no laws governing quality of refined petroleum.
MISSOURI.
Gasoline-Gravity over $58^{\circ} \mathrm{Be}$ is to be sold as gasoline Gravity of $50^{\circ} \mathrm{Be}^{\prime}$ to $58^{\circ} \mathrm{Be}^{\prime}$ is to be sold as mixed gasoline or naphtha.

Kerosene-Shall be water white containing no water or tar. Flash point over $120^{\circ} \mathrm{F}$. by Tag. open cup. Gravity not less than $40^{\circ} \mathrm{Be}^{\prime}$. Not more than $4 \%^{\prime}$. residue at $570^{\circ} \mathrm{F}$.
MONTANA.
Gasoline-Shall be free from water and other foreign matter and shall be deodorized and contain no acid. Have initial boiling point below $140^{\circ} \mathrm{F}$., 20% between 158 and $221^{\circ} \mathrm{F}$., 50% below $275^{\circ} \mathrm{F} ., 90 \%$ below $390^{\circ} \mathrm{F}$., end point below $460^{\circ} \mathrm{F}$. Gasoline acceptable if sum of 20% and 90% temperatures is below 611 .

Kerosene-Flash point over 110° F. by Tag. open cup. Shall contain no water or foreign matier. No fee for inspection and no tax.
NERRASKA.
Gasoline-Shall be water white and contain no water or impurities. Other requirements are new Navy specifications.

Kerosene-Shall be water white, free from water or tar. On distillation shall have residue not over 7% at $570^{\circ} \mathrm{F}$. Flash point over $112^{\circ} \mathrm{F}$. by Foster cup. Gravity over $40^{\circ} \mathrm{Be}$. Inspection fee 6c per barrel.

NEVADA.

No inspection laws.
NEW HAMPSHIRE.
Gasoline-No law.
Kerosene-Flash point $100^{\circ} \mathrm{F}$., fire test $120^{\circ} \mathrm{F}$. by open cup. This law more specifically for liquid polishes.
NEW JERSEY.
Gasoline-Shall be properly labeled.
Kerosene-Flash point on the label which shall be more than $100^{\circ} \mathrm{F}$.

NEW MEXICO.
Gasoline-Gravity of over $46^{\circ} \mathrm{Be}$. Road tax of 1c per gallon. Kerosene-Flash point of over $120^{\circ} \mathrm{F}$.
NEW YORK.
Kerosene-Flash point of $110^{\circ} \mathrm{F}$. by Tag. open cup. No other laws.

NORTH CAROLINA.

Gasoline-Shall have initial boiling point of $140^{\circ} \mathrm{F} ., 20 \%$ over at $221^{\circ} \mathrm{F} ., 50 \%$ over at $284^{\circ} \mathrm{F} ., 90 \%$ over at $374^{\circ} \mathrm{F}$. end point below $437^{\circ} \mathrm{F}$., loss not over 5%. Manufacturer must send notice of shipment with full information to Commissioner of Agriculture, Raleigh, N. C. Road tax, 1c per gallon, and inspection tax of $1 / 4 \mathrm{c}$ per gallon.

Kerosene-Flash point of not over 100° F. by Elliott cup. Not over 6% residue on distilling at $572^{\circ} \mathrm{F}$.

NORTH DAKOTA.

Gasoline-Class I or household gasoline on distillation shall yield less than 3% at $158^{\circ} \mathrm{F}$. and not over 6% residue at $284^{\circ} \mathrm{F}$. Class I is not subject to tax. Class II gasoline on distillation shall yield from 3% to 15% at $158^{\circ} \mathrm{F} .96 \%$ shall distill over. End point shall be below $428^{\circ} \mathrm{F}$. Shall not be over 36% residue at $284^{\circ} \mathrm{F}$. Class II is taxed at $1 / 4$ c per gallon. Class III comprises all other gasoline and is taxed at 1 c per gallon.

Kerosene-Flash point $100^{\circ} \mathrm{F}$., fire test $125^{\circ} \mathrm{F}$. by Elliott closed cup. Shall be water white. Not over 6% shall be distilled at $310^{\circ} \mathrm{F}$. and residue shall not be over 4% at $570^{\circ} \mathrm{F}$.
OHIO.
Gasoline-Shall be labeled "dangerous."
Kerosene-Flash point over 120° F. by Foster cup.
OKLAHOMA.
Gasoline-High grade or aero gasoline shall be water white, free from acid, 5% distilled at $122^{\circ} \mathrm{F} ., 97 \%$ at $350^{\circ} \mathrm{F}$. Other gasoline shall be labeled with the quality and brand "Motor fuel oil."

Kerosenc-First grade shall have gravity of 40 to $48^{\circ} \mathrm{Be}^{\prime}$ flash point above 120° F. A. S. T. M. tester. Second grade kerosene, flash point above 110° F. A. S. 'T. M. tester.
OREGON.
Gasoline-Gravity shall be over $56^{\circ} \mathrm{Be}^{\prime}$. Road tax of 2c per gallon on gasoline. No law on refined oil.
I'ENNSYLVANIA.
Gasoline-Road tax of 1c per gallon.
Kerosenc-Fire test $110^{\circ} \mathrm{F}$. by Tag. open cup.
RHOIEE ISLAND.
Kerosene-Flash point $110^{\circ} \mathrm{F}$. by Tag. open cup.
SOUTII CAROLINA.
Gasolinc-New Navy gasoline with an end point $225^{\circ} \mathrm{C}$. Inspection tax $1 / 8 \mathrm{c}$ per gallon.

Kerosene-Flash point $100^{\circ} \mathrm{F}$. with Elliott tester. Residue on distilling at $570^{\circ} \mathrm{F}$. shall be less than 6%.

SOUTH DAKOTA.

Gasoline-Gravity shali be recorded.
Kerosene-Shall be water white and contain no tar. Shall distill not over 10% at $300^{\circ} \mathrm{F}$., residue not over 4% at 570°. Flash point above $105^{\circ} \mathrm{F}$. with New York closed tester. Gravity shall be over $41^{\circ} \mathrm{Be}^{\prime}$. Road tax of 1c per gallon on gasoline. Inspection tax of 5c per barrel.

TENNESSEE.

Gasoline-Shall be labeled "unsafe for illuminating purposes."
Kerosene-Flash point shall be over $120^{\circ} \mathrm{F}$. Tag. open cup. Inspection fee on gasoline, 20c per barrel; 25c per barrel on kerosene.

TEXAS.

Gasoline-Initial boiling point shall be $140^{\circ} \mathrm{F} ., 20 \%$ at $221^{\circ} \mathrm{F}$., 45% at $275^{\circ} \mathrm{F} ., 90 \%$ at $356^{\circ} \mathrm{F}$., end point $428^{\circ} \mathrm{F} ., 95 \%$ shall be recovered on distillation. Vapor tension shall be below 10 pounds at $100^{\circ} \mathrm{F}$.

Kerosene-No kerosene law.

UTAH.

Kerosene-No state laws. Salt Lake City requires that kerosene be water white, free from water or tar, flash point $110^{\circ} \mathrm{F}$. by Foster or Tag. cup.

Gasoline-Gasoline in Salt Lake City shall be the quality set forth by specifications of Bureau of Mines. Products shall be properly labeled.

VERMONT.
Kerosene-Fire test $110^{\circ} \mathrm{F}$. by Tag. open cup.

VIRGINIA.

No law on petroleum products.
WASHINGTON.
Gasoline-Containers shall be branded with gravity. Road tax, 1c per gallon.

Kerosene-Fire test $120^{\circ} \mathrm{F}$. with Tag. open cup.

WEST VIRGINIA.

No law.

WISCONSIN.

Gasoline-Containers shall be marked with gravity. Inspection tax, 5c per barrel.

Kerosene-Flash point $105^{\circ} \mathrm{F}$., fire test $120^{\circ} \mathrm{F}$. with Tag. open cup.

WYOMING.

Gasoline-New navy gasoline containing not over 2% of unsaturated hydrocarbons. End point $437^{\circ} \mathrm{F}$.

Kerosene-Shall be water white, containing no water or tar. Flash point $110^{\circ} \mathrm{F}$. with Foster closed cup. On distillation shall have a residue of not over 5% at $572^{\circ} \mathrm{F}$.

Possible Savings in Use of Gasoline.

The Bureau of Mines estimates that the following savings can be effected daily:

Gallons
Tank wagon losses ... 7,200
Leaky carburetors, average $1 / 17$ of a pint per car....................... 31,400
Poorly adjusted carburctors, $1 / 2$ pint per car..................................-. 240,000
Motors running idle, $1 / 4$ pint per car..-. 150,000
Wasted in garages, 10 pints per day... 67,000
Saved by using kerosene in garages...108,000
Needless use of passenger cars, $13 / 4$ pints per car.......................897,400
This makes a total of $1,500,000$ gallons a day, or $561,000,000$ gallons a year, whereas our war nceds were $350,000,000$ gallons a year, or less than two-thirds of what may be considered as wasted at the present time.

SUGGESTIONS TO GASOLINE USERS.

The following important suggestions for avoiding waste will not only save gasoline, but users of motor vehicles will be benefitted personally and individually through more efficient and more economical operation of cars:

1. Store gasoline in underground steel tanks. Use wheeled steel tanks with measuring pump and hose. They prevent loss by fire, evaporation and spilling.
2. Don't spill or expose gasoline to air-it evaporates rapidly and is dangerous.
3. Don't use gasoline for cleaning and washing-use kerosene or other materials to cut grease.
4. Stop all gasoline leakages. Form habit of shutting off gas at tank or feed pipe.
5. Adjust brake bands so they do not drag. See that all bearings run freely.
6. Don't let engine run when car is standing. It is good for starter battery to be used frequently.
7. Have carburetors adjusted at service stations of carburetor or automobile companies-they will make adjustments without charge.
8. Keep needle valve clean and adjust carburetor (while engine is hot) to use as lean mixture as possiblė. A rich mixture fouls the engine and is wasteful.
9. Pre-heat air entering carburetor and keep radiator covered in cold weather-this will insure better vaporization.
10. See that spark is timed correctly with engine and drive with spark full advanced - a late spark increases gas consumption.
11. Have a hot spark, keep plugs clean and spark points properly alljusterd.
12. Avoid high speed. The average car is most economical at 15 to 25 miles an hour.
13. Don't accelerate and stop quickly-it wastes gas and wears out tires. Stop engine and coast long hills.
14. Cut down aimless and needless use of cars. Do a number of crrands in one trip.
15. Know your mileage per gallon. Fill tank full and divide odometer mileage by gallons consumed.

Benzinum Purificatum (U. S. Pharmacopoeia).

Purified Petroleum Benzin. Benzin. Purif.-Petroleum Ether.

A purified distillate from American petroleum consisting of hydrocarbons, chiefly of the marsh-gas series. Preserve it carefully in well-closed containers, in a cool place, remote from fire.

Purified Petroleum Benzin is a clear, colorless, non-fluorescent, volatile liquid, of an ethereal, or fáint, petroleum-like odor, and having a neutral reaction. It is high!y inflammable and its vapor, when mixed with air and ignited, exp ${ }^{1}$ odes violently.

It is practically insoluble in water, freely soluble in alcohol, and miscible with ether, chloroform, benzene, volatile oils and fixed oils, with the exception of castor oil.

Specific gravity: 0.638 to 0.660 at $25^{\circ} \mathrm{C}$.
It distills completely between $40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$.
Evaporate 10 mils of Purified Petroleum Benzin from a piece of clean filter paper; no greasy stain remains, and the odor is not disagreeable or notably sulphuretted. Not more than 0.0015 Gm . of residue remains on evaporating 50 mils of Purified Petroleum Benzin at a temperature not exceeding $40^{\circ} \mathrm{C}$.

Boil 10 mils of Purified Petroleum Benzin for a few minutes with one-fourth its volume of an alcoholic solution of ammonia (1 in 10) and a few drops of silver nitrate T. S ; the liquid does not turn brown (pyrogenous prodects and sulphur compounds).

Add 5 drops of Purified Petroleum Benzin to a mixture of 40 drops of sulphuric acid and 10 drops of nitric acid in a test tube, warm the liquid for about ten minutes, set it aside for half an hour, and dilute it in a shallow dish with water; no odor of nitrobenzene is evolved.

Comparison of Gasoline and Benzol as Motor Fuel.

Heat of combustion:
B. T. U. per gallon
B. T. U. per pound

Freezing temperature
Boiling temperature
Rate of evaporation
Mileage per gallon (comparative)
Ignition temperature
Pre-ignition from carbon
Carbon formed
Relative volume of air required per gallon
Relative volume of explosive gases produced per gallon
Temperature of explosion
Rapidity of explosive force

Benzol
132330
18054
$41^{\circ} \mathrm{F}$
170-180
Slower
110.

Higher
Less trouble
More
1.04
. 92
Higher
Less sudden

Gasoline
129060 20750
$50^{\circ} \mathrm{F}$ below Zero $130-400^{\circ} \mathrm{F}$
Faster 100.

Low
More trouble Less
1.00
1.00

Lower More sudden

Benzol is most satisfactory if used mixed with gasoline or alcohol, preferably the latter.

Kerosene, Coal Oil, Illuminating Oil, Burning Oil.

Kerosene in a general way may be defined as that fraction of crude petroleum or oil made by the pyrogenic decomposition of shales or coal which distills at a temperature of from $302^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{F}$, ($150-$ $300^{\circ} \mathrm{C}$) and contains no gasoline or residuum. Its flash point is always greater than $100^{\circ} \mathrm{F}$ and usually greater than $120^{\circ} \mathrm{F}$. Its color may be standard white, prime white, superfine white or water white. Its gravity ranges from 31 to $48^{\circ} \mathrm{Be}^{\prime}$. Typical kerosene has a gravity of 41 to $42^{\circ} \mathrm{Be}^{\prime}$. Sulphur is usually almost completely absent from kerosene, being less than 0.03%. It consists chiefly of the paraffin series, particularly when the gravity is greater than 38. The principal constituents are nonane, decane, undecane, duodecane, tridecane, tetradecane, pentadecane, hexadecane and heptadecane. With lower gravities it contains naphthenes and aromatic compounds. This is particularly true of Louisiana oils and California oils.

The quality of good kerosene has been found to be within the following limits:

1. Specific gravity is between $0.760-0.860\left(54.2-328^{\circ} \mathrm{Be}^{\prime}\right)$.
2. Flash point is over $100^{\circ} \mathrm{F}$ by closed tester.

3 . Color is water white with no turbidity.
4. Cold test is below $10^{\circ} \mathrm{F}$.
5. End point is below $600^{\circ} \mathrm{F}$.
6. Sulphur is below 0.05%.
7. Acid is absent.
8. It does not lose more than 1% on treatment with 66° sulphuric acid.
9. It burns without incrustation or smoking in an ordinary kerosene lamp.

The grades of burning oils are shown in the following table with the relative value of each grade in cents per gallon at refinery. North Texas.
$40 @ 42$ prime white distillate .. $2^{1 / 2} \mathrm{c}$
$40 @ 43$ prime white kerosene ..21/2c
42@43 prime white kerosene .. 3 c
Oklahoma.
$41 @ 43$.. $31 / 2 \mathrm{c}$

Pennsylvania.
45 prime white .. 6 c
45 water white .. c

47 water white ... 8 c
48 water white ... 9 e
30 mineral seal ...1/4. c
West Virginia.
45 water white 6 e
47 water white 8 e
Kerosene is produced in amounts that greatly exceed the market demand so that the surplus is used for house heating and mixed with gas oil for cracking stock. It is specially adapted for high pressure (, 00 lbs .) cracking.

U. S. Specifications for Burning Oil (1921). WATER WHITE KEROSENE.

General:

1. This specification covers the grade of kerosene used by the United States Government and its agencies as an illuminating oil. This oil may be used as fuel and for cleaning in case of necessity.
2. The oil shall be free from water, glue and suspended matter. Properties and Tests:
3. Color: The color shall not be darker than No. 21 Saybolt.
4. Flash point: The flash point shall not be lower than $115^{\circ} \mathrm{F}$ (closed tester-tag).
5. Sulphur: The sulphur shall not be more than 0.06%.
6. Floc: The floc test shall be negative.
7. Distillation: The end point shall not be higher than $600^{\circ} \mathrm{F}$.
8. Cloud test: The oil shall not show a cloud at $0^{\circ} \mathrm{F}$.
9. Doctor test: The doctor test shall be negative.
10. Burning test: The oil shall burn freely and steadily for 18 hours.

All tests shall be made according to the methods for testing burning oils adopted by the Committee on Standardization of Petroleum Specifications.

SPECIAL NOTE COVERING KEROSENE FOR U. S. NAVY.

When specifically provided for, a representative sample of the oil delivered will be tested photometrically after burning for one hour in a lamp fitted with a No. 1 sun hinge burner. Five hours later, another photometric test will be made to determine any change in intensity of the light; the maximum allowable loss shali be 5%. The flame shall show at least 6 candlepower when compared photometrically with an incandescent lamp which has been standardized by the Bureau of Standards.

Otherwise specifications enumerated above apply for United States Navy Kerosene.

PRIME WHITE KEROSENE.

General:

1. This specification covers the grade of kerosene used by the United States Government and its agencies where kerosene is required primarily as a fuel and for cleaning purposes. This oil can be used as an illuminant in case of necessity.
2. The oil shall be free from water, glue and suspended matter. Properties and Tests:
3. Color: The color shall not be darker than No. 16 Saybolt.
4. Flash point: The flash point shall not be lower than $115^{\circ} \mathrm{F}$ (tag closed tester).
5. Sulphur: The sulphur shall not be more than 0.09%.
6. Floc: The floc test shall be negative.
7. Distillation: The end point shall not be higher than $625^{\circ} \mathrm{F}$.
8. Cloud test: The oil shall not show a cloud at $5^{\circ} \mathrm{F}$.
9. Burning test: The oil shall burn frecly and steadily for 8 hours.

All tests shall be made according to the methods for testing burning oils adopted by the Committee on Standardization of Petroleum Specifications.

LONG TIME BURNING OIL.

General:

1. This specification covers the grade of burning oil used by the United States Government and its agencies where a long time burning oil is required.
2. The oil must be free from water, glue and suspended matter. Properties and Tests:
3. Color: The color shall not be darker than No. 21 Saybolt.
4. Flash point: The flash point shall not be lower than $115^{\circ} \mathrm{F}$ (tag closed tester).
5. Floc: The floc test shall be negative.
6. Cloud test: The oil shall not show a cloud at $0^{\circ} \mathrm{F}$.

Note: Temperature of $0^{\circ} \mathrm{F}$ can be varied either up or down to suit the climatic conditions in the territory in which the oil is to be used.
7. Burning test: The oil must burn freely and steadily for 120 hours or until the oil is consumed.

All tests shall be made according to the methods for testing burning oils adopted by the Committee on Standardization of Petroleum Specifications.

Oil for use by the Bureau of Lighthouses shall be as described by the Department of Commerce, which sperifications, etc., at the present time are as follows:

1. The kerosene must have a flash point of not less than $140^{\circ} \mathrm{F}$ and fire point of not less than $160^{\circ} \mathrm{F}$ (tag closed tester).
2. The kerosene must contain no free acids or mineral salts. Litmus paper immersed in it for five hours must remain unchanged.
3. Onc hundred grams of kerosene shaken with 40 grams of sulphuric acid (sp. gr. 1.73) must show little or no coloration.
4. When distilled from a still so jacketed as not to allow of local heating at a rate of not over 10% in ten minutes, the kerosene shall not distill below $350^{\circ} \mathrm{F}$ and $98{ }^{\circ}$ r shall distill under $515^{\circ} \mathrm{F}$, the temperature taken being that of the condensing vapor.
5. When burned for 120 hours in a lens lantern supplied with a fifth order oil lamp, the kerosene must burn steadily and clearly without smoking, with minimum incrustation of wick, slight discoloration of chimney and less than 10% loss of candlepower. A lamp of this description will be loaned to successful bidder.

300 DEGREE MINERAL SEAL OIL.

General:

1. This specification covers the grade of oil used by the United States (iovernment and its agencies for lamps in passenger coaches and for illuminating railroad equipment, and where a high flash illuminant is required.
2. The oil must be free from water, glue and suspended matter.

Properties and Tests:

3. Color: The color must not be darker than No. 16 Saybolt.
4. Flash point: The flash point shall not be lower than $250^{\circ} \mathrm{F}$ (Cleveland open cup).
5. Fire point: The fire point shall not be lower than $300^{\circ} \mathrm{F}$ (Cleveland open cup).
6. Floc test: The floc test shall be negative.
7. Cloud test: The oil shall not show a cloud at $32^{\circ} \mathrm{F}$.
8. Reaction: The oil shall be neutral.
9. Burning test: The lamp shall give a symmetrical flame, free from smoke, when burned continuously without readjustment until all of the oil is consumed.

All tests shall be made according to the methods for testing burning oils adopted by the Committee on Standardization of Petroleum Specifications.

SIGNAL OIL.

General:

1. This specification covers the grade of oil used by the United States Government and its agencies for railroad signal lamps.
2. The oil shall be free from water, glue and suspended matter.
3. The oil shall be compounded from 300 degree mineral seal oil, as adopted by the Committee on Standardization of Petroleum Specifications with prre prime winter strained lard oil or sperm oil, or with a mixture of pure prime winter strained lard oil and sperm oil.

Grade A shall not contain less than 30% of fatty oil by volume.
Grade B shall not contain less than 22% of fatty oil by volume.
Grade A shall always be furnished unless Grade B is specifically ordered.

Properties and Tests:

4. Flash point: The flash point shall not be lower than $250^{\circ} \mathrm{F}$ (Cleveland open cup).
5. Fire point: The fire point shall not be lower than 300° F (Cleveland open cup).
6. Cloud test: The oil shall not show a cloud at $32^{\circ} \mathrm{F}$.
7. Free fatty acids: Grade A shall not contain over 060% of free fatty acid calculated as oleic acid. Grade B shall not contain over 0.45% free fatty acid calculated as oleic acid.
8. Burning test: The oil shall burn 24 hours without trimming or adjusting the wick.

All tests shall be made according to the methods for testing burning oils adopted by the Committee on Standardization of Petroleum Specifications.

GAS OIL.

Gas oil is that fraction of petroleum distillation coming off after the kerosene or other illuminating oil. It is usually a destructive distillation resulting in a distilled product carrying a considerable amount of olefins and a residue having a lower viscosity than would be the case without a partially destructive distillation. When it is desired to avoid a destructive distillation, steam may be used, giving an oil suitable for absorption purposes sometimes known as straw oil.

Gas oil is used for making gas and for carbiret'ng coal gas or water gas. It is also used to make Blaugas, which is a product liquified under a pressure of about 1,500 pounds. It is also used for Pintsch gas. A typical gas oil has the following properties:

Distillation test:

$0^{\circ} \mathrm{C}-150{ }^{\circ} \mathrm{C}$	00%
$150^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}$	44.0\%
$300^{\circ} \mathrm{C}$ up	55.3%
Coke	0.7\%

GAS OIL FOR DIESEL ENGINES (U. S. NAVY).

1. Flash point not lower than $150^{\circ} \mathrm{F}$ (Abel or Pennsky-Marten's closed cup).
2. Water and sediment-trace only.
3. Asphaltum-none.

STRAW OIL (U. S. BUREAU OF STANDARDS).

The characteristics of a straw oil for absorption of light oils from gas as recommended by some operators and which are concurred in by the committee of coal-tar products are substantially as follows:

1. Specific gravity not less than $0.860\left(34^{\circ} \mathrm{Be}^{\prime}\right)$ at $15.5^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$.
2. Flash point in open cup tester not less than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$.
3. Viscosity in Saybolt viscosimeter at $37.7^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ not more than 70 seconds.
4. The pour test shall not be over $1.1^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$.
5. When 500 cc of the oil are distilled with steam at atmospheric pressure collecting 500 ce of condensed water, not over 5 cc of oil shall have distilled over.
6. The oil remaining after the steam distillation shall be poured into a 500 cc cylinder and shall show no permanent emulsion.
7. The oil shali not lose more than 10% by volume in washing with $21 / 2$ times its volume of 100% sulphuric acid when vigorously agitated with acid for five minutes and allowed to stand for two hours.

An additional set of specifications for wash oil which is used by one Government department is as follows:

Specific gravity shall not be greater than thirty-five and ninetenths degrees (35.9°) Baume' at $60^{\circ} \mathrm{F}$, equivalent to specific gravity 0.844 .

Viscosity shall not be more than 56 seconds in a Saybolt viscosimeter at 100° Fahrenheit.

The oil shall not thicken or cloud at $25^{\circ} \mathrm{F}$ in the cold test.
At least 95% of the oil shall separate as a clear layer within 10 minutes after 100 cubic centimeters of oil and 100 cubic centimeters of water have been shaken together vigorously for 20 seconds at a temperature of $70^{\circ} \mathrm{F}$.

There shall not be more than 14% of loss in volcme of oil when 1 volume of oil and $21 / 2$ volumes of 100% sulphuric acid are vigorously agitated for 5 minutes and allowed to settle for 2 hours.

The oil shall not begin to distill below $240^{\circ} \mathrm{C}$.

Quality of Absorption Oil for Extracting Gasoline from Natural Gas (Westcott "Casinghead Gasoline").

Distillation.
Initial .. $273{ }^{\circ} \mathrm{C}$

$10 \% ~ . ~ 300 ~ C ~$
$20 \% ~-. ~ 305 ~ º ~ C ~$
30%... $308.6^{\circ} \mathrm{C}$
40%.. $311{ }^{\circ} \mathrm{C}$
50%... $316{ }^{\circ} \mathrm{C}$
60%.. $322{ }^{\circ} \mathrm{C}$
70%.. $329{ }^{\circ} \mathrm{C}$
80%.. $336.5^{\circ} \mathrm{C}$
$90 \% ~ . ~ 360 ~ º ~ C ~$

LUBRICATING OILS.

The principal source of lubricating oil is petroleum from which the lighter components, naphtha, kerosene, solar oil and gas oil have been removed by distillation, the residue thus obtained being used directly as a lubricant or separated by distillation into various fractions. By removing some of the fractions, as well as by mixing others, a variety of products may be obtained with special properties (viscosity, flash point, cold test and specific gravity).

This is the principle on which the industry is based. The separate fractions are further refined to remove odor, resinous materials, etc., as well as to attain the desired lightness of color. This is accomplished by means of sulphuric acid, agitating with a stream of air, the acid being later removed by washing with alkali or water; the purification may also be brought about by filtration through fuller's earth (see chapter on refining).

The oil may be distilled with superheated steam or with partial vacuum, excessive direct firing being avoided to prevent decomposition. The temperature of the superheated steam is kept somewhat higher than that of the still. Commercially, the distillates are cooled and separated according to specific gravity, flash point and viscosity.

Direct firing is much used in separating the crude oil fractions, thus increasing the yield of illuminating oils and producing a raw wax distillate. The refining, however, is carried on with superheated steam.

ECONOMY OF LUBRICATION.

The economical transmission of power is largely dependent upon the maximum reduction of friction.

The purpose of lubrication is to overcome friction in so far as possible and to prevent wear and deterioration of adjacent moving parts.

It is claimed that from 40% to 80% of all power produced by machinery is lost in friction, and a very considerable part of this is lost in avoidable friction due to improper lubrication.

THEORY OF LUBRICATION.

A lubricant should prevent direct contact between the bearings and the moving parts of machinery, thus substituting for metallic friction and wear the much smaller internal friction of the lubricant. The more completely this result is attained under the conditions of temperature, speed and pressure, the more valuable the lubricant from a mechanical point of view. Whether the mechanically most efficient lubricant is the most economical depends somewhat on the ratio of efficiency, the amount used and the price of the material. Greases have a low mechanical efficiency compared with liquid oils, but from the point of economy and cleanliness they are far superior.

Only liquids with great tendency to adhere are suited for lubrication, since only these have the property to penctrate by capillarity where journal and bearings are the closest and where the danger of contact and wear is the greatest. The lubricating oils prevent direct
contact of the metal surfaces because of their adhesion to these surfaces and because their viscosity keeps them from being squeezed out by the pressure on the bearing.

Experience has shown that the power to adhere to metals increases with the viscosity of the oil. Since the danger that an oil will be pressed out increases with the pressure on the bearings, it is advisable for high pressures to use oils of considerable viscosity.

With low pressure and high speed there should be used a very mobile oil, with higher pressure and low velocity more viscous oils. If, for example, a spindle rotating with practically no pressure but very rapidly were lubricated with a very viscous oil, it would mean a lavish waste of power. But to lubricate a transmission gear with a mobile oil would be a waste of lubricant, while the use of a heavy grease would be entirely suitable. In fact, the use of a solid lubricant, graphite, with heavy oils as a vehicle, has proven most desirable in the case of very heary bearings and transmission gears with enormous pressures.

The oil should not lose its power of reducing friction by evaporation, gumming or by acting chemically on the metal of the bearings or journal.

The oil or grease should not solidify or greatly change its viscosity inder conditions of use.

The qualities of various types of lubricating oils are as follows:

Viscosity at	Spindle	$\begin{aligned} & \text { Light } \\ & \text { M'ch'n's } \end{aligned}$	Heavy M'ch'n'y	Automobile	Engine	Steam Cylinder	$\begin{aligned} & \text { Large } \\ & \text { Cylinder } \end{aligned}$
$70^{\circ} \mathrm{F}$	75-500	375-750	1750-875	470-1100	$300-400$		2800-400
$100^{\circ} \mathrm{F}$ $1222^{\circ} \mathrm{F}$		180-220		160-400	130-150		
${ }_{210}^{120^{\circ} \mathrm{F}}$	75-90		$110-280$ $45-60$			1100 $120-150$	300-560
Flash point, ${ }^{\circ} \mathrm{F}$ Min.	1.10	160	390	350	430	525	45
Cold test, ${ }^{\circ} \mathrm{F}$	10	,	10-40	10	25	45	40
Gravity, Be ${ }^{\text {P }}$				1932	23-30	24-30	

Flash and burning points of lubricants are the respective temperatures at which the vapors arise in sufficient amount to ignite and to burn continuously. They should be high enough to prevent any danger of fire in using the oil and to be assured that a light oil has not been added to a heavy oil to regulate viscosity. With the same viscosity asphaltic base oils (Texas, California and Mexico) has a lower flash point and a higher specific gravity than paraffin base oils (Pennsylvania and West Virginia).

Specific gravity is the relation of the weight of a given volume of oil to the weight of the same volume of water. The oil trade 'sually uses the Baume' scale of gravity, which is entirely arbitrary. The paraffin oils with the same viscosity are lighter (have a hisher gravity-Baume') than the asphaltic or semi-asphaltic oil. Gravity is not a measure of the quality of a iubricating oil.

Viscosity is a most important property for lubrication. The viscusity is expressed in the terms of the Saybolt Universal Viscosimetrer in this country, the Engler in Germany and the Redwood in England. Paraffin oils are sail to lose their viscosity most readily in use in an explosion cylinder by reason of the greater ease in decomposing to lighter products than do asphaltic oils. They tend to lee as viscous at higher temperatures as asphalt base oils though less viscous at atmospheric temperature.

Fig. 54-Viscosity Blending Chart for Lubricating Oils

The residual carbon is a most harmful property in lubricants for explosion motors, such as automobiles. High residual carbon is found in poorly refined and blended oils. It is usually found in oils that are not entirely made from overhead or distilled stock but partly from cylinder or residual stocks or fatty oils.

Cold test determines the lowest temperature at which the oil will flow. A low cold test is desirable for ease in circulating and handling in cold weather. A low cold test for motor oils indicates the absence of heavy ends that produce excessive carbon in the cylinder.

Color is not an index of the value of a lubricating oil. The lighter the color, other things being equal, the purer the oil.

Free acid should be, and usually is, absent. It is an indication of mineral acid that has not been nevtralized and washed out in refining or of the presence of naphthenic acids, or of the use of animal or vegetable oils.

A lubricating oil for use in internal combustion engines should have a good viscosity at all temperatures under which the engine will operate. This means that the oil should remain fluid in the coldest weather and should have some degree of viscosity up to $250^{\circ} \mathrm{F}$. The piston walls of the engine attain temperatures as high as $400^{\circ} \mathrm{F}$. At this high temperature, however, practically all oils have the same viscosity. However, it is quite important that the oils also have a good viscosity at the lower temperatures. An engine motor oil should be a completely distilled oil and should contain no residual or fatty matter. On evaporation in air at $500^{\circ} \mathrm{F}$ it should yield a minimum amount of pitsh and by the Conradson carbon test should have the minimum amount of carbon. The flash point is mainly of importance in that it indicates that the oil contains no light oils. So far as operating conditions are concerned, it is of little importance for the reason that a motor oil in a short time after be:ng used, has a very low flash point. After the oil has served its purpose and gotten by the piston rings, then it should readily evap0 ate and leave a minimum amount of carbonaceous matter. A motor cil containing vegetable or animal oil produces acid on being subjected to heat and pressure.

 Engine.

Summary of Tests of Motor Lubricants of Standard Quality as Purchased on the Kansas City Market

 in January 1922*.
3. Retail price. $\$ 1.20 \quad \$ 1.20 \quad \$ 1.20 \quad \$ 1.20 \quad \$ 1.00 \quad \$ 1.00 \quad \$ 1.20 \quad \$ 1.20 \quad \$ 1.00$
4. Specific gravity...... .9325 . 908 . 912 . 917 . 896 . 874 . 920 . 938 . 303
5. Baumé Gravity. . . . $20.2^{\circ} \quad 24.3^{\circ} \quad 23.6^{\circ} \quad 22.8^{\circ} \quad 26.4^{\circ} \quad 30.4^{\circ} \quad 22.3^{\circ} \quad 19.3^{\circ} \quad 25.1^{\circ}$

$\begin{array}{lllllllllll}\text { 7. Color-Iodimetric.... } 351 & 1480 & 52 & 51 & 70 & 247 & 219 & 2048 & 88\end{array}$
8. Flow test $.15^{\circ} \mathrm{F} \quad 47^{\circ} \mathrm{F}+5^{\circ} \mathrm{F}+3^{\circ} \mathrm{F}+4^{\circ} \mathrm{F} \quad 35^{\circ} \mathrm{F} \quad 28^{\circ} \mathrm{F} \quad 27^{\circ} \mathrm{F}+10^{\circ} \mathrm{F}$
9. Flash point-open. . $355^{\circ} \mathrm{F}$ 430 $\mathrm{F} \quad 360^{\circ} \mathrm{F} \quad 365^{\circ} \mathrm{F} \quad 250^{\circ} \mathrm{F} \quad 300^{\circ} \mathrm{F} \quad 365^{\circ} \mathrm{F} \quad 325^{\circ} \mathrm{F} \quad 350^{\circ} \mathrm{F}$
10. Fire test. $430^{\circ} \mathrm{F} \quad 496^{\circ} \mathrm{F} \quad 415^{\circ} \mathrm{F} \quad 420^{\circ} \mathrm{F} \quad 375^{\circ} \mathrm{F} \quad 465^{\circ} \mathrm{F} \quad 425^{\circ} \mathrm{F} \quad 410^{\circ} \mathrm{F} \quad 405^{\circ} \mathrm{F}$
11. Viscosity -Saybolt-

Stand'd Univ. $70^{\circ} \mathrm{F}$	2400	4410	710	810	336	720	1035	4775	505
$100^{\circ} \mathrm{F}$	650	1300	250	285	155	300	327	992	198
$150^{\circ} \mathrm{F}$	150	305	85	91	65	105	99	203	75
$210^{\circ} \mathrm{F}$	61	97	49	52	44	56	52	71	46

12. Carbon (ASTM)..... $0.48 \% \quad 1.43 \% ~ 0.08 \% ~ 0.08 \% ~ 0.09 \% ~ 0.39 \% ~ 0.18 \% ~ 1.05 \% ~ .085 \%$
13. Gumming and Coking
(Pitcn)
$\begin{array}{lllllllll}18.4 \% & 45.6 \% & 10.5 \% & 11.6 \% & 14.0 \% & 29.2 \% & 12.8 \% & 30.0 \% & 12.8 \%\end{array}$
14. Heat-pressure tests-

I'ressure-maximum .21.5a	28.9	23.5	32.3	24.5	22.5	28.9	36.0	292
Gravity increase Bu' . 4.6	6.3	4.3	6.4	4.1	6.9	5.3	5.1	4.5
Gasoline produced \%/r 1才.0	23.0	20.0	24.0	21.0	24.0	23.0	18.0	21.0
Gasoline gravity Be 56 \%	60.0	57.2	53.5	56.8	605	58.2	57.2	59.1
Kerosene produced \% 16.0	16.0	16.0	16.0	20.0	17.0	16.0	16.0	17.0
Kerosene gravity $\mathrm{Be}^{\prime} 29.8$	38.0	33.6	34.0	36.2	40.6	33.8	32.9	35.4
Residue \%.......... . 65.0	61.0	64.0	60.0	59.0	59.0	61.0	66.0	620
Gravity residue $\mathrm{Be}^{\prime} 17.0$	19.2	22.6	17.1	20.9	27.0	16.7	16.1	19.5
Pitch in residue \% 26.5	45.9	11.6	20.0	14.9	26.4	32.1	29.7	19.4
Acidity N/10\% 8.0	3.5	7.0	4.5	4.5	4.5	4.0	9.0	4.0

*The tests include Mobiloil, Monogram, Polarine, Texaco, Enarco, Vedol, Havoline and Sinclair brands.

Summary of Tests of Motor Lubricants of Standard Quality as Purchased on the Kansas City Market in January, 1922-Continued.

1.	10	11	12	13	11	15	16	17	18	19	20
3.	\$1.00	81.00	$\$ 100$	80.40	\$0 90	\$100	8100	\$100	\$120	§105	\$1.50
4.	915	915	927	897	913	8685	5869	922	927	. 902	963
5	$23.1{ }^{\circ}$	23.15	$21.1{ }^{\text {² }}$	26.20	23.30	311°	314°	$22.0{ }^{\circ}$	211°	$25.4{ }^{\circ}$	$15.4{ }^{\circ}$
6	O-5	D	I. J 214	I J $2{ }_{4}$	E	M-1	M-4	N 4!2	$0 \mathrm{P} 5{ }^{1} 2$	P-6	G
7	152	719	15	13	1100	4	154	79	190	155	2
S	$29^{\circ} \mathrm{F}$	$41^{\circ} \mathrm{F}$	$-21^{\circ} \mathrm{F}$	$+24^{\circ} \mathrm{F}$	$43^{\circ} \mathrm{F}$	$+23^{\circ} \mathrm{F}$	$34^{\circ} \mathrm{F}$	$+5^{\circ} \mathrm{F}$	$5^{\circ} \mathrm{F}$	$40^{\circ} \mathrm{F}$	$-14^{\circ} \mathrm{F}$
9.	$370^{\circ} \mathrm{F}$	$390^{\circ} \mathrm{F}$	$360^{5} \mathrm{~F}$	$380^{\circ} \mathrm{F}$	$410{ }^{\circ} \mathrm{F}$	$380^{\circ} \mathrm{F}$	$390^{\circ} \mathrm{F}$	$330^{\text {c }} \mathrm{F}$	$355^{\circ} \mathrm{F}$	$395^{\circ} \mathrm{F}$	$530^{\circ} \mathrm{F}$
	$420^{\circ} \mathrm{F}$	$475^{\circ} \mathrm{F}$	$420^{\circ} \mathrm{F}$	$435^{\circ} \mathrm{F}$	$470{ }^{\circ} \mathrm{F}$	$460^{\circ} \mathrm{F}$	$475{ }^{\circ} \mathrm{F}$	$395^{\circ} \mathrm{F}$	$420^{\circ} \mathrm{F}$	$460^{\circ} \mathrm{F}$	$590^{\circ} \mathrm{F}$

	856	1800	1835	556	2766	441	732	884	2345	655	5350
	315	570	510	214	660	18%	297	295	666	248	1365
	105	157	127	79	173	76	106	91	159	86	320
	52	65	62	17	68	47	56	50	63	48	104
12	$011{ }^{\circ}$	$0 \mathrm{irc}^{\text {c }}$	$0894 \times$	$0.06{ }^{\circ}$	$0.98{ }^{\text {c }}$ c	$044{ }^{\circ} \mathrm{C}$	$025{ }^{-}$	$012{ }^{\circ}$	$026{ }^{\circ}$	0.085	0.195%
13	120^{\prime}	$25 \mathrm{fr}^{\prime}$	10) $4^{\prime \prime}$	$7.6{ }^{6}$	$304{ }^{\circ} \mathrm{c}$	1120	$20.0{ }^{\circ} \mathrm{c}$	$10.4{ }^{4}$	2120	11.6%	67.0%
11											
	21.5	306	215	22.0	27.2	25.0	323	23.0	28.9	28.9	S0.0
	41		50	18	56	59	59	5.1	5.8	4.8	11.4
	190	220	2) 0	200	21.0	250	260	190	20.0	21.0	25.0
	5\%!	599	579	6897	598	611	61.9	591	59.4	60.1	56.7
	1:50	170	150	150	16.0	18.0	180	18.0	17.0	16.0	20.0
	31 if	3131	415	372	38.8	104	40.2	33.0	33.8	37.8	31.5
	lifi) 1	fil 0	640	650	6.3 .0	57.0	56.0	63.0	63.0	63.0	55.0
	1411	182	179	22.0	193	27.3	25.5	18.1	16.8	197	16.7
	2111	$\therefore 1$	11.9	10.0	20 1	10.0	176	12.0	17.6	17.6	42.4
	i 11	is	10	3.0	10	2.5	2.5	4.5	4.0	5.0	766.0

[^4]

Flash Point, F $^{\circ}$	Fire Test, F°	Cold Test F。
410	460	40
380	430	30
340	390	$\ldots .$.
360	400	\ldots.

Flash
Point,
F°

Properties of Various Lubricants-Continued.
Saybolt Viscosity
300 @ $100^{\circ} \mathrm{F}$
$150 @ 100^{\circ} \mathrm{F}$
$60-150 @ 70^{\circ} \mathrm{F}$
$203 @ 100^{\circ} \mathrm{F}$ Baume'
24.0
26.0
$30-35$
28.0
01001000
NMENNO

EFFECT OF AIR-COOLED MOTOR (FRANKLIN) ON LUBRICATING OIL

Crude from which manufactured Gravity before using.

Viscosity at 100° before use. Viscosity at 100° after use.

Free carbon before use. Free carbon after use.........
Conradson carbon before use Miles car run in use

Lubricating oil consumed

NATURAL HYDROCARBONS-VACUUM DISTILLED.

Table showing the properties of vacuum distilled hydrocarbons and atmospheric pressure forced fire distilled hydrocarbons of a heavy residuum from Mid-Continent oil.

Fraction	Gravity	Viscosity	Sulphur
0-10\%	0.868	46	0.39\%
	$31.3{ }^{\circ} \mathrm{Be}^{\prime}$		
10-20\%	0.877	60	0.35%
	$29.6{ }^{\circ} \mathrm{Be}^{\prime}$		
20-30\%	0.895	143	0.43%
	$26.4{ }^{\circ} \mathrm{Be}^{\prime}$		
30-40\%	0.909	293	0.53\%
	$24.0{ }^{\circ} \mathrm{Be}^{\prime}$		
40-50\%	0.920	740	0.76\%
	$22.1{ }^{\circ} \mathrm{Be}^{\prime}$		
50-60\%	0.920	745	0.68\%
	$22.1{ }^{\circ} \mathrm{Be}^{\prime}$		
60-70\%	0.920	1058	0.70\%
	$22.1{ }^{\circ} \mathrm{Be}^{\prime}$		
70-80\%	0.920	2600	0.56\%

HYDROCARBONS FROM FORCED FIRE DISTILLATION OF SAME OIL.

Fraction	Gravity	Viscosity
$0-10 \%$	0.864	
	$32.1^{\circ} \mathrm{Be}^{\prime}$	51
$10-20 \%$	0.877	69
$20-30 \%$	$29.6^{\circ} \mathrm{Be}^{\prime}$	109
	0.888	
$30-40 \%$	$27.6^{\circ} \mathrm{Be}^{\prime}$	141
$40-50 \%$	0893	
	$26.7^{\circ} \mathrm{Be}^{\prime}$	141
$50-60 \%$	0.894	
	$26.6^{\circ} \mathrm{Be}^{\prime}$	106
$60-70 \%$	0.887	75
$70-80 \%$	$27.0^{\circ} \mathrm{Be}^{\prime}$	
	0.878	69

EFFECT OF TEMPERATURE ON VISCOSITY OF NATURAL MIDCONTINENT HEAVY OILS.

Av'ge Mid-Continent Fuel O:l $26.8^{\circ} \mathrm{Bc}^{\prime}$ 294. 190. 94. 70. 55. 41.105. (Viscosity is expressed in terms of the Saybolt Universal)

EFFECT OF CRACLING ON THE LUBRICATING QUALITIES OF OIL.

In the cracking of petroleum by heat the paraffin hydrocarbons are most readily decomposed into lighter hydrocarbons. The lubricating hydrocarbons remaining in cracked oil are therefore not paraffin but consist chiefly of naphthenes and aromatics. In other words, cracking reduces the viscosity of heavy hydrocarbon oils based on the same gravity. This fact is set forth in the patent to Burton (U. S. No. 1,167,884, Jan. 11, 1916) as follows:

Lubricating fractions made from Mid-Continent Crude Petroleum:

$$
\begin{array}{cc}
\text { Baume' Gravity } & \begin{array}{c}
\text { Viscosity at } 100^{\circ} \\
\text { (Saybolt Viscosimeter) }
\end{array} \\
25.0 & 235 \\
26.0 & 190 \\
26.0 & 165 \\
26.5 & 145 \\
27.5 & 100
\end{array}
$$

Lubricating fractions made from California Crude Petroleum:

Baume ${ }^{\prime}$ Gravity	Viscosity at 100°
18.8	449
20.4	235
20.6	339
21.6	146
21.8	167
22.5	139

Lubricating fractions made from Cracked Petroleum Residua:

Baume' Gravity
28.9
26.5
$23.8 \quad 42$
$21.5 \quad 45$
$21.1 \quad 51$
$20.2 \quad 52$
18.7 ฮ̄
$17.8 \quad 62$
17.2

65
16.7

66
15.8

76

Gravity
15.2
15.0
14.7
14.1
13.2
13.0
12.0
10.8

Viscosity
88
89
97
$\begin{array}{r}97 \\ 105 \\ \hline\end{array}$
110
116
158
$10.8 \quad 198$

U. S. Specifications for Lubricating Oils.

CLASS "A".

General:

1. This specification covers the grades of petroleum oil used by the United States Government and its agencies for the general lubrication of engines and machinery where a highly refined oil is not required. This oil is not to be used for steam cylinder lubrication.
2. Only refined petroleum oils without the admixture of fatty oils, resins, soap or other compounds not derived from crude petroleum will be considered.
3. These oils shall be supplied in five grades, known as extra light, light, medium, heavy and extra heavy. Properties and Tests:
4. Flash and Fire Points: The flash and fire points of the five grades shall not be lower than the following:

Light .. 325 365
Medium .. 335 380
Heavy ... 345 390
Extra heavy ... 400
5. Viscosity: The viscosity of the five grades of oil at $100^{\circ} \mathrm{F}$ shall be within the following limits:

Extra light ..140-160 seconds
Light175-210 seconds
Medium ..275-310 seconds
Heavy ...370-410 seconds
Extra heavy ..470-520 seconds
6. Color: The color of the extra heavy grade shall not be darker than No. 6 National Petroleum Association Standard, or its equivalent. The color of the other grades shall not be darker than No. 5 National Petroleum Association Standard, or its equivalent.
7. Pour Test: The pour test shall not be above the following temperatures:

Extra light
$.35^{\circ} \mathrm{F}$
Light
$35^{\circ} \mathrm{F}$
Medium
$40^{\circ} \mathrm{F}$
Heavy $45^{\circ} \mathrm{F}$
Extra heavy $50^{\circ} \mathrm{F}$
8. Acidity: Not more than 0.10 milligram of potassitm hydroxide shall be required to neutralize 1 gram of the oil.
9. Corrosion: A clean copper plate shall not be discolored when submerged in the oil for 24 hours at room temperature.
10. All tests shall be made according to the methods for testing lubricants adopted by the Committec on Standardization of Pctroleum Specifications.

U. S. Specifications for Lubricating Oils. CLASS "B"

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for the lubrication of turbines, dynamos, high speed engines and other classes of machinery where an oil better than Class A is required. The oil shall be satisfactory for use in circulating and forced feed systems.
2. Only refined petroleum oils without the admixture of fatty oils, resins, soaps or other compounds not derived from crude petroleums will be considered.
3. These oils shall be supplied in five grades known as extra light, light, medium, heavy and extra heavy.
4. Flash and Fire Points: The flash and fire points of the five grades shall not be lower than the following:

Flash Deg.F Fire Deg.F

Extra light 315 325 335

Heavy ..
355
365
380
Medium
390
5. Viscosity: The viscosity of the five grades at $100^{\circ} \mathrm{F}$ shall be within the following limits:

Extra light ..140-160 seconds
Light ...-. 175-210 seconds
Medium ...275-310 seconds
Heavy ..-370-410 seconds
Extra heavy ..470-520 seconds
6. Color: The color of the extra heavy grade shall not be darker than No. 6 National Petroleum Association Standard or its cquivalent. The color of the other grades shall not be darker than No. 5 National Petroleum Association Standard or its equivalent.
7. Pour Test: The pour test shall not be above the following temperatures:

Extra light ... $35^{\circ} \mathrm{F}$
Light ... $35^{\circ} \mathrm{F}$
Medium ... $40^{\circ} \mathrm{F}$
Heavy .. $45^{\circ} \mathrm{F}$
Extra heavy ...
8. Acidity: Not more than 0.07 milligram of potassium hydroxide shall be required to neutralize 1 gram of oil.
9. Corrosion: A clean copper plate shall not be discolored when submerged in the oil for 24 hours at room temperature.
10. Emulsifying properties: The oil shall separate (see note) in 30 minutes from an emulsion with 1-Distilled water, $2-1 \%$ salt solution, 3 -Normal caustic soda solution.

Note:-This means that there shall be only a slight cuff between the water and the oil.

The demulsibility shall not be less than 300 .
11. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Pe troleum Specifications.

Specifications for Lubricating Oils.

CLASS "C"

GENERAL:

1. This specification covers the grades of petroleum oil used by the United States Government and its agencies for lubrication of air compressors and international combustion engines, except aircraft, motorcycle and Diesel engines; also for the lubrication of turbines and other machinery where an oil better than Class B is required. This oil shall be satisfactory for use in circulation and forced feed systems.
2. Only refined petroleum oils without the admixture of fatty oils, resins, soaps or other compounds not derived from crude petroleum will be considered.
3. These oils shall be supplied in five grades, known as extra light, light, medium, heavy and extra heavy.
PROPERTIES AND TESTS:
4. Flash and fire points: The flash and fire points of the five grades shall not be lower than the following:

> Flash Deg.F. Fire Deg.F

Extra light ... 315 355
Light ... 325 365
Medium .. 335 380
Heavy ... 345 390
Extra heavy .. 355 400
Oil for use in oil compressors where the air leaving any stage or cylinder has a temperature above $212^{\circ} \mathrm{F}$ shall have a flash point not lower than $400^{\circ} \mathrm{F}$.
5. Viscosity: The viscosity of the five grades at $100^{\circ} \mathrm{F}$ shall be within the following limits:

Extra light	140-160 seconds
Light	.175-210 seconds
Medium	.275-310 seconds
Heavy	370-410 seconds
Extra heav	470-520 secon

6. Color: The color of the extra heavy grade shall not be darker than No. 6 National Petroleum Association Standard or its equivalent. The color of the other grades shall not be darker than No. 5 National Petroleum Association Standard or its equivalent.
7. Pour test: The pour test shall not be above the following temperatures:
Extra light
$35^{\circ} \mathrm{F}$
Light $35^{\circ} \mathrm{F}$

Medium ... $40^{\circ} \mathrm{F}$
Heavy
$45^{\circ} \mathrm{F}$
Extra heavy
$50^{\circ} \mathrm{F}$
8. Acidity: Not more than 0.05 milligrams of potassium hydroxide shall be required to neutralize one gram of the oil.

CLASS C-LUBRICATING OILS-Continued.

9. Corrosion: A clean copper plate shall not be discolored when submerged in the oil for 24 hours at room temperature.
10. Emulsifying Properties: The oil shall separate (see note) in 30 minutes from an emulsion with:
1-Distilled water. 2-1\% salt solution. 3-Normal caustic solution.
Note:-This means that there shall be only a slight cuff between the water and the oil.

The demulsibility shall not be less than 300 .
11. Carbon Residue: The carbon residue shall not exceed the following:

Extra light ... 0.10%
Light .. 0.20%
Medium .. 0.30%
Heavy ... 0.40%
Extra heavy ... 0 .
12. Further tests on oils of Class C may be required at the option of the Department of the Government using the oils.
13. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of $\mathrm{Pe}-$ troleum Specifications.

AIRCRAFT MACHINE GUN OIL.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for the lubrication of machine guns on aircraft, for the c.c. interrupter gears and for gun oil for cleaning and oiling machine guns and small arms.
2. The oil shall be a highly refined, filtered, straight-run petroleum oil, suitable in every way for the uses specified in Paragraph 1. It shall be a pure petroleum product, without the addition of vegetable or animal oils or fats of any kind. It shall not contain any material which might gum or corrode metals under any conditions. PROPERTIES AND TESTS:
3. Flash point: The flash point shall not be less than $200^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $100^{\circ} \mathrm{F}$ shall be within the following limits: 80 to 115 seconds.
5. Pour test: The pour test shall be 45 degrees or more below zero Fahr.
6. Acidity: Not more than 0.03 milligrams of potassium hydroxide shall be required to neutralize 1 gram of oil.
7. Carbon residue: The carbon residue shall not be more than 0.03%.
8. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

BUFFER OIL FOR RECOIL AND RECUPERATOR CYLINDERS OF ALL BRITISH TYPES OF HOWITZERS AND GUN CARRIAGES.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for filling the recoil and recuperator cylinders of all British type howitzers and gun carriages.
2. The oil shall be a pure refined petroleum oil.

PROPERTIES AND TESTS:

3. The flash point shall not be lower than $265^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $100^{\circ} \mathrm{F}$ shall be within the following limits: 65 to 75 seconds.
5. Pour Test: The pour test shall not be above $0^{\circ} \mathrm{F}$.
6. Acidity: Not more than 0.05 milligrams of potassium hydroxide shall be required to neutralize 1 gram of the oil.
7. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization for Petroleum Specifications.

CUP GREASE.

GENERAL:

1. This specification covers the grades of cup grease used by the United States Government and its agencies for the lubrication of such parts of motor equipment and other machinery as are lubricated by means of compression cups; $\# 1 / 2$ and $\# 1$ to be used in spindle cups or transmissions.
2. The grease shall be a well manufactured product, composed of a calcium soap made from high grade animal or vegetable oils or fatty acids, and a highly refined mineral oil.
3. The mineral oil used in reducing the soaps shall be a straight well refined mineral oil with a viscosity at $100^{\circ} \mathrm{F}$ of not less than 100 seconds.

PROPERTIES AND TESTS:

4. Soap Content:
(a) $\# 1 / 2$ cup grease shall contain approximately 13% calcium soap
(b) \# 1 cup grease shall contain approximately 14% calcium soap
(c) \# 3 cup grease shall contain approximately 18% calcium soap
(d) \# 5 cup grease shall contain approximately 24% calcium soap
5. Consistency: These greases shall be similar in consistency to the approved trade standards for $\neq 1 / 2, \neq 1, \pm 3$ and $\# 5$ grease.
6. Moisture: The grease shall be a boiled grease, containing not less than one or more than three per cent of water when finished.
7. Corrosion: A clean copper plate shall not be discolored when submerged in the grease for 24 hours at room temperature.
8. Ash:
\# $1 / 2$ grease. The ash shall not be greater than 1.7%
\# 1 grease. The ash shall not be greater than 1.8%

* 3 grease. The ash shall not be greater than 2.3%
= 5 grease. The ash shall not be greater than 3.5%

9. Fillers: The grease shall contain no fillers such as resins, resinous oils, soapstone, wax, talc, powdered mica or graphite, sulphur, clay, asbestos or any other filler.
10. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Pe troleum Specifications.

TRANSMISSION LUBRICANT.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for the lubrication of transmission gears and bearings, differential gears, worm drives, winch drives and roller and ball bearings used in connection with such parts of the equipment of motor vehicles.
2. The lubricant shall be a refined petroleum product, without the addition of any vegetable or animal oils or products derived from them and be entirely free from fillers.

PROPERTIES AND TESTS:

3. Flash point: The flash point shall not be lower than $460^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 175 to 220 seconds.
5. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

GENERAL:

MARINE ENGINE OIL.

1. This specification covers the grade of oil used by the United States Government and its agencies for the lubrication of reciprocating steam engines in marine service where a compound engine oil is required.

This oil must not be used in circulating or forced feed systems. PROPERTIES AND TESTS:
2. The oil shall be a compounded oil made from refined petroleum oil and 10% to 20% of blown refined rapeseed or blown refined peanut oil; so compounded that it will not separate or break down in any way either before or while in service.
3. Viscosity: The viscosity shall be:

65 to 75 seconds at $210^{\circ} \mathrm{F}$.
Not over 700 seconds at $100^{\circ} \mathrm{F}$.
4. Pour Test: The pour test shall not be above $32^{\circ} \mathrm{F}$.
5. Acidity: The oil shall not contain more than 1.50% of acid calculated as oleic acid (equivalent to 3.0 mg K.O.H. per gram of oil).
6. Corrosion: A clean copper plate shall not be discolored when submerged in oil for 24 hours at room temperature.
7. Emulsifying Properties: The oil shall remain completely cmulsified for an hour from an emulsion with:

1. Distilled water. 2. 1\% salt solution.
2. Wick Feed: The oil shall show a flow at the end of 14 days of at least 30% of its flow at the end of the first 24 hour period.
3. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleun Specifications.

MINERAL STEAM CYLINDER OIL FOR NON-CONDENSING ENGINES.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Govermment and its agencies for non-condensing steam engine cylinder lubrication where a mineral oil is required; also as a stock oil for compounding.
PROPERTIES AND TESTS:
2. The oil shall be a well refined petroleum oil without compounding of any nature.
3. Flash point: The flash point shall not be lower than $475^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 135 to 165 seconds.
5. Cold test: The cold test shall not be above $45^{\circ} \mathrm{F}$.
6. Precipitation test: When 5 cc of the oil is mixed with 95 cc of petroleum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than $0.25 \mathrm{cc}(5 \%$ by volume of the original oil).
7. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

COMPOUNDED STEAM CYLINDER OIL FOR NON-CONDENSING ENGINES.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for the lubrication of steam cylinders ef non-condensing engines and pumps where a compounded oil is required.

PROPERTIES AND TESTS:

2. The oil shall be a well refined petroleum oil, compounded with not less than 5 nor more than 7% of acidless tallow oil or lard vil.
3. Flash point: The flash point shall not be lower than $475^{\circ} \mathrm{F}$.

Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 120 to 150 seconds.
5. Cold test: The cold test shall not be above $45^{\circ} \mathrm{F}$.
6. Precipitation test: When 5 cc of the oil is mixed with 95 cc of petroleum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than $0.25 \mathrm{cc}(5 \%$ by volume of the original oil.)
7. Acidity: The oil shall not contain more than 0.40% of acid calculated as oleic acid (equivalent to 0.80 mg . KOH per gm. of oil).
8. All tests shall be made according to the methods for testing, lubricants adopted by the Committee on Standardization of Petroleum Specifications.

FLOOR OIL.

GENERAL:

1. This specification covers the grade of oil used by the United States Government and its agencies for polishing and preserving wooden floors.
2. The oil shall be a well refined straight petrolcum oil. PROPERTIES AND TESTS:
3. Flash point: The flash point shall not be lower than $300^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $100^{\circ} \mathrm{F}$ shall be within the following limits: 60 to 100 seconds.
5. Color: The oil shall be pale or red in color. Black oil will not be accepted.
6. Pour test: The pour test shall not be above $35^{\circ} \mathrm{F}$.
7. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

gear chain and wire rope lubricant.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for the lubrication and protection of chains, wire ropes and gears of cranes, dredges, steam shovels and all other heavy equipment, for the lubrication and protection of the gears and ropes of balloon hoists; and for swabbing the wires and cables of aircraft.
2. The oil shall be a petroleum product only, free from vegetable or animal oils or products derived from them. It shall be entirely free from fillers, such as talc, resin, and all materials of every nature not related to the original product.

PROPERTIES AND TESTS:

3. Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 900 to 1,100 seconds.
4. Protection: When applied to a plate of polished steel the lubricant shall protect the steel for a period of thirty days when immersed in a 10% salt solution.
5. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

GUN AND ICE MACHINE OIL.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for cleaning and oiling guns and small arms where Aircraft Machine Gun Oil is not required; also for lubrication of the cylinders of Ice Machines; for lubrication of pneumatic tools and for hydraulic systems.
2. The oil shall be a straight-run, highly refined petroleum oil, fres from verctable or animal oils or products derived from them; shall be suitable in every way for the uses listed in Paragraph 1; and shall not gum or corrode metals under any conditions.
3. These oils shall be supplied in two grades known as $\# 100$ and $=125$.

PROPERTIES AND TESTS:

4. Flash point: The flash point shall not be lower than $290^{\circ} \mathrm{F}$.
5. Viscosity: The viscosity at $100^{\circ} \mathrm{F}$ shall be within the following limits:
\# 100 oil 95 to 110 seconds
$\# 125$ oil 120 to 135 seconds
6. Pour test: The pour test shall not be above $5^{\circ} \mathrm{F}$.
7. Acidity: Not more than 0.03 milligram of potassium hydroxide shall be required to neutralize 1 gram of the oil.
8. Enulsifying properties: The oil shall separate completely in 30 minutes from an emulsion with:
9. Distilled water.
10. 1% salt solution.
11. Normal caustic soda solution. The demulsibility shall not be less than 300 .
12. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of $\mathrm{Pe}-$ troleum Specifications.

RECOIL OIL.

GENERAL:

1. This specification covers the grades of petroleum oil used by the United States Government and its agencies to fill the recoil cylinders of gun carriages.
2. Only refined petroleum oils without the admixture of fatty oils, resins, soap or other compounds not derived from crude petroleum will be considered.
3. These oils shall be supplied in three grades, known as light, medium and heavy.
PROPERTIES AND TESTS:
4. Flash and fire points: The flash and fire points of the three grades will not be lower than the following:

> Flash Deg.F Fire Deg.F

Light ... 225 250
Medium .. 315 355
Heavy ... 345 390
5. Viscosity: The viscosity of the three grades of oil at $100^{\circ} \mathrm{F}$ shall be within the following limits:

Light .. 40-45 seconds
Medium ..-140-160 seconds
Heavy 385-430 seconds
6. Color: The oil shall be pale or red in color. Black oil will not be accepted.
7. Pour test: The pour test shall be 5 or more degrees below zero F .
8. Acidity: Not more than 0.05 milligram of potassium hydroxide shall be required to neutralize 1 gram of the oil.
9. Corrosion: A clean copper plate shall not be discolored when submerged in the oil for 24 hours at room temperature.
10. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

LIBERTY AERO AND MOTOR CYCLE OIL.

GENERAL:

1. This specification covers the grade of oil used by the United States Government and its agencies for the lubrication of stationary cylinder air-craft engines and motor cycles.
2. The oil shall be made from pure, highly refined petroleum products and must be suitable in every way for the entire lebrication of stationary cylinder air-craft engines and motorcycle engines operating under all conditions. The oil shall not contain moisture, sulphonates, soap, resin, or tarry constituents which would indicate adulteration or lack of proper refining.
3. These oils shall be supplied in two grades, to be known as Grade 1 and Grade 2.
PROPERTIES AND TESTS:
4. Flash point: The flash point of the two grades shall not be lower than the following:

Grade $1-400^{\circ} \mathrm{F}$: Grade $2-500^{\circ} \mathrm{F}$.
5. Viscosity: The viscosity of the two grades at $210^{\circ} \mathrm{F}$ shal! be withir the following limits:

Grade	(Summer)	90-100 seconds
	(Winter)	75-85 seconds
Grade 2		125-135 seconds

6. Pour Test: The pour test of Grade 1 shall not be above the following limits:

$$
\text { Summer } 45^{\circ} \mathrm{F} \text {. Winter } 15^{\circ} \mathrm{F} \text {. }
$$

7. Cold Test: The cold test of Grade 2 shall not be above 35°
8. Acidity: Not more than 0.10 mg . of potassium hydroxid shall be required to neutralize one gram of Grade 1 oil.
9. Emulsifying Properties: The oil shall separate completer: in one hour from an emulsion from distilled water at a temperature of $180^{\circ} \mathrm{F}$.
10. Carbon Residue: The carbon residue on Grade 1 shall not be over 1.5%; on Grade 2, not over 2.00%.
11. Precipitation test: When 5 cc of the oil is mixed with 95 cc of petroleum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than 0.25 cc (5% by volume of the original oil).
12. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

OIL AND GREASE USED IN RECOIL MECHANISM OF 75 AND 155 MM GUN CARRIAGE (French).

GENERAL:

1. This specification covers the grade of petroleum oil and grease used by the United States Government and its agencies for the recoil mechanism of 75 and 155 mm French gun carriages.
RECUPERATOR OIL:
2. Recoil oil (heavy) shall be used.

RECUPERATOR GREASE:
3. The grease shall be a well manufactured product composed of a calcium soap made from high grade animal or vegetable oils or fatty acids and a highly refined mineral oil.
4. The mineral oil used in reducing the soap shall have a viscosity at $100^{\circ} \mathrm{F}$ of not less than 180 seconds.

PROPERTIES AND TESTS:

5. Soap Content: The grease shall contain approximately 18% of a calcium soap.
6. Consistency: This grease shall be similar in consistency to the approved trade standard for No. 3 grease.
7. Moisture: The grease shall be a boiled grease containing not less than 1 nor more than 3% of water when finished.
8. Corrosion: A clean copper plate shall not be discolored when submerged in the grease for 24 hours at room temperature.
9. Ash: The ash shall not be greater than 2.3%.
10. Fillers: The grease shall contain no fillers, such as rosin, resinous oils, soapstone, wax. tale, powdered mica or graphite, sulphur, clay, asbestos or any other filler.
11. All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of $\mathrm{Pe}-$ troleum Specifications.

PARAFFIN WAX.

GENERAL:

1. This specification covers the grades of paraffin wax used by the United States Government and its agencies.
2. This wax shall be a highly refined petroleum product, free from animal or vegetable wax or other adulterants.
3. This wax shall be supplied in three grades known as 130-132, 124-127, and 117-120.

PROPERTIES AND TESTS:

4. Color: The color shall be water-white.
5. Melting point: The melting points shall be as indicated: Grade $\quad{ }^{\circ} \mathrm{F}$. ${ }^{\circ} \mathrm{C}$

Melting point
130-132
124-127
117-120

$$
\text { 130-132 approx. } 55
$$

124-127 approx. 52
117-120 approx. 48
All tests shall be made according to the methods for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

TRANSFORMER OIL.

GENERAL:

1. This specification covers the grade of petroleum oil used by the United States Government and its agencies for oil switches, oil circuit breakers and transformers.
2. The oil shall be made from pure, highly refined petroleum products, free from animal or vegetable oils or fats of any kind and shall be suitable in every way for the purpose listed in paragraph one.

PROPERTIES AND TESTS:

3. Flash point: The flash point shall not be lower than $290^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $100^{\circ} \mathrm{F}$ shall be within the following limits: $95-110$ seconds.
5. Pour test: The pour test shall not be above $20^{\circ} \mathrm{F}$.
6. Acidity: Not more than 0.03 mg . of potassium hydroxide shall be required to neutralize one gram of the oil.
7. Heat Test: The oil shall not show a deposit or any change other than a darkening of color when heated to $450^{\circ} \mathrm{F}$.
8. Corrosion test: A clean copper plate shall not be discolored when submerged in the oil for 24 hours at room temperature.
9. Break down test: The break down value shall not be less than 23,000 volts.
10. Unsaturation test: The oil shall not contain more than 4.0% of hydrocarbons soluble in concentrated sulphuric acid.

All tests shall be made according to the methods of testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.

CAR OIL.

GENERAL:

1. This specification covers the grade of oil used by the United States Government and its agencies as a lubricant on journals of all cars, passenger coaches, steam and electric locomotives.
2. Only refined petroleum oils, without the admixture of fatty oils or other compounds not derived from crude petroleum will be considered.

PROPERTIES AND TESTS:

3. Flash point: The flash point of this oil shall not be lower than $300^{\circ} \mathrm{F}$.
4. Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 65-75 seconds.
5. Cold test: The cold test shall not be above $32^{\circ} \mathrm{F}$.
6. Precipitation test: When 5 ce of the oil is mixed with 95 ce of petrolcum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than $0.25 \mathrm{cc}(5 \%$ by volume of the original oil).
7. All tests shall be macie aennrding to the method for testing lubricants adonted by the Committee on Standardization of Petroleum Sprocifications.

LOCOMOTIVE ENGINE OIL.

GENERAL:

1. This specification covers the grade of oil used by the United States Government and its agencies as a lubricant (by the Panama Canal) for all locomotives, running gears of all locomotive cranes, deck machinery of dredges (except engines) and for cold-saws in machine shops.
2. Only refined petroleum oils, without the admixture of fatty oils or other compounds not derived from crude petroleum, will be considered.
PROPERTIES AND TESTS:
3. These specifications are identical with those of Car Oil (Panama Canal).
4. Flash point: The flash point of this oil shall not be lower than $300^{\circ} \mathrm{F}$.
5. Viscosity: The viscosity at $210^{\circ} \mathrm{F}$ shall be within the following limits: 65 to 75 seconds.
6. Cold Test: The cold test shall not be above $32^{\circ} \mathrm{F}$.
7. Precipitation test: When 5 cc of the oil is mixed with 95 ce of petroleum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than $0.25 \mathrm{cc}(5 \%$ by volume of the original oil).
8. All tests shall be made according to the method for testing lubricants adopted by the Committee on Standardization of Petroleum Specifications.
CRANK PIN GREASE, DRIVING JOURNAL COMPOUND, ROD CUP GREASE.
GENERAL:
9. This specification covers the grade of grease used by the United States Government and its agencies for the lubrication of driving journal on locomotives (provided with grease cellars) and for the lubrication of cranks and rods on locomotives (provided with grease cups).
10. The grease must be a well manufactured product, suitable in every way for the purpose listed in paragraph No. 1. It shall be composed of a soda soap (made from tallow) combined with a well refined cylinder stock petroleum oil.
PROPERTIES AND TESTS:
11. It shall be smooth, uniform and must not crumble under pressure.
12. Color: Driving Journal Compound shall be green or greenish in color. Rod Cup Grease and Crank Pin Grease shall be slightly yellowish, in color.
13. Soap Content: The soap content shall not be less than the following:

> Driving Journal Compound
> Rod Cup Grease... 45%
6. Free Alkali: Neither grade shall contain less than 0.50% nor more than 2.5% of free alkali, calculated as NaOH .
7. The total water, glycerin and impurities present shall not exceed one-third of the total dry soap content.
8. All tests shall be made according to the method for testing lubricants adopted by the Conmittee on Standardization of Petrolcum Specifications.

PETROLEUM GREASE.

Petroleum grease is a sort of amorphous wax. It is obtained as follows:

When refining to cylinder stock, the residue in the still, which is a cylinder stock, is mixed with naphtha. This mixture is then allowed to settle, while being kept at a low temperature. The mixture separates into two parts, the lower being the petroleum grease and the upper part is drawn off. This upper part is then heated to drive off the naphtha which can be used again and the remaining residue is a low cold-test stock.

The petroleum grease may be filtered to produce the different colored petrolatums. With some crudes, it is possible to obtain the petrolatum stock by straight refinement; that is, it remains as a residue in the still, after the lighter parts of the crude have been distilled off. These crudes are very few, however, and come from certain sections of Pennsylvania.

PETROLATUM.

Petrolatum consists of the higher members of the Paraffin series, which settle from certain kinds of petroleum mixed and inseparable from some of the oily constituents of the oil. Its uses for the lightcolored or filtered material are medicinal and for the toilet, or as dark-colored material, it is used by makers of oiled paper and for the purposes as outlined elsewhere.

Bacon \& Hamor, "American Petroleum Industry" classify the commercial varieties of petrolatum under two heads:

1. Those which are obtained as a ready-formed mixture of hydrocarbons of gelatinous consistency.
2. Those made by directly mixing solid paraffins of low melt-ing-point with heavy lubricating oils. The latter varieties are less homogencous and are liable to deposit granules of paraffin on keeping, and they are therefore not suited for the preparation of ointments as is the true American petrolatum.

The viscosity of natural American petrolatum is given as:
Engler Visc. .. $45^{\circ} \mathrm{C} \quad 5.8 \quad 50^{\circ} \mathrm{C} \quad 80^{\circ} \mathrm{C} \quad 100^{\circ} \mathrm{C}$

Petrolatum is also called petroleum jelly, petrolatum ointment, petrolatum album and white petrolatum jelly, according to its degree of refinement by the medical profession.

It is insoluble in water and easily soluble in ether, chloroform, oil of turpentinc, benzine, carbon bisulphide, petroleum benzine and also most of the fixed or volatile oils.

The specific gravity ranges from about .820 to .865 at $60^{\circ} \mathrm{F}$.
It does not oxidize on exposure to the air and is not readily acted upon by chemical reagents.

Some of the main types of greases and their uses are as follows:
(a) Axle Grease
.Carriage and wagon axles.
(b) Cup Greases

Used in compression cups, funnel cups, or in the bearing by packing.
(c) Gear Greases...............Tacky, waterproof grease for gears, racks, etc.
(d) Curve or Track Greases.....Applied with brush or dauber to railway track curves.
(e) Launching Grease

Used on shipways.
(f) Tunnel-bearing Grease

Made in small blocks, about 56 lbs. Used in standard grease boxes to lubricate shaft bearings of steam ships.
(g) Semi-fluid Grease

Used in textile mills, high-speed machinery, etc., also in mine cars.
(h) Steel-mill Greases...........Cold-neck grease. Usually a cold-set resin grease. For toll necks running at ordinary temperatures.
Hot neck grease: An adhesive, high-melting-point grease, waterproof.
(i) Elevator Greases............ Plunger grease: Waterproof, acid-less

- grease. Must not injure rod packings.

Slide grease: Used on elevator slides. Usually No. 3 consistency graphited.
(j) Gear-shield Grease or Pinion

Glaze
Usually made in 3 consistencies of different melting points. Used on steel mills, etc., where gears are exposed to intense heat. The grease in cooling forms a cushion which adheres to the gear. Usually the heavy grade requires melting before application to the gear.
(k) Railroad Grease

Rod grease. Usually hard. Used in driving rod cups.
Driving-journal compound: hard. Made to fit the grease boxes.
Wool-mixed grease: Made of long-fibre woolen yarn and a small percentage of cotton waste, impregnated with a high-melting-point grease. Used for journal lubrication, instead of usual oil and waste.
Air-brake grease: Usually a graphited waterproof grease.
(1) Paper-mill Greases.......... Usually fiber type. High melting point. Bearings are very hot, due to steam passing through them. Wool-mixed grease often used, or box is packed with wool, and from time to time fresh grease is added.

$$
\therefore \stackrel{\circ}{\square}
$$

\[

\]

PETROLEUM LIQUIDUM, U. S. P.
 Liquid Petrolatum.

Petrolat. Liq.-Liquid Paratfin, Mineral Oil.

A mixture of liquid hydrocarbons obtained from petroleum. Preserve it in well closed containers, protected from light.

Heavy Liquid Petrolatum.-Heavy Liquid Petrolatum has a viscosity of not less than 3.1 when determined by the test given below.

Light Liquid Petrolatum.-Light Liquid Petrolatum has a viscosity of not more than 3 when determined by the test given below and vaporizes freely.

Each variety conforms to the following description and tests:
Specific gravity for Liquid Petrolatum, 0828 to 0.905 at $25^{\circ} \mathrm{C}$.
A colorless, transparent, oil liquid, free or nearly free from fluorescence, odorless and tasteless when cold and possessing not more than a faint petroleum odor when heated.

When cooled to $10^{\circ} \mathrm{C}$ Liquid Petrolatum does not become more than opalescent (solid paraffins).

Insoluble in water or alcohol; soluble in ether, chloroform, petroleum benzin or in fixed or volatile oils. Camphor, menthol, thymol and many similar substances are dissolved by Liquid Petrolatum.

Bail 10 mils. of Liquid Petrolatum with an equal volume of alcohol, the alcoholic liquid is not acid to litmus (acids).

Introduce into a glass-stoppered cylinder which has been previously rinsed with sulphuric acid 5 mils. of Liquid Petrolatum and 5 mils. of colorless sulphuric acid, heat in a water bath during 10 minutes, shaking well at intervals of 30 seconds; the oil remains unchanged in color and the acid dces not besome darker than pale amber (carbonized impurities).

Prepare a clear, colorless saturated solution of lead oxide in an aqueous solution of sodium hydroxide (1 in 5) and mix 2 drops of this solution with 4 mils. of Liquid Petrolatum and 2 mils. of dehydrated alcohol; the mixture does not darken after heating for 10 minutes at $70^{\circ} \mathrm{C}$ and cooling (sulphur compounds).

Viscosity.-Make a permanent mark about 2 cm . below the bulb of a 50 mil. pipet of the usual type and note the time in seconds required at $25^{\circ} \mathrm{C}$ for the level of distilled water to fall from the upper to the lower mark as the liquid flows from the pipet. The time should not be less than 25 seconds nor more than 30 seconds for the pipet selected.

Draw the Liquid Petrolatum to be tested into this pipet, which should be clean and dry, and note the time in seconds required at $25^{\circ} \mathrm{C}$ for its level to fall from the same upper to the lower mark as above determined. The quotient indicates the viscosity. Distilled water at $25^{\circ} \mathrm{C}$ is taken as 1 .

Average Dose.-Metric, 15 mils.; apothecaries, 4 fluidrachms.

PETROLATUM, U. S. P.
 Petrolat.-Petrolatum Ointment, Petroleum Jelly.

A purified mixture of semi-solid hydrocarbons obtained from petroleum.

Petrolatum is an unctuous mass, varying in color from yellowish to light amber, having not more than a slight fluorescence even after being melted. It is transparent in thin layers, completely amorphous, free or nearly free from odor or taste.

Petrolatum is insoluble in water, almost insoluble in cold or hot alcohol or in cold dehydrated alcohol, freely soluble in ether, chloroform, carbon bisulphide, oil of turpentine, petroleum benzin, benzene or in most fixed or volatile oils.

Specific gravity, 0.820 to 0.865 at $60^{\circ} \mathrm{C}$.
It melts between 38° and $54^{\circ} \mathrm{C}$.
Heat about 2 gms. of Petrolatum in an open porcelain or platinum dish over a Bunsen burner flame. It volatilizes without emitting an acrid odor and on incineration not more than 0.05% of ash remains.

Shake melted Petrolatum with an equal volume of hot distilled water; the latter remains neutral to litmus (acid or alkalies).

Digest 10 grams of Petrolatum at $100^{\circ} \mathrm{C}$ for half an hour with 10 grms. of sodium hydroxide and 50 mils. of distilled water, then separate the aqueous layer and supersaturate it with sulphuric acid; no oils or solid substance separates (fixed oils, fats or rosin).

PETROLATUM ALBUM, U. S. P.
 White Petrolatum.
 Petrolat. Alb.-White Petroleum Jelly.

Petrolatum wholly or nearly decolorized.
White Petrolatum is a white or faintly yellowish unctuous mass, transparent in thin layers even after cooling to $0^{\circ} \mathrm{C}$, completely amorphous.

In other respects White Petrolatum has the characteristics of and responds to the tests for identity and purity under Petrolatum.

Paraffin Wax.

After the gasoline, kercsene, naphtha and gas oil have been removed from crude petroleum by distillation, the residue is run into a special still. This may be the ordinary cylindrical horizontal still or the tower still. In the horizontal still, the entire distillate is generally collected for the wax distillate. In the tower still, the distillate is usually taken off in three portions, a light distillate, an intermediate distillate and a heavy distillate, coke only remaining in the still.

The heavy distillate contains the wax and is generally known as "wax distillate," and contains from 5% to 12% of wax and has a gravity of about 30 to $35^{\circ} \mathrm{Be}^{\prime}$. The amount of paraffin wax in the usual crude petroleum varies from nothing up to 2%. In rare instances, petroleum has been found containing as much as 10% of wax. In the crude petroleum, the wax exists in the amorphous form known as protoparaffin which is converted into pyroparaffin or crystalline wax by the action of high temperature.

Distillate carrying the crystalline wax is pumped to the chilling machine in which it is passed through cylinders, inside of which are inner cylinders containing brine at a very low temperature. These inner brine cylinders are revolved to get good distribution of the heat. On the outside of the revolving cylinders are scrapers which prevent the oil flow from becoming sluggish, due to the solidification of the wax. The chilled wax distillate is pumped from the chilling machines to the wax press. In the wax press the cylinders and the plunger push the plates against each other and the iron rings around the outer edge of the plates form a tight leak proof joint. The pump pressure on the oil forces it through a canvas sheet on which the wax collects. The oil drips down into a trough where it is collected and pumped into the lubricating stock. The wax collected on the canvas plates is removed with chipping chisels or "spuds" and falls into a conveyor which carries it to the slack wax tank. This slack wax is about 50% pure wax and 50% oil. The slack wax is now melted and pumped into a sweating pan. Each pan is equipped with a coil of pipe near the bottom. The nelted wax is run into the pans and is chilled by water running through the pipe coils until it is solid. The temperature of the solid mass is now slowly raised and under these conditions the oil is gradually squeezed from the wax and flows away. Most of the color in the slack wax is carried away with the oil in sweating. The wax that is obtained from the first process of sweating is commonly spoken of as paraffin scale. The wax that is re-sweated is spoken of as sweated wax. The yellow sweated wax is now melted and filtered through bone meal cr fuller's earth. The product ordinarily is colorless, odorless and tasteless. The fuller's earth absorbs all tarry and asphaltic compounds and is used in the proportion of about one ton of fuller's earth to five tons of wax. The filtration and decolorization of the wax is usually carried on by gravity in large upright cylinders. The fuller's earth may be used over and over again if burned out to remove coloring matter and residual waxy and oily material. The oil taken from the slack wax in sweating is commonly spoken of as foot's oil. (See also p. 197.)

Paraffin wax is usually sold according to melting point. Different methods of determining melting point are used. Paraffin wax is marketed according to the melting point which varies from $105^{\circ} \mathrm{F}$ for what is known as match wax to $140^{\circ} \mathrm{F}$ which is the highest grade wax such as is used for wax paper for packing edible articles. Most of the high melting point wax is imported and comes from East Indian crude petroleum.

Chemically, paraffin wax consists of paraffin hydrocarbons having a general formula of $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}$ and ranging from $\mathrm{C}_{23} \mathrm{H}_{48}$ to $\mathrm{C}_{35} \mathrm{H}_{72}$.

Uses of Paraffin Wax.--"Crude Wax": This product is sold to match factories as "Match Wax" for use on the heads of matches. It is also used in leather tanneries as a stuffing or loading for the leather. It is sometimes used for burning in special lamps used by miners and for marine bunker lights. It is useful also for waxing yarn in the textile industry, to act as a softener and lubricant for the yarn during winding. The customary melting ranges for the two regular grades of wax are $117^{\circ} \mathrm{F}-119^{\circ} \mathrm{F}$ and $124^{\circ} \mathrm{F}-126^{\circ} \mathrm{F}$. Crude wax may be used for any purpose where a petroleum taste and odor are not objectionable. It is shipped either in slabs or sold in barrels. The slabs are packed in cases of about 250 pounds, or in jute bags of about 225 pounds.
"Refined Wax." This product should be free from taste and odor. It is used for such purposes as a coating for cheese, electrical insulation, coating for beer vats, artificial flower manufacture, coating vinegar and cider barrels, lining butter tubs, coating butter cartons, coating paper milk bottle tops, coating paper drinking cups and milk bottles, sealing preserves and jams, coating the necks of drug bottles, etching, also for coating meats, sausages and any product which must be prevented from drying out and losing weight. Some other uses are: Coatings for whisky, alcohol, molasses and sour kraut barrels, polishing wooden handles, spokes and wooden ware, saturating paper used in waterproof signs, oyster and ice cream pails.

It is usually shipped in 20 -pound slabs and packed either in jute bags or wooden cases. A brief description of the method of using wax to coat cheese is as follows: The wax is used to improve the appearance of the cheese and to prevent the accumulation of the green mold which may appear on cheese that is not frequently handled. It also prevents shrinkage and evaporation of the cheese. The wax is melted in a large vat, which is heated by steam pipes or hot water baths. A direct flame cannot be used, because of the danger of charring the wax. The cheese is immersed in the melted wax for a few seconds and it is then placed on a rack for cooling. Usually the cheese is waxed when it is received at the storage warehouse and when it is from one to two weeks old. This coating for cheese boxes and butter tubs permits them to be shipped dry, improving their appearance and preventing burst hoops from waterstocked staves. (J. R. Battle.)

Paraffin wax is valued by the color, melting point and the specific Eravity. The price of the crude wax having a melting point of from $120^{\circ} \mathrm{F}$ to $126^{\circ} \mathrm{F}$ is about 2c per pound, while the highly refined wax having a melting point of up to $140^{\circ} \mathrm{F}$ is worth about 7 c per pound. (1922.)

Paraffin wax is ordinarily obtained from petroleum; also from shale oil and ozocerite. Paraffin exists in crude petroleum in the form of protoparaffin, in which condition it does not crystallize out and cannot be expressed from oil at low temperatures. In order to obtain it in condition for refrigeration and filtration, the heavy oil is subjected to a destructive distillation, thereby producing the crystalline pyroparaffin.

	Gr																								
													T	T	\square	T		-							
						cla	bility	101	Par	rasi	nn									-					
						a)	ingo	osolin	1no ${ }^{*}$					- Sp. 0		0678	$8=7$	76.5°	${ }^{\circ} \mathrm{B}$						
5.6																									
																				-					
																				V					
				2.		orua	Girit	4 or		ara	sin														
						a*	in be	anzol											1						
4.0																			-						
																	-				,				
																					,				
																		,			\%				
3.0																		7			T				
																	7								
																	/			,					
																	\bigcirc			1					
																	,			\checkmark					
20																									
															7			1							
														7											
1.0																	H								
																7									
																			Tom	par	rot	ure	-		
																					-1.				-
$0 \cdot \mathrm{~F}$								20			$30^{\circ} \mathrm{F}$	F	40	$40^{\circ} \mathrm{F}$	F	50	$50^{\circ} \mathrm{F}$	-	6	60°	F	-	70°	\%	

Pennsylvania petroleum furnishes from $11 / 2 \%$ to 2% paraffin wax, some petroleum such as one in Roumania giving as much as 10%.

The wax distillate from which paraffin is obtained contains ordinarily, about 10% of wax. This distillate has a gravity of from $33^{\circ} \mathrm{Be}$, to $35^{\circ} \mathrm{Be}^{\prime}$ and distills over at a temperature of $500^{\circ} \mathrm{F}$ to $700^{\circ} \mathrm{F}$. The paraffin is freed from oil by the sweating process after filtration.

PARAFFINUM, U. S. P.

> Paraffin.

A purified mixture of solid hydrocarbons usually obtained from petroleum.

Paraffin is a colorless or white more or less translucent mass, crystalline when separating from solution, without odor or taste and slightly greasy to the touch.

It is insoluble in water or alcohol, slightly soluble in dehydrated alcohol, freely soluble in ether, petroleum benzine, benzene, carbon disulphide, volatile oils or in most warm fixed oils.

Specific gravity, about 0.900 at $25^{\circ} \mathrm{C}$.
It melts between 50° and $57^{\circ} \mathrm{C}$.
When strongly heated it ignites, burns with a luminous flame and deposits carbon.

Heat about 0.5 gm . of paraffin in a dry test tube with an equal weight of sulphur; the mixture becomes black from separated carbon and hydrogen sulphide gas is evolved.

Paraffin is not acted upon or colored by concentrated sulphuric or nitric acid in the cold.

Shake melted paraffin with an equal volume of hot alcohol; the separated alcohol does not redden moistened blue litmus paper (acids).

Miscellaneous Oils and Their Uses.

Recoil Cylinder Oil or Hydroline Oil is used to fill the recoil cylinders of gun carriages. It should have a viscosity (S. U.) of less than 145 at $32^{\circ} \mathrm{F}$ and over 43 at $100^{\circ} \mathrm{F}$ with a cold test below $0^{\circ} \mathrm{F}$. Loss at $212^{\circ} \mathrm{F}$ for 2 hours, under 5%.

Recuperator Oil is vsed for the recoil mechanism of 75 and 155 mm French gun carriages. Free from saponifiable matter, flash point over $345^{\circ} \mathrm{F}$, viscosity $100^{\circ} \mathrm{F}, 385$ to 430 . Pour test, below $-5^{\circ} \mathrm{F}$.

Recuperator Grease consists of 18% of lime soap; of tallow oil, neatsfoot oil, lard oil or equivalent, and 82% mineral oil of 180 viscosity at $100^{\circ} \mathrm{F}$; maximum water content, 3%; ash, below 2.3%.

Air Compressor Oil quality varies according to the character of the compressor. In single stage compressors the maximum temperature developed per stroke without cooling by air or water varies from $145^{\circ} \mathrm{F}$ for 10 pounds to $750^{\circ} \mathrm{F}$ for 250 pounds pressure. For a compressor operating at 125 pounds pressure, the lubricating oil for air cylinders should have the following properties: Viscosity at $100^{\circ} \mathrm{F}, 270-350$; flash point over $375^{\circ} \mathrm{F}$. For higher pressure, a high viscosity oil is required. Oils should be distilled or of paraffin base.

Oxygen Gas Compressors. Oil cannot be used for this purpose. Water solutions of soft soap (potassium linolate) or glycerin is used.

Carbon Dioxide Compressors. Glycerin is commonly used, but same oils as for air compressors are satisfactory bat must not give a flavor to the carbon dioxide.

Ammonia Compressors. A pure mineral oil, cold test - $5^{\circ} \mathrm{F}$, flash $365^{\circ} \mathrm{F}$, viscosity 100 at $100^{\circ} \mathrm{F}$.

Airplane Oil (see special specifications). Castor Oil was originally used and first grade had following properties: Pale yellow, clear, specific gravity .964 , flash point $550^{\circ} \mathrm{F}$, fire test, $618^{\circ} \mathrm{F}$, cold test $-10^{\circ} \mathrm{F}$, Saybolt Universal Viscosity $100^{\circ} \mathrm{F}=1440,150^{\circ} \mathrm{F}=308$, $200^{\circ} \mathrm{F}=117,210^{\circ} \mathrm{F}=95,250^{\circ} \mathrm{F}=64$. Acid value 1 , free acid 0.5 , iodine value 88.3.

Brick Oil, Repress Oil or Brockie is oil used on the die through which the plastic clay is pressed for forming the brick. The oil covers the clay column when it leaves the die and prevents sticking to the steel plate over which it travels. The column is again oiled before entering the cutting machine to prevent sticking to the cutting wires and again to the wire cut sides. About 90% of $27^{\circ} \mathrm{Be}^{\prime}$ distillate with 10% of De Gras oil is commonly used for this purpose.

Car Oil, Axle Oil, Summer Black Oil are used for saturating waste for packing the journal boxes of car axles. It should be sufficiently viscous not to readily drip from the waste. A flash test of $380^{\circ} \mathrm{F}$ and cold test of $5^{\circ} \mathrm{F}$ is usually required.

Thread Cutting Oil, Bolt Oil is a compounded product used as a combination of a lubricant and cooling agent. It is usually composed of a water insoluble metallic soap such as calcium stearate, copper oleate, zinc oleate which acts as an emulsifying agent, and a viscous neutral oil about 200 viscosity. A small amount of ammonia or alkali greatly aids the enulsion. Instead of the metallic soap, sulphonated oils, naphthenic acids and agitator sludge oils may be used to produce the emulsions.

Quenching Oils are used for slower cooling of steel than is accomplished with water. It must be a pure mineral oil with a high flash point.

Condenser, Compounded and Blown Oils are mixtures of mineral lubricating oils with seed oil, the seed oil usually being blown to increase the viscosity.

Cylinder Oil or Cylinder Stock is the residue obtained from distilling special grades of light crude oils with a very large amount of steam, avoiding cracking as much as possible and from which the wax distillate has been removed. Cylinder oils vary in gravity from 20° to $27^{\circ} \mathrm{Be}^{\prime}$, flash point from $475^{\circ} \mathrm{F}$ to $650^{\circ} \mathrm{F}$, viscosity at $210^{\circ} \mathrm{F}$ Saybolt, 100 to 350 , cold test 30 to $60^{\circ} \mathrm{F}$. They usually are not filtered but may be refined by filtering through Fuller's earth or bone black.

Core Oil is 36° gravity mineral oil compounded with boiled linseed oil or china wood oil.

Cream Separator Oils are nonviscous oils of about 30° to $34^{\circ} \mathrm{Be}^{\prime}$ fravity, 70 to 200 viscosity at $70^{\circ} \mathrm{F}$.

Cup Greases are mixtures of petroleum oil and lime soap with or without rosin oil.

Floor Oil is a light non-viscous neutral oil.

Gear Case Oil or Transmission Oil is a steam refined cylinder oil with a gravity of about $25^{\circ} \mathrm{Be}^{\prime}$, flash point $600^{\circ} \mathrm{F}$, cold test of $30^{\circ} \mathrm{F}$, Saybolt viscosity at $210^{\circ} \mathrm{F}$ of 240 .

Harness Oil is a compounded oil or a mineral oil of 175 viscosity at $100^{\circ} \mathrm{F}$ and about $25^{\circ} \mathrm{Be}^{\prime}$ to $30^{\circ} \mathrm{Be}^{\prime}$ gravity containing petrolatum, leather oil and wax and some fatty oils.

Ichthyol is an artificial preparation obtained by the distillation of certain bituminous shales and subsequent sulphonation and neu-
tralization with ammonia or soda. It comes tralization with ammonia or soda. It comes on the market under the official name of Ammonii Ieythyo-sulphonas or Ammonium Sul-pho-ichthyolate. The specific gravity of the preparation is approximately 1.0 , and it has a viscosity of 17.7 (Engler). A typical preparation contains 15% to 16% of sulphur, and it is to the sulphur that the valuc of the preparation is largely due. On account of the difficulty in duplicating exactly the original product and the scarcity of the original product, it has now attained a very high
price.

Knitting Machine Oil is a spindle oil of $70-200$ viscosity@ $70^{\circ} \mathrm{F}$.
Leather Oil is a non-viscous neutral oil of low viscosity.
Motor-Cycle Oil is a high viscosity lubricating oil similar to aeroplane oil.

Neutral Oils are oils obtained from pressed distillate.
Non Viscous Neutral Oil is neutral oil having a viscosity below 135 Saybolt at $100^{\circ} \mathrm{F}$.

Viscous Neutral Oil is neutral oil having a viscosity above 135 at $100^{\circ} \mathrm{F}$.

Mazout is the term applied to residual fuel oil in Russia.
Mineral Seal Oil is heavy burning oil obtained in the distillation for cylinder stock.

Oildag is a compound of deflocculated graphite suspended in petroleum lubricating oil covered by U. S. Patent No. 911,358 by Acheson.

Paraffin Oil is the wax-free oil obtained by pressing wax distillate.

Petrolatum is a semi-solid paraffin oil or wax composed of sufficient varieties of petroleum hydrocarbons to give an indistinct melting point. It has a flow point of about $105^{\circ} \mathrm{F}$ (see Petrolatum Mollum).

Petroleum Coke is the residue in coking or tar stills and usually constitutes about 5% of the crude oil. Mid-Continent crude leaves a residue ordinarily about 6 inches thick in the still and Mexican crude petroleum leaves a residue about 30 inches thick in the bottom of the still. One ton of Panuco (Mexico) crude oil gives 365 pounds of coke.

Roll Oil for tin, copper and brass rolls has the same qualities as engine oil.

Sewing Machine Oil is light neutral oil with a viscosity of 75 at $70^{\circ} \mathrm{F}$, cold test $20^{\circ} \mathrm{F}$ or below, fire test $400^{\circ} \mathrm{F}$, flash point $340^{\circ} \mathrm{F}$ and gravity of $34.5^{\circ} \mathrm{Be}^{\prime}$.

Spindle Oil is the lighter lubricating oil usually of a gravity of $25-35^{\circ} \mathrm{Be}^{\prime}$, flash point $300-450^{\circ} \mathrm{F}$, viscosity $40-400$ at $70^{\circ} \mathrm{F}$, cold test at $0^{\circ} \mathrm{F}-40^{\circ} \mathrm{F}$, colorless to dark red.

Stitching Oil is a light non-viscous neutral oil used in stitehing shoes.

Summer Black Oil is a black lubricating oil of about 500-600 fire test and is used for tempering and for concrete waterproofing.

Tempering Oil is a viscous neutral oil frequently the same as hammer oil and summer black oil.

Thickened Oil is a mineral oil in which the viscosity is increased by the addition of unvulcanized rubber, aluminum soap or blown vegetable oil.

Turbine Oil is a non-emulsifying oil of about 150 viscosity at $70^{\circ} \mathrm{F}$ and a flash point of about $420^{\circ} \mathrm{F}$.

Watch Oil is usually a non-petrolerm oil and is ordinarily Dolphin oil. Good watch oil is, however, made from petroleum and is a close distillation cut just above kerosene with a very low cold test.

Wool Oil is a sun bleached neutral oil sometimes compounded with lard oil and with a viscosity of 140-160 Saybolt, gravity of about $32^{\circ} \mathrm{Be}^{\prime}$ and flash point of $375^{\circ} \mathrm{F}$. It is used to aid in carding the wool fibers.

Fifs. 57 -Solubility of Water in Petroleum.
oil to allow this reaction to take place.

Transformer Oils are used for cooling transformer coils used for changing the voltage of electric currents. Oil serves in distributing the heat and conducting it to the radiating surfaces. It prevents oxidation and hardening of the wire insulation. Transformer oil must be a poor conductor of electricity (a high dielectric strength) for which reason, it must contain no moisture, acid, soaps, suspended matter, dissolved salts or saponifiable matter. The effect of moisture on the dielectric strength is shown in Fig. 59. Coils of copper are most satisfactory for circulating water to cool transformer oil. Lead coils have been known to react with pure mineral oil to form lead soap. Presumably sufficient oxygen dissolves in the

The following method is used to test the dielectric strength (for other tests see general methods of testing lubricants).

Method of Testing the Dielectric Strength of Transformer Oils.
The apparatus used for this test is shown in Figure 58, and is manufactured by the Westinghouse Electric and Manufacturing Company for this purpose. It consists of a graduated glass cylinder in which is placed two testing terminals, each a brass sphere $1 / 2 \mathrm{in}$. in diameter. The lower sphere is fixed and the upper sphere is adjustable in its distance from the lower sphere. In making the test, the cylinder is filled with the oil and the gap between the two terminals is adjusted. The oil is allowed to stand for 10 minutes so that any air bubbles may escape. The testing voltage is now applied, beginning low and gradually increasing and without opening the circuit until the breakdown occurs. The oil is then shaken up and the test is repeated until at least five breakdowns have occurred. The average of these breakdowns is taken as the dielectric strength.

Instead of having a fixed distance between the terminals a constant voltage may be used and the grap decreased by adjusting the upper terminal with a slow motion screiv until the breakdown occurs.

As a general thing, the dielectric strength is proportional to the amount of moisture in the oil. It is also effected by the presence of saponifiable oil.

Fig. 58-Apparatus for Testing Dielectric Strength.

DIELECTRIC STRENGTH - KILOVOLT

F'ig. 59-Iblation of Water Content to Dielectric Stength of Transformer Oils.

Fuel Oil.

Liquid fuel is chiefly crude petroleum and its residues. Shale oil, coal tars, wood tars and vegetable and animal oils are also used as fuel to a very limited extent. Petroleum as a fuel for use in steam or power plants has considerable variations. Its most distinctive chemical features are the practical absence of mineral matter, water and light gasoline and the presence of a large amount of hydrogen. Ordinarily when fuel oil is mentioned, reference is made to the residue from petroleum distillation, the gasoline and kerosene having first been removed.

The chief properties making fucl oil available for use are the ease with which it flows, the low cost of handling and the absence of residue. Fuel oil has a remarkably constant heat of combustion. The heat of combustion in terms of B. T. U. per pound of oil is higher with lighter oils but is lower in B. T. U. per gallon with lighter oils, therefore it is obvious that the heavier oils are cheaper for fuel at the same price per gallon, which is the unit of measurement. Ordinarily, fuel oil

Fig. 60-Fuel Requirements of the United States. obtained from petroleum when dry and free from sediment has a very definite heating value in relation to gravity as is shown by the accompanying tables on page 318.

The chief impurities found in fuel oil are water or brine and asphaltic sediment. The asphaltic sediment or tarry matter has almost as great heating value as the dry oil itself but the brine or water very greatly diminishes the heating value as well as interferes with the mechanical use of the oil. Fuel oil is ordinarily only used under conditions of its greater convenience than coal. In so far as the cost of heat obtained from fuel oil is concerned it is in most localities much higher than coal. The price of coal is the governing feature in the price of fuel oil. In general practice, three barrels of fuel oil are equivalent to one ton of coal screenings.

The gravity varies according to the character of the oil and the amount of light constituents that have been distilled out of it. The following table shows typical gravities of fuel oil from different sources:

	Gravity
Mexican fuel oil	$12.6{ }^{\circ} \mathrm{Be}^{\prime}$
Paraffin base fuel oil	$27.5^{\circ} \mathrm{Be}^{\prime}$
California fuel oil	$15.5{ }^{\circ} \mathrm{Be}^{\prime}$
Towanda fuel oil	$26.0^{\circ} \mathrm{Be}^{\prime}$
Mid-Continent heavy fuel oil	$23.5{ }^{\circ} \mathrm{Be}{ }^{\prime}$
Typical Mid-Continent oil	$26.5{ }^{\circ} \mathrm{Be}{ }^{\prime}$
Garber, Oklahoma fuel oil	$31.3{ }^{\circ} \mathrm{Be}{ }^{\prime}$

The viscosity of fuel oil is not proportional to the gravity as is indicated by the following tables:

Viscosity and Gravity of Fuel Oils. (See Pages 313-4.)

	Gravity	Viscosity at $70^{\circ} 1$!
California Crude	. $16.9^{\circ} \mathrm{Be}^{\prime}$	5400
Residuum from same after cracking.	15.5	414
Heavy Kansas Crude	19.7	3360
Residuum from same after cracking.	21.2	178
Heavy Mid-Continent fuel oil...........	23.5	810
Residuum from same after cracking.	212	135
Garber, Okla., fuel oil	31.3	183
Residuum from same after cracking.	28.0	70
Heavy Mexican flux oil	108	14500
Residuum from same after cracking.	126	530
Average Mid-Continent fuel oil.......	27.5	272
Residuum from same after cracking	. 23.7	88

As compared with other sources of heat, the theoretical amount of heat obtainable from petrolerm or fuel oil as determined when the combustion is complete and the absorption of heat is complete is as follows:

$$
\begin{aligned}
& 1,000,000 \mathrm{~B} . \mathrm{T} . \mathrm{U} \text {. of Petroleum at } \$ 1.00 \text { per bbl. costs................ } \$ 0.165 \\
& 1,000,000 \mathrm{~B} . \mathrm{T} . \mathrm{U} \text {. of grod slack coal at } \$ 3.00 \text { per ton...................... } 0.136 \\
& 1,000,000 \mathrm{~B} . \mathrm{T} . \mathrm{U} \text {. of natural gas at } \$ 0.30 \text { per } 1,000 \mathrm{cu} . \mathrm{ft} \ldots \ldots \ldots \ldots \ldots . \\
& 1,000,000 \mathrm{~B} \text {. T. U. of coal gas at } \$ 0.50 \text { per } 1,000 \mathrm{cu} \text {. ft................ } 0.79 \\
& 1,000,000 \mathrm{~B} . \mathrm{T} . \mathrm{U} \text {. of electricity at 1c per k. w. hour........................ } 293
\end{aligned}
$$

The above is based upon the following: Fuel oil of specific gravity $0.900=25.7^{\circ} \mathrm{Be}^{\prime}$, weight per gallon 7.5 lbs., weight per barrel 315 lbs. B. T. U. per lb. $=19,225$, per ton $=38,450,000$, per gallon $=$ 144,200 , cubic foot $=1,078,500$, per barrel $=6,056,000$.

Slack roal $=11,000$ B. T. U. per pound.
Natural gas $=900$ B. T. U. per cubic foot.

'Theoretical Equivalents.

1 ton of coal $=36$ bbls. oil $=24,500 \mathrm{cu}$. ft . of natural gas.
1 grallon of oil $=13.1$ lbs. coal $=160 \mathrm{cu}$. ft. of natural gas.
1 harrel oil $=0278$ ton coa! $=6806 \mathrm{cu}$. ft. of natural gas.
1 pound oil $=1.75$ lbs. coal $=21.3 \mathrm{cu}$. ft . of natural gas.
1 pound coal $=0.763$ gallon oil $=12.2 \mathrm{cu}$. ft. of natural gas.

As to the actual heating value of fuel oils from various sources the table on page 315 is representative:

KEY TO FIGURE 61.

Curve No.	TYPE OF OIL	GRAVITY		Flash Point, F
		Specific	${ }^{\circ} \mathrm{Be}^{\prime}$	
a	SOLID CURVES Mexican residue	1.000	10.0	374
$\frac{\mathrm{a}}{\mathrm{b}}$	"Toltec fuel oil," Inter-Ocean Oil Co., N . Y	1.988	11.7	220
c	"Toltec or Panuco oil," Inter-Ocean Oil Co.	. 986	12.0	124
d	"No. 102," Union Oil Co., Bakersfield, Cal.	980	12.9	280
e	"No. 18," Union Oil Co., Bakersfield, Cal.	980	12.9	285
f	"Standard" Mexican crude (lot 2)...	964	13.4	202
g	"No. 25," Union Oil Co., Bakersfield, Cal	. 978	13.2	262
h	Mexican crude, Texas Co.	. 952	17.3	126
.	Sample No. 3, Angol-Mex. Pet. Products Co......	. 952	17.3	164
j,	"Gaviota Refinery," Associated Oil Co., Cal . ${ }^{\text {a }}$ (${ }^{\text {a }}$,	. 953	17.1	230
${ }^{\prime}$	Mexican oil, Atlantic torpedo flotilla, March, 1914	. 947	18.1	182
k	Standard Mexican crude (lot 1) .	954	17.0	145
1	Mexican oil, U. S. S. Arethusa.	950	17.6	182
1^{\prime}	"Nos. 1, 2, 3," Anglo-Mexican Pet. Products Co...	. 955	16.8	188
m	Producers Crude No. 1 fuel oil, Union Oil Co., California.	959	16.1	174
n	"Coalinga Field," Associated Oil Co., Monterey, Cal.	957	16.5	186
n^{\prime}	"Avon Refinery," Associated Oil Co., Avon, Cal. . .	. 953	17.1	168
,	Richmond, California 953	17.1	228
p	Sun Co., Louisiana. .	936	19.8	275
q	"Standard," Illinois	893	27.3	146
,	Gulf Refining Co., Navy standard oil, U. S. S. Per kins	892	27.5	180
s	"Standard, Indiana..............	880	29.6	144
t	"Standard Star," California	912	23.9	180
u	"Standard,", Illinois (lot 4).	893	27.3	146
v	"Standard," Indiana (lot 4)....	. 8880	29.6	144
w	Gulf Refining Co., Navy contract	. 882	29.3	170
\mathbf{w}^{\prime}	"Standard," Lima, Ohio, crude...	. 876	30.4	149
x	Camden Chemical Co., by-product of coal tar.			
y	"Star," California	. 912	23.9	180
z	Gulf Refining Co., Navy standard oil, U. S. S. Roe.	. 8856	28.7 34.2	$\begin{aligned} & 182 \\ & 151 \end{aligned}$
z^{\prime}	Standard Mexican gas oil .	. 856	34.2	151
-	Indicates test results. DOTTED CURVES			
A	Panuca crude, Inter-Ocean Oil Co . .	. 975	13.7	146
B	Mexican petroleum, Texas Co....	. 938	19.5	23.4
C	Associated Oil Co., California.	. 971	14.2	257
D	Bakersfield, Cal., pipe line to Port Costa 970	14.4	260
E	California Standard Oil Co., steamer Santa Barbara.	.962	15.7	282
F	Beaumont, Tex., Gulf Refining Co.	$.907$	$\xrightarrow{24.8}$	${ }^{222} 195 \text { to } 220$
G	Navy standard oil, Texas Co....................... . .	911 to . 900	24 to 26	195 to 220

From "Oil Fuel Handbook."

Properties of Fuel Oils from Various Sources. (Based on Dry Oil)

SOURCE	Specific Gravity	Baume' Gravity	Saybolt U. S. Viscosity at		Flash Point	Sulphur	B. T. U. per Lb.	R. T. U. per Gal.
			$70^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$				
MEXICAN RESIDUE	1.000	10.0		1,750	374	3.0	18,670	155,33.4
Mexican crude-Panuco	0.986	12.0		530	120	4.1	18,720	153,691
Mexican crude-Texas Co	0.952	17.0		200	126		18,945	149,133
Mexican flux oil........	0.995	10.8	14,500	2,000	350	2.9	18,690	156,773
Flux oil residue after cracking...	0.975	13.6	530		120		18,755	151,103
Mexican crude-Panuco (Inter-Ocean Oil Co.)	0.975	13.6		2,500	140	4.	18,800	152,656
M1D-CONTINENT-	0.892	26.9	275	40	125	0.3	19,376	143,950
Average of 1,200 Heavy	0.922	21.8			132	0.7	19,170	157,220
Light.	0.863	32.2			110	0.25	19,580	140,580
Towanda, Kansas	0.921	22.0			180	0.8	19,175	146,072 149400
Allen County, Kansas.	0.935	19.7	3,360			0.7	19,180 19,150	149,400
Resitlue same after cracking.in	0.926	21.	178 88		120 125		19,150 19,150	1177,685
Residuum after cracking average Mid-Continent fuel o	0.926 0.876	21.2 29.8	88 290	4.4	149		19,470	141,936
OHIO, Lima, crude.	0.876 0.971	29.8	1,100	50	257	0.7	18,820	152,065
CAIIFORNIA-1, ${ }^{\text {Standard }}$ Star".	0.912	23.5	1,125	40	180	0.7	19,210	145,803
Heavy crude...	0.953	16.9	5,400		110		18,925	148,075
i Pesidue after cracking	0.962	15.5	414		120		18,890	151,308
TEXAS-Beaumont....	0.907	24.3	350	47	222	1.7	19,230 19,650	145,186 140,104
GAS OIl-Mexican.	0.856 0.856	33.5	60 60	44	151 170		19,650 19,650	140,104
SHIALE OIL Mid-Continent	0.856 0.900	33.5 35.5	60 200	44	170 100	0.05	19,650 19,150	143,433
SHALE OIL. COAL TAR.	0.900 1.25	25.5	200 90	60	200	0.60	15,700	14,
$\begin{aligned} & \text { COAL TAR..... } \\ & \text { WOOD TAR... } \end{aligned}$	1.25			60		0.		
WOOD TAR. ${ }^{\text {COLLOIDAL }}$ (QUID FUEL	1.25				120		16,500	-

Types of Solid and Liquid Fuels.

FUEL	PIROXIMATE ANALYSIS				COMPOSITION OF COMBUSTIBLE					B. T. U.			Sp. Gr.
	$\mathrm{H}_{2} \mathrm{O}$	Vol.	F. C.	Ash	C	H	N	S	0	Natural	Dry	Comb.	
Anthracite Coal-Penn	2.80	1.16	88.21	7.83	96.39	1.77	0.71	1.00	0.13	13,298	13,682	14,882	1.75
Semi-anthracite-Wash	2.70	7.00	79.60	10.70	91.41	3.67	1.53	0.72	2.67	13,350	13,720	15,410	1.50
Semi-bituminous-W. Va...	1.72	17.85	73.56	6.87	90.48	4.64	1.46	0.74	2.68	14,571	14,827	15,941	1.40
Bituminous Coal, high moisture and high oxygen content, Colorado	19.28	34. 61	41.41	4.70	76.22	5.07	1.68	0.51	16.52	9,064	12,468	13,239	1.35
Bituminous-High $\mathrm{O}_{2}-\mathrm{Ill}$	11.17	39.31	39.20	10.32	77.51	5.49	1.34	5.32	10.34	11,223	12,634	14,296	1.35
Bituminous-Low $\mathrm{O}_{2}-$ Ala.	3.16	25.40	67.75	3.69	88.33	5.05	1.46	0.60	4.56	14,616	15,083	15,691	1.30
Cannel-Missour	2.60	44.59	43.89	8.92	83.30	7.31	1.60	2.03	5.86	14,333	14,755	16,200	1.20
Lignite - North Dakota	43.78	26.07	26.33	3.82	71.09	4.40	1.24	1.09	22.27	5,972	10,624	11,398	1.15
Peat-air drie	8.68	55.77	26.04	18.19	60.00	6.00	2.00	1.08	32.00	8,237	9,020	11,264	
Grahamite...	0.00	41.00	53.30	5.70	87.20	7.50	0.20	2.00					1.172
Fuel Oil-Mexican crude.	2.00	92.90	5.00	0.10	83.70	10.20		4.15		18,320	18,335	18,710	0.975
Fuel, Mid-Cont. residuum	0.00	99.80	0.10	0.10	85.62	11.98	0.50	0.35	0.60	19,358	19,358	19,376	0.892
Fuel, California	0.00	97.90	2.00	0.10	84.00	12.70	1.70	0.75	0.85	18,890	18,890	18,910	0.962
Coke Breeze	0.73	5.47	80.40	13.40	94.79	1.51	1.19	1.03	1.48	12,414	12,506	14,459	
Oven Coke-Connellsvill	0.70	0.61	89.58	9.11	90.04	0.15		0.81		13,130	13,232	14,560	
Coke, Petroleum, Cosden	0.34	7.70	90.84	1.12	97.38	1.21	0.14	1.08	0.29	15,490	15,540	15,720	
Wood-Scrub Oak	0.00	89.60	10.40	0.37	50.36	6.05	0.10		43.49		8,316		0.895
Wood-Pine.	0.00	87.50	12.13	0.37	50.51	6.25	0.05		43.19		9,153		0.551
Charcoal	0.00	10.00	88.00	2.00	95.40	2.50	0.10			7,140	7,140		
Coal Tar.					89.21	4.95	1.05	0.56	0.56		15,708	15,708	1.25
Gas Coke-Alabama	0.00	1.59	87.01	11.40				0.60			12,883		
Tan Bark. . .				14.60 0.42	46.10	5.60	0.42		43.70		6.150 11.322		
Bagasse...	53.00			0.42	46.10	5,60	0.42		43.70	10,386 3,620	11,322 8,320		

Fig. 62-Relation of Gravity to Heat ol Combustion of Furl ()ils.
Relation of Gravity to Heat of Combustion of Dry Fuel Oil. (B. T. U. Per Gallon.)

\bigcirc	
∞	
-	
\bigcirc	
10	1208989 2用
-	

ォ
WJo No No

(B. T. U. Per Pound).

$\xrightarrow{\infty}$

-

∞

10	000000000000000000000000000000
∇	
0	NWGNWWNGNWNNWNNWNWNONWNWNGNW io to Ne
CJ	$\infty \infty
\rightarrow	
\bigcirc	

[^5]The advantages of the use of fuel oil are as follows:

1. Handling costs are reduced; fewer firemen, coal passers, helpers, etc., are required, the reduction being approximately in the ratio of 5 to 1 .
2. Ease of fire control, ignition, regulation. In an emergency such as, for instance, a failure in water supply, the oil fire can be promptly extinguished. Much time is saved in bringing up the steam pressure; 150 pounds can be secured from cold water in a half hour.
3. Since combustion is nearly perfect, much higher capacities and efficiencies obtain. Excess air is held to a minimum. The opening of furnace doors for cleaning or working of fires is dispensed with; furnace temperatures are accordingly almost constant.
4. Smaller storage space is required and this may be at a much greater distance from furnace.
5. Oil in storage does not diminish in calorific value as does coal, and there is little danger from spontaneous combustion.
6. The refuse from the combustion of fuel oil is insignificant and easy of disposal. The boiler room is free of ashes and dust. Annoyance and damage to surrounding property is minimized. Tubes do not collect ashes.
7. No banking of fire occurs with the consequent loss.
8. Smoke can be practicaliy eliminated.
9. The heat is largely isolated to the furnace and the boiler room temperatures are much lowered.
10. Since there is less excess air, the stack area may be slightly less than that required for coal. Stacks having insufficient draft with ccal may with oil, be sufficient.

11. In oil burning furnaces the heat is more uniformly distributed. There is less burning out of boiler tubes. Firing tools are unnecessary.

The disadvantages of the use of fuel oil are:

1. The fire and explosion hazard. Oil must have a flash point of $140^{\circ} \mathrm{F}$ or more. Some city ordinances prohibit the use of oil because of the fire risk, and require the tanks to be under ground and many feet from the nearest building.
2. Cost of oil storage.
3. A nore intense temperature due to smaller excess of air with consequently increased cost of maintenance of furnace and boiler.
4. The noise in combustion and the odor is sometimes objectionable in home furnaces as well as apparent danger of fire or explosion with complicated method of burning.
5. The liability of leakage and wastage.
6. The deposition of carbon or soot on tubes and furnace walls.

REQUIREMENTS FOR BURNING FUEL OIL.

In the successful combustion of fuel oil, certain conditions must be complied with as follows:

1. A burner which gives proper atomization of the oil must be used.
2. Following atomization, the oil must be correctly mixed with air in order to give complete combustion. Air is introduced through the checker work under the burners. The quantity so admitted is varied with the amount of oil being fed; 225-250 cubic feet of air is good practice.

Fig. 6I-lRelative Cost of Coal and Niatural lias.
3. Unless the combustion is complete before the gases reach the boiler heating surfaces, it will not be completed at all until after oil and air reach the stack, when it will be wasted. To prevent this occurrence, large combustion spaces are necessary so that there is a gas travel of sufficient length.
4. Proper selection and location of burners will prevent localization of heat. Otherwise, blistering from overheating may result.

The oil burner atomizes or vaporizes the fuel so that it may be burned like a gas. There are the following types:

1. The Spray Burner. In this type the oil is atomized by compressed air or steam.
2. The Vapor Burner. In this type the oil is vaporized and passed into the furnace.
3. The Mechanical Burner. In this type, the oil is subjected to high pressure, then vaporized by forcing through a small nozzle.

The first and third types are in use in power plants, the second or carburetor type is extensively employed in Europe and in house. heaters using distillate fuel oil.

Stationary boiler plant engineers prefer spray burners over mechanical burners. Marine engineers prefer mechanical burners.

Steam spray burners are divided into two groups; outside mixers and inside mixers. Preference for the mechanical obtains where feed water is clifficult or expensive to secure. The steam spray atomizer has certain advantages of flexibility, superior range of capacity and lower installation cost, notwithstanding the fact that both oil and steam lines are required, whereas the mechanical needs only the oil line. The spray burner is more easily installed in and removed

from the coal-burning furnace. It requires a lower oil pressure than the mechanical. The steam required for atomization runs from 2 to 4 per cent of the boiler output. The spray burner may be operated to induce a suction on the oil supply for small installations.

OPERATION OF BURNERS.

From 25 to 50 pounds pressure is adequate where steam spray atomizers are used. The mechanical burners require pressures ranging from 50 to 250 pounds. A preferred pressure is about 200 pounds. Whatever the piessure, it must be steady with all oil burners. In the case of the mechanical, large air chambers on the oil line are a necessity if duplex reciprocating pumps furnish the pressure. There air chambers are an inconvenience in vessels where floor space is limited and the navy has overcome their need by using

rotary and screw pumps which give a steady pressure of oil with little or no air cushioning.

Fuel oil is heated to decrease the viscosity. The steam spray atomizer has the advantage over the mechanical in that it will handle oils of greater viscosity. Exhaust steam passed through coils is sufficient to raise the temperature to $125^{\circ} \mathrm{F}$ which is usually satisfactory. With the mechanical burner, the oil must be more mobile and a temperature from 120 to $180^{\circ} \mathrm{F}$ is required. A special oil heater may be used.

In burning oil a bright, intense white flame ordinarily indicates an excess of air. The air should be regulated until the light brown haze just disappears at the top of stack.

In lighting of fires a lighted torch is placed directly under the burner pit and then the oil is turned on. This order of operation must never be reversed. If the spray is started before the torch is lighted, the oil will be injected into a dark furnace and an explosive mixture is likely to be formed by the time the torch has been lighted.

The usual feeding system consists of an installation of steamdriven pumps in duplicate. These deliver the fuel from the supply tank to the burner under pressure. Either pump may be shut down for repairs without interfering with the operation of the boiler, due to a by-passing of the piping.

In using exhaust steam to heat oil, care must be taken that the oil temperature is not raised above its flash point. A strainer should be placed on the suction line between storage tank and oil pressure pump, to keep foreign matter from stopping up the burner. A relief valve set at a maximum oil pressure should be provided between the pumps and burners to relieve excessive pressure.

A meter may be installed to record the oil consumption of each boiler. The oil piping system should be installed so that the oil can be drained back to the storage tanks when necessary. Many plants doubly insure their continuous operation by installing the equipment in duplicate sets. The supply of steam and oil may be regulated by hand to meet the requirements of the individual burner.

Standpipe pressures provide satisfactory means of operating low-pressurc systems. The steam pump which runs continuously draws the oil from an underground storage tank and keeps the standpipe supplied.

The design of the oil-burning furnace is highly important. Incandescent brickwork around the flame is desirable but where this is impossible, a flat, broad flame, burning close to a white-hot checkcrwork floor through which the air is continuously admitted is advisable. The flame should not impinge directly on the heating surfaces and an even heat distribution should be the aim.

The flame should never extend into the tubes. Where the furnace is located under the first pass of the boiler, the heating surfaces of the boiler easily absorb radiant energy from the incandescent firebrick. Such constructions as arches, target walls and the like are of questionable value; by localizing the heat, tubes may be burned out and the capacity of the boiler limited.

The hurning of oil results in a fluffy soot deposit with a trace of sil and adheres to the tubes. If this deposit is not regularly
removed, it crystallizes and carbonizes on the tubes and is difficult to scrape off. The frequent use of steam jets will result in clean tubes, the soot being easily removed in the early stages of its deposition.

Since the soot deposits which result from the combustion of oil are in the nature of pure carbon and are very adhesive their insulating effects are much increased over those from coal. With coal, the deposits settle on the top of the tube, leaving the balance of the circumference comparatively free. Oil burning causes deposits which are more evenly distributed, covering rather uniformly the entire firing areas.

Prices of Fuel Oil (U. S. G. S.)

1915 -	
Jinuary	0.40@0.50
February	.40(a). 50
March	.30 (14.40
Ap:il	.35@.40
11ay	. 35 @ . 40
June	.35@.40
July	.35@.40
August	.50@.55
September	. 50 (10) .55
October	. $60 @ .65$
November	.75@.s0
$\begin{gathered} \text { Derember } \\ 1916- \end{gathered}$.90@1.00
January	1.00@1.05
February	1.05@1.10
March	1.10@1.20
April	.85@.95
May	.60@.S0
June	.60@ . 80
Juiy	.55@.75
August	. 55 @ . 75
September	. 55 @ .75
October	. 60 (e) . 80
November	1.00@1.25
$\begin{aligned} & \text { December } \\ & 191 \mathrm{~F} \end{aligned}$	1.00@1.25
January	1.00@2.00
February	1.00@2.00
March .	1.00@2.00
April	1.00@2.00
May	1.00@2.00
June	1.25@1.50
July	1.25@1.50
August	1.25@1.50
September	1.25@1.50
October	1.60@2.00
November	1.25@2.25
$\begin{gathered} \text { December } \\ 191 \mathrm{~S} \text { - } \end{gathered}$	1.25@2.25
January	1.25@2.25
Februars	1.25@2.25
March	1.25@2.25
April	1.75 (2.25
May	1.75@2.25

une	@ 2.25
July	1.75 (112.25
August	1.85 (11.90
September	1.85@1.90
October	1.85@1.90
Norember	1.85 (11.30
$\begin{aligned} & \text { December } \\ & 1919 \text { - } \end{aligned}$	1.75@1.90
January	1.15@2.00
February	. 90 @ 1.00
April	1.00
May	. 90
June	. 90
July	. 80
August	. 80 (4).85
September	.80@ . 90
October	. 80 (u). 90
November	1.00 (41.50
$\begin{gathered} \text { December } \\ 1920- \end{gathered}$	1.50 (920
January	$2.20 \Leftrightarrow 2.35$
February	2.15 (43.21)
March	
April	3.00 (ax 3.25
May	$3.35\left(\begin{array}{c}\text { (\%).50 }\end{array}\right.$
June	3.15 (13.511
July	3.21
August	3.25(4)3.35
September	3.00 (13 3.30
October	$\because .50$ (4..N5
November	2.15 (16) -. 30
$\begin{gathered} \text { December } \\ 1921 \text { - } \end{gathered}$	1.70(130)
January	1.25 (it1. 1.0
Fehruary	. 55 (11) 1.00
Marclı	. 60 (18) $\times 5$
April	
May	.10 (11) . 31
June	.11) (18)
July	. 35 (1) . 45
August	. 10 (1) .51
September	15ial 5.5
October	. 7 S(a) 1.111
November	. 110×1.9
December	Strat 1.10

The following table gives the fuel oil consumption of railroads of the United States from 1909 to 1920, figures prior to 1919 being those of the U. S. Geological Survev:

	Barrels		Barrels
1920.	41,772,000	1914	31,093,266
1919	35,225,000	1913	33,004,815
1918.	36,713,667	1912	33,605,598
1917.	42,238,565	1911	29,748,845
1916.	38,208,516	1910	23,187,346
1915.	32,830,187	1909	19,905 335

Miscellaneous Facts Concerning Heating By Oil.

Good practice in the atomization of fuel oil requires an average of 0.3 pound of steam per pound of oil burned.

One pound of fuel oil requires 14 to 15 pounds or 200 cubic feet of air for complete combustion; 225 cubic feet is good practice.

The stack gases from an oil furnace for the highest efficiency should not contain less than 15% of carbon dioxide (over 13% is good).

The temperature of an oil flame with complete combustion and without an excess of air is about $3,750^{\circ}$ F. (Natural gas flame, $3,250^{\circ} \mathrm{F}$.)

One pound of oil will yield on combustion 16 to 17 pounds of gases of combustion or $400-500$ cubic feet at a temperature of $400^{\circ} \mathrm{F}$.

Oil is successfully used in melting iron and steel scrap. For this purpose it is much superior to coal on account of the absence of mineral matter and the very much smaller amount of sulphur.

One barrel of oil will melt one ton of steel in the reverberatory furnace, with the furnace walls already hot.

A typical malleable iron foundry by the changing of the furnaces from coal to oil fuel increased the strength of their castings 100% and increased the output 20%.

Diesel engines consume from .45 to .7 pound of heavy oil per brake H. P. per hour.

Oil requires 60% of stack area needed for coal firing.
Oil gives a fuel efficiency at least 10% greater than coal.
The advantages of oil fuel installations for locomotives and boats have been found to be as follows:
(a) Economy of space reserved for carrying fuel; 50% more fuel value per unit space.
(b) Ease in filling tanks.
(c) Rapidity of time in meeting a varying load on boiler. Fires may be instantly lighted.

(d) Ability to force boiler to extreme duty in case of emergency.
(e) Short height of stack.
(g) Superior personnel available for the operation of the burners.
(h) Ability to secure and maintain higher speed with oil fuel than with coal. No deterioration in storage.

In the distillation of crude oil in which 50% of the crude is distilled off as benzine and kerosene, in good practice, 2.8 barrels of fuel oil are used per 100 barrels of crude oil treated.

Theoretical draft with various flue gas and air temperatures, for a chimney 100 feet high and asquming an area sufficient that friction in the chimney may be neglected. For a chimney of any other beight, multiply the tabular firure by $\frac{\mathbf{H}}{100}$. where \mathbf{H} is the height of the chimney in feet
Fix. GS-Influence of Temperatures of Stack on Diafts ir Oil Furnaces Based Upon 100-Foot Stack.

For all refining purposes in the production of gasoline, naphtha and kerosene only, from 6 to 7 barrels of fuel oil are required for each 100 barrels of crude treated, assuming that 50% of the lighter hydrocarbons are distilled from the crude.

One-fourth of a gallon of fuel oil is required to produce one gallon of 58° Baume' gasoline by cracking according to a pressure distillation process now extensively used.

The specific heat of petroleum is about 0.5 (.49-.53), the heat of vaporization averages about 130 B . T. U. per pound and the heat of fusion 63 B. T. U. per pound (Paraffin).

For Natural Dry Petroleum of Paraffin or Semi-Paraffin Base the following relation of gravity (Baume'-U. S.) and heating value holds:

$$
\text { B. T. U. per pound }=18700+40\left(\mathrm{Be}^{\prime}-10\right) .
$$

Of the world's total tonnage of vessels of 100 tons and upward on Lloyd's Register, an approximate division as to the fuel motive power is as follows, according to Westgarth Brown, president of the South Wales Institute of Engineers:

$31 / 4$ bbls. oil (42 gallons per bbl.) is the equivalent of 5,000 pounds hickory or 4,550 pounds white oak.

6 gallons oil equals 1,000 cubic feet of natural gas of calorific value of 1,000 B.T.U. per cubic foot.
$31 / 2$ gallons oil equals 1,000 cubic feet of commercial or water gas of calorific value of 620 B.T.U. per cubic foot.
$21 / 4$ gallons oil equals 1,000 cubic feet by-product coke-oven gas at 440 B T.U. per cubic foot.
0.42 gallons oil equals 1,000 cubic feet blast-furnace gas at 90 B.T.U. per cubic feet.

SAMPLING FUEL OIL.

The accuracy of tests depends upon the care with which an average representative sample of fuel oil delivery has been taken and the importance of obtaining such a sample cannot be over-estimated. Top, middle and bottom samples should be taken with a standard "car thief" and these samples should be combined and thoroughly mixed to form one sample for car deliveries. Where oil is received in tanks or leservoirs the swing pipe should first be locked at a position well above the level of the water and sediment usually found in the bottom of such tanks. Tanks should be sampled every foot for the first five fect above the bottom of the swing pipe, and at five-foot intervals from there to the surface of the oil. This sampling should be done with a standard tank thief, the samples tested individually, and deductions for impurities made on the separate volumes which these samples represent. If the tank is a large one, it should be sampled through at least two hatches. In receiving large deliveries of the more viscous oils it is necessary to take many samples in order to insure fair and average impurity (M.\& B. S) deductions. This is because water and sediment do not readily settle out of such oils.

$$
\begin{array}{lllllllllll}
5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\text { Fig. } & 69 \text {-Heat Losses in Flue Gases } & \text { From }
\end{array}
$$

Fig. 69-Heat Losses in Flue Gases From Oil Furnaces.

Natural and Producer Gas Costs.

The following table of Producer Gas Costs includes fuel, power, repairs and maintenance, labor and supervision, interest and depreciation; in fact, every item of cost cxcept the interest and taxes on the land occupied. (Courtesy of Steere Engr. Co., Detroit, Mich.)

Producer Gas Costs per 1000 Cu. Ft. for Coal Costs Given			Costs at Which Other Fuels Must be Bougbt to Obtain the Same Number of B. T. U. as When Buying Producer Gas With Coal at the Price Given							
	Hot Raw	Clean	$\begin{array}{r} \text { Natur } \\ \text { per } 1000 \end{array}$	$\begin{aligned} & \text { Gas } \\ & \text { Cu. Ft. } \end{aligned}$	$\underset{\text { per }}{\text { Fu }}$		$\begin{gathered} \text { Coal } \\ \text { Carb } \\ \text { Wate } \\ 1000 \end{gathered}$	as or etted Gas per . Ft.	$\begin{aligned} & \text { Blue } \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { s per } \\ & \text { Ft. } \end{aligned}$
Ton of Coal	ducer Gas at Offtake	Producer Gas	Hot Raw Gas	Clean Cold Gas	Hot Raw Gas	Clean Cold Gas	Hot Raw Gas	Clean Cold Gas	Hot Raw Gas	Clean Cold Gas
\$2.00	3.13 c	4.15 c	23.7 c	31. ¢¢	2.91c	3.86 c	12.6 c	16.72 c	6.45 c	8.59 c
2.50	3.55	4.57	26.9	34.67	3.3	4.25	14.3	18.40	7.34	9.45
3.00	3.96	4.98	30.1	37.84	3.69	4.64	16.6	20.09	8.20	10.32
3.50	4.38	5.40	33.3	41.01	4.08	5.03	17.65	21.77	9.07	11.18
4.00	4.79	5.82	36.3	44.18	4.46	5.42	19.3	23.45	9.92	12.05
4.50	5.21	6.24	39.5	47.35	4.85	5.81	21.	25.13	10.78	12.91
5.00	5.63	6.66	42.7	50.52	5.24	6.20	22.7	26.82	11.65	13.78
5.50	6.05	7.08	45.9	53.69	5.63	6.59	24.35	28.50	12.5	14.64
6.00	6.46	7.49	49.1	56.85	6.01	6.97	26.0	30.18	13.36	15.50

heating Values used.

Producer Gas .. $14 \dot{5}$

Fuel Oil 135,000
Coal Gas or Carburetted Water Gas............. 585 Blue Gas

300
B. T. U. per cu. ft. B. T. U. per cu. ft. B. T. U. per gallon B. T. U. per cu. ft. B. T. U. per cu. ft.

Note: These costs are based on the plant operating with a $100 \%_{c}$ load factor; that is, operating at rated capacity 24 hours per day, 365 day:s per year. Comparatively few plants have a 100% load factor; therefore, it is necessary to take this very important point into consideration when estimating the cost of gas.

The cost of Producer Gas, with a reasonable degree of accuracy may be estimated for any load factor by applying the formula:

$$
C=T+\left[\left(\frac{400 \mathrm{R}}{\mathrm{AB}}\right)-2.38\right]
$$

Where $\mathrm{C}=$ Cost of Producer Gas per $1000 \mathrm{cu} . \mathrm{ft}$. under conditions specified.
$A=$ Number of feet of gas used per day.
$\mathrm{B}=$ Days per week plant is in operation.
$\mathrm{T}=$ Cost figures shown in table at 100% load factor.
$R=$ Rated hourly capacity of plant in cubic feet.
It also must be kept in mind that furnace efficiencies have a very great bearing on the cost of the finished product. Without regeneration or recuperation Producer Gas cannot be used as efficiently as the more concentrated fuels.

The expense of the distribution system and the furnaces also have an important bearing on the total cost of doing the work.

Colloidal Fuel.

So-called Colloidal Fuel is a mixture of fuel oil and powdered coal. The coal is suspended in the oil to an extent of as much as 65% by weight and yet remains sufficiently fluid that it may be pumped and atomized. The usual amount of coal is about 40% with possibly 1% of some emulsifying agent.

The suspended matter may be low grade pulverized combustible matter. This incorporated with fuel oil makes possible the use of low grade coals of the high fixed carbon or high ash types which have not heretofore been successfully burned.

This colloidal fuel has a specific gravity of 1.00 to 1.25 , a weight of 8.3 to 11.0 pounds per gallon, a flash point the same as the fuel oil, a heating value of from 14,500 to 17,000 B.T.U. per lb .

Some practical advantages are:
(a) It is about 20% more valuable in thermal efficiency in all types of boilers, on account of clean combustion.
(b) It can be handled by pumping.
(c) It can be fired by atomization.
(d) It can be stored indefinitely without deterioration, or fire hazard.
(e) The same volume has nearly twice the power value of coal and 10% more than fuel oil.
(f) Labor costs are reduced (70% for boats).
(g) It can be covered with water and sinks in water, thus reducing the fire danger for boats.

The following table summarizes the principal properties of various fuels compared with colloidal fuel. Essentially, colloidal fuel is nothing more than powdered coal, the voids in which have been filled with fuel oil. It is quite obvious that such a mixture will be sufficiently stable that the coal particles will not settle out.

COMPARISON OF VARIOUS FUEL PRODUCTS.

	Spec. Grav	$\begin{aligned} & \text { Voids } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { per } \\ & \mathrm{Cu} . \mathrm{Ft} . \end{aligned}$	$\begin{gathered} \text { B. T. U. } \\ \text { per } \\ \text { Lb. } \end{gathered}$	$\begin{aligned} & \text { Lhs. } \\ & \text { per } \\ & \text { Gal. } \end{aligned}$	$\begin{aligned} & \text { B. T. U. } \\ & \text { per } \\ & \text { Gal. } \end{aligned}$	Ratio o Heating Value per Cu.Ft.
Bituminous Coal, crushed	1.33	39.7	50	13,000	6.685	86,900	1.000
Powdered Coal, 85\%, 200-mesh	1.35	52.5	40	14,000	5.35	74.900	
Fuel Oil.	0.90	0.0	56.14	19,500	7.51	146,400	
Mixture-Powdered Coal with voids filled with fuel oil.	1.115	0.0	69.6	16,200	9.30	151,800	1.747

U. S. Specifications for Fuel Oils (1921).

FUEL OIL FOR DIESEL ENGINES.

General:

1. This specification covers the grade of oil used by the United States Government and its agencies as a fuel for Diesel engines.
2. Fuel oil shall be a hydrocarbon oil, free from grit, acid, and fibrous or other foreign matters likely to clog or injure the burners or valves. If required, it shall be strained by being drawn through filters of wire gauze of 16 meshes to the inch. The clearance through the strainer shall be at least twice the area of the suction pipe, and the strainers shall be in duplicate.
Properties and Tests:
3. Flash Point: The flash point shall not be lower than $150^{\circ} \mathrm{F}$ (Pensky-Martens closed tester).
4. Water and Sediment: Water and sediment combined shall not amount to more than 0.1%.
5. Carbon Residue: The carbon residue shall not exceed 0.5%.
6. Precipitation Test: When 5 cc of the oil is mixed with 9.5 cc of petroleum ether and allowed to stand 24 hours, it shall not show a precipitate or sediment of more than 0.25 cc (5% by volume of the original oil).

All tests shall be made according to the methods for testing fuel oils adopted by the Committee on Standardization of Petroleum Specifications.

FUEL OIL (NAVY STANDARD).

General:

1. This specification covers the grade of oil used by the United States Government and its agencies where a high grade fuel oil is required.
2. Fuel oil shall be a hydrocarbon oil, free from grit, acid and importanc of obtaining such a sample cannot be over-estimated. Top, fibrous or other foreign matters likely to clog or injure the burners filters of wire gauze of 16 meshes to the inch. The clearance through the strainer shall be at least twice the area of the suction pipe and the strainers shall be in duplicate. I'roperties and Tests:
3. Flash Point: The flash point shall not be lower than $150^{\circ} \mathrm{F}$ (Pensky-Martens closed tester). In case of oils having viscosity greater than 30 seconds at $150^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter) (8° Engler) the flash point shall not be below the temperature at which the oil has a viscosity of 30 seconds.
4. Viscosity: The viscosity shall not be greater than 140 seconds at $70^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter). (40° Engler.)
5. Sulphur: Sulphur shall not be over 1.5%.
f. Water and Sediment: Water and sediment combined shall not amount to over 1.0%.

All iests shall be made according to the methods for testing fuel nils adopted by the Committee on Standardization of Petroleum Specifications.

BUNKER FUEL OIL"A."

General:

1. This specification covers the grade of fuel oil used by the United States Government and its agencies where a low viscosity oil is required.
2. Fuel oil shall be a hydrocarbon oil, free from grit, acid and fibrous or other foreign matters likely to clog or injure the burners or vaives. If required, it shall be strained by being drawn through filters of wire gauze of 16 meshes to the inch. The clearance through the strainer shall be at least twice the area of the suction pipe and the strainers shall be in duplicate.

Properties and Tests:

3. Flash Point: The flash point shall not be lower than $150^{\circ} \mathrm{F}$ (Pensky-Martens closed tester). In case of oils having viscosity greater than 30 seconds at $150^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter) (8° Engler) the flash point shall not be below the temperature at which the oil has a viscosity of 30 seconds.
4. Viscosity: The viscosity shall not be greater than 140 seconds at $70^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter) (40° Engler).
5. Water and Sediment: Water and sediment combined shall not amount to over 1.0%.

All tests shall be made according to the methods for testing fuel oils adopted by the Committee on Standardization of Petroleum Specifications.

BUNKER FUEL OIL "B."

General:

1. This specification covers the grade of fuel oil used by the United States Government and its agencies where a more viscous oil than Bunker Oil "A" can be used.
2. Fuel oil shall be a hydrocarbon oil, free from grit, acid and fibrous or other foreign matters likely to clog or injure the burners or valves. If required, it shall be strained by being drawn through filters of wire gauze of 16 meshes to the inch. The clearance through the strainer shall be at least twice the area of the suction pipe, and the strainers shall be in duplicate.
Properties and Tests:
3. Flash Point: The flash point shall be not lower than $150^{\circ} \mathrm{F}$ (Pensky-Martens closed tester).
4. Viscosity: The viscosity shall not be greater than 100 seconds at $122^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter).
5. Sediment and Water: The sediment and water combined shall not amount to over 1.0%.

All tests shall be made according to the methods for testing fuel oils adopted by the Committee on Standardization of Petrolcum Specifications.

General:

> BUNKER FUEL OIL "C."

1. This specification covers the grade of fuel oil used by the United States Government and its agencies where a high viscosity oil is satisfactory.
2. Fuel oil shall be a hydrocarbon oil, free from grit, acid, and fibrous or other foreign matters likely to clog or injure the burners or valves. If required, it shall be strained by being drawn through filters of wire gauze of 16 meshes to the inch. The clearance through the strainers shall be at least twice the area of the suction pipe and the strainers shall be in duplicate.
Properties and Tests:
3. Flash Point: The flash point shall be not lower than $150^{\circ} \mathrm{F}$ (Pensky-Martens closed tester).
4. Viscosity: The viscosity shall not be greater than 350 sec onds at $122^{\circ} \mathrm{F}$ (Saybolt Furol Viscosimeter").
5. Water and Sediment: Water and sediment combined shall not amount to over 1.0%.

All tests shall be made according to the methods for testing fuel oils adopted by the Committee on Standardization of Petroleum Specifications.

Air Supply Required for Different Grades of Fuel.

(William Kent)

$$
\text { Pounds air per pound coal }=1.05\left[11.52 \mathrm{C}+34.56\left(\mathrm{H}-\frac{0}{8}\right)\right]
$$

ULTIMATE COMPOSITION OF FUELS.

Ultimate analysis of coal dried at $105{ }^{\circ} \mathrm{C}$.

KIND OF COAL	Anthracite	Semi-Anthracite	Semi- Bitum- inous	Bituminous, Pa.	Bituminous, Ohio	Lignite, Tex.	Crude Oil, Tex.
Carbon	76.86	78.32	86.47	77.10	75.82	64.84	84.8
Hydrogen	2.63	3.63	4.54	4.57	5.06	4.47	11.6
Oxygen	2.27	2.25	2.68	6.67	10.47	16.52	1.1
Nitrogen.	0.82	1.41	1.08	1.58	1.50	1.30	0.8
Sulphur	0.78	2.03	0.57	0.90	0.82	1.44	1.7
Ash	16.64	12.36	4.66	9.18	6.33	11.43	

Pounds of Air Required for Combustion.

Per Lh. Iry Coal	14.50	15.27	17.12	15.26	15.04	12.45	
Prir lib. Combustible	17.39	17.42	17.96	16.81	16.05	14.06	20.60
Per L.h. ('arbon	18.86	19.50	19.40	19.65	19.84	19.21	24.29

Having the proximate analysis only, a close approximation to the number of pounds or air required per pound of combustible, in order to have the air supply 50% in excess, is as follows:

Anthracite and semi-anthracite	Pounds 17.4
Semi-bituminous	18.0
Bituminous, Pennsylvania	17.0
Bituminous, Ohio	16.0
Lignite, Texas	14.0
Crude Oil, Texas	20.6

Total Heat Losses Due to Chimney Gases.

$$
\mathrm{L}^{1}+\mathrm{L}^{2}+\mathrm{L}^{3} .
$$

Loss From Unburned Carbon Monoxide.
$\mathrm{L}_{1}=\frac{101.5 \mathrm{~m} \mathrm{c}}{\mathrm{m}+\mathrm{d}}$
$\mathrm{L}_{1}=$ heat lost in B.T.U. per lb. of fuel due to incomplete combustion of carbon in flue gases.
$\mathrm{m}=$ percent carbon monoxide in flue gas.
$\mathrm{c}=$ percent carbon in fuel.
$\mathrm{d}=$ percent carbon dioxide in flue gas.

Loss From Specific Heat of Gases.

$\mathrm{L}_{2}=0.24 \mathrm{~W}\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{1}\right)$
$\mathrm{L}_{2}=$ heat lost in B.T.U. per lb. of fuel due to temperature of stack gases.
$\mathrm{T}_{2}=$ stack temperature.
$\mathrm{T}_{1}=$ air temperature.
W = weight of flue gases per pound of fuel as found by flue gas analysis or $=\mathrm{A}+1$, A being pounds air used per one pound of fuel.

Loss From Water Vapor.
$\mathrm{L}_{3}=\mathrm{V}\left(\mathrm{T}_{1}-\mathrm{T}_{v}\right)+965 .(\mathrm{V}-\mathrm{Va})$.
$L_{\text {: }}$: Loss due to water vapor in the flue gases per pound of fuel.
$\mathrm{V}=$ Pounds water vapor in flue gas per pound of fuel used.
$\mathrm{Va}=$ Pounds water vapor in air per pound of fuel used.
Fuel Loss in Ashes.
$L_{4}=\frac{H a_{1}}{a_{2}}$ or $=A$ P.
$\mathrm{H}=$ heating value of ashes or refuse per pound of fuel.
$\mathbf{a}_{1}=$ percent mineral matter or ash in fuel used.
$\mathrm{a}_{2}=$ percent mineral matter or ash in refuse.
$\mathbf{P}=$ pounds of ashes or refuse per pound of fuel used.
$\mathrm{A}=$ B.T.U. per pound of refuse.
$\mathrm{L}_{4}=$ loss in B.T.U. per pound of original fucl.

Properties and Requirements of One Pound of Various

 Fuel Elements.| | Carbon (C) | Hydrogen (H) | Sulphur (S) |
| :---: | :---: | :---: | :---: |
| | Carbon | Water | Sulphur |
| Product | Dioxide | | Dioxide |
| B. T. U. per pound burned | CO_{2} $14,600$ | $\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{O}$ | $\begin{aligned} & \mathrm{SO}_{2} \\ & 4,050 \end{aligned}$ |
| Oxygen consumed, pounds. | 2.67 | 7.94 | 0.998 |
| Nitrogen in air, pounds. | 8.89 | 26.59 | 3.342 |
| Air used, pounds. | 11.56 | 34.53 | 4.34 |
| Oxygen consumed, cu. ft | 29.9 | 89.0 | 11.2 |
| Nitrogen in air, cu. ft | 113.3 | 338.7 | 42.6 |
| Air used, cu. ft., $32^{\circ} \mathrm{F}$ | 143.2 | 427.7 | 53.8 |
| Flue gas, pounds. | 12.56 | 35.53 | 5.34 |
| Flue gas at $32^{\circ} \mathrm{F}$. , cu. ft | 143.2 | 338.7 | 53.8 |
| Flue gas at $525^{\circ} \mathrm{F}$., cu. ft | 286.4 | 1033.0 | 107.6 |

Total amount of flue gas at $525^{\circ} \mathrm{F}$ per lb . of fuel:
In cubic feet $=2.86 \mathrm{C}+10.33 \mathrm{H}+25 \mathrm{~N}+1.07 \mathrm{~S}-1.30$
In pounds $=.126 \mathrm{C}+.355 \mathrm{H}+.01 \mathrm{~N}+.053 \mathrm{~S}-.0550$
$\mathrm{C}=\%$ Carbon, $\mathrm{H}=\%$ Hydrogen, $\mathrm{N}=\%$ Nitrogen, $\mathrm{S}=\%$ Sulphur, $0=\%$ Oxygen.

Pounds water vapor in flue gas per pound of fuel $=.0894 \mathrm{H}$.
B.T.U. lost per lb, fuel on account of water vapor in flue gas at $525^{\circ} \mathrm{F}=117 . \mathrm{H}$.

Heating value of fuel (Dulong Formula adopted by A.S.M.E.) B.T.U. per $\mathrm{lb} .=146 \mathrm{C}+620\left(\mathrm{H}-\frac{0}{8}\right)+40 \mathrm{~S}$.

Pounds air required per lb. fuel $=.116 \mathrm{C}+.345\left(\mathrm{H}-\frac{0}{8}\right)+.43 \mathrm{~S}$.
Cu . ft. air at $100^{\circ} \mathrm{F}$ per lb. fuel $=1.63 \quad \mathrm{C}+4.87 \quad\left(\mathrm{H}-\frac{0}{8}\right)+.62 \mathrm{~S}$.
Add 50% to these values for practice in which 50% excess air is used.

Fuel Losses in Practice.

Heat Absorbed and Losses Itemized	Highest Attainable Efficiency	Excellent Practice	Good Practice	Average Practice	Poor Practice
Heat absorbed by boiler	89.86	80.0	75.0	65.0	60.0
Loss due to free moisture in coal.	0.50	0.5	0.6	0.6	0.7
Loss due to water vapor	4.20	4.2	4.3	4.3	4.4
Loss due to heat in dry flue gases.	5.33	10.0	13.0	17.5	20.0
Loss due to carbon monoxide	0.00	0.2	0.3	0.5	1.0
Loss due to combustible in ash and refuse.	0.00	1.5	2.4	- 4.5	5.5
Loss due to heating moisture in air	0.11	0.2	0.2	0.3	10.4
Loss due to unconsumed hydrogen, hydrocarbon, radiation and unaccounted for	0.00	3.4	4.2	7.3	8.0
Calorific value of coal.	100.00\%	100.0\%	100.0%	100.0%	100.0\%

Fig. 70-Heat Losses in Oil Furnaces Due to Excess of Air.

Radiant Heat.

With poorly installed setting where insulation is not properly attended to, radiation losses may amount to as much as from 6 to 8%. Whatever the extent of the loss may be, it is usually neglected in the average plant and it is an actual fact that in 9 plants out of 10 it can be cct in two with a comparatively small expenditure for insulating material and careful attention to the work.

IFig. 71 - Hfat Transmission of Radiant Heat in Fuel Oil Furnaces.

Stack Design for Oil Furnaces.

Stacks for oil-burning equipment differ considerably from those for solid fuels as relatively slight drafts are required.

The following table prepared by Weymouth is based on actual test data. Centrally situated stacks, short flues, average operating efficiencies and a permissible overload of 50 per cent are assumed.

STACK SIZES FOR OIL FUEL.

Stack Diameter, Inches	Height Above Boiler-room Floor, Feet					
	80	90	100	120	140	160
	Nominal Rated Boiler, Horsepower					
33	161	206	233	270	306	315
36	208	253	295	331	363	387
39	251	303	343	399	488	467
42	295	359	403	474	521	557
48	399	486	551	645	713	760
54	519	634	720	847	933	1,000
60	657	800	913	1,073	1,193	1,280
66	813	993	1,133	1,333	1,480	1,593
72	980	1,206	1,373	1,620	1,807	1,940
84	1,373	1,587	1,933	2,293	2,560	2,767
96	1,833	2,260	2,587	3,087	3,453	3,740
108	2,367	2,920	3,347	4,000	4,483	4,867
120	3,060	3,660	4,207	5,040	5,660	6,160

Heat of Combustion of Various Substances.

	Calories per Gram of Combustible Matter	B. T. U. per Lb. of Combustible Matter
Acetylene	11,527	20,749
Alcohol, grain	7,054	12,697
Alcohol, wood	5,330	9,594
Asphalt, 60° penetration	9,532	17,159
Asphalt, hard, from petroleum	9,989	17,980
Asphalt, blown, from petroleum	10,210	18,380
Benzol.	10,030	18,054
Cane sugar	3,961	7,130
Carbon or coke	8,137	14,647
Carbon Monoxide (CO)	2,435	4,383
Cellulose.	4,208	7,575
Coal, Penn. Anthracite	8,266	14,880
Coal, West Va. Bituminous.	8,778	15,800
Coal, Wyo. Lignite	7,444	13,400
Coal, No. Dak. Lignite.	6,411	11,540
Coal, Kansas Bituminous.	8,461	15,230
Coal, Illinois Bituminous .	8,056	14,500
Coal, cannel (Missouri)	8,980	16,165
Coal, peat.	5,940	10,692
Coke (from bituminous coal)	8,047	14,485
Coke, Petroleum. .	8,017	14,503
Cottonseed oil. . .	9,500	17,100
Fuel oil. . . .	10,833	19,500
Gas, coal, min.	4,440	7,990
max	7,370	12,266
Gas, methane.	13,344	24,019
Gas, water...	2,350	4,230
Gas, hydrogen. .	34,462	62,032
Gasoline, average.	11,528	20,750
Gilsonite.	9,944	17,900
Glycerin.	4,316	7,769
Graphite. . . .	7,901	14,222
Hydrogen (H_{2})	34,500	62,100
Iron. . . . $\mathrm{CH}^{\text {a }}$	1,582	2,848
Methane (CH_{4})	13,343	24,017
Naphthalene	9,690	17,442
Oil Gas.....	10,800	19,440
Paraffin wax.	11,140	20,050
Producer gas Shale oil. . .	773 10.970	1,391+
Shale (Bituminous-Colorado)	10,970 4,430	19,750 7,975
Shale (spent).	1,080	1,944
Starch . .	4,228	7,610
Stearic acid	9,374	16,873
Sulphur	2,241	4,034
Whood.	9,500	17,100
Wood	4,750	8,550

STATE	COUNTY	MINE	Thickness Seam. Feet	ULTIMATE ANALYSIS Ash and Moisture Free					PROXIMATE ANA1,YSIS				British Thermal Units, per Pound		
				C	H	N	S	0	$\mathrm{H}_{2} \mathrm{O}$	Vol.	F.C.	Ash	Natural	Dry	Com-bustible
Alabama.	Blount.	Blocton 7	5.0	83.92	5.58	1.29	0.65	8.56	3.21	32.05	60.79	3.95	14024	14490	15106
Alabama	Jefferson	Blue Creek 3	8.4				1.08		2.88	25.98	60.96	10.18			
Alabar	Jefferson	Dolomite 2	6.4	88.33	5.05	1.46	0.60	4.56	3.16	25.40	67.75	3.69	14616	15093	15691
Alaska	Bering River	Clear Creek	18.0	88.73	4.42	1.61	0.74	4.50	5.71	8.75	80.89	4.65	14185	15046	15826
Alaska	Seward Penins'a	Chicago Creek	88.0	70.78	5.05	1.08	1.21	21.88	39.66	25.38	31.07	3.89			
Arizona	Coconine.	Tuba.	4.3				1.66		9.15	33.27	43.86	13.72	10489	11545	13599
Arkansas	Sebastian	Banner	5.3	89.57	3.87	1.74	3.57	1.25	3.21	14.84	72.66	9.29	13588	14038	15530
California	Montere	Stone Canyon.	12.7	76.03	6.35	1.35	4.80	11.47	6.95	46.69	40.13	6.23	12447	13376	14336
Colorado.	Boulder.	Simpson......	7.1	76.22	5.07	1.68	0.51	16.52	19.28	34.61	41.41	4.60	9064	12468	13239
Colorado	Garfield	Black Diamond	16.0	75.58	5.12	1.90	1.19	16.21	14.11	32.71	43.99	9.19	10355	12056	13502
Colora	Los Animos	Bowen	7.0	83.84	5.85	1.18	0.80	8.33	3.04	28.01	50.61	18.34	11869	12242	15098
Georgi	Chattanooga	Lookout	1.95	86.39	4.77	1.33	1.55	5.96	3.80	15.88	65.83	14.49	12791	13297	15653
Idaho	Cassia.	Worthington	4.2				4.77		34.28	26.64	25.70	13.38	8613	13106	13457
Illinois	Franklin	Benton ..	9.2	81.12	5.24	1.82	1.91	9.91	8.31	31.65	49.56	14.48	11727	12789	14450
Illinois	St. Clair	Shiloh	6.8	77.51	5.49	1.34	5.32	10.34	11.17	39.31	39.20	10.32	11223	12634	14296
Illinois	Sangamon	Springfield 2	6.0	77.85	5.39	1.44	5.51	9.81	12.77	34.68	40.77	11.78	10757	12332	14258
Indiana	Green .	Linton....	7.0	78.26	5.44	1.36	5.43	9.51	10.30	36.31	41.64	11.75	11218	12508	14391
Indiana	Vigo	Macksville	5.8	78.77	5.65	1. 40	4.16	10.02	13.53	34.80	40.91	10.76	10948	12661	14459
Iowa	Polk	Altoona 4	4.5	75.83	5.52	1.16	8.53	8.96	13.88	36.94	35.17	14.01	10244	11894	14206
Kansas	Cherokee	Scammon	4.0	81.21	5. 44	1.41	6.68	5.26	2.50	33.80	51.25	12.45	12900	13228	15167
Kansas	Leavenworth	Lansing	1.9	177.59	5.54	1.29	9.94	5.64	6.95	35.70	45.16	12, 19	11905	12794	14724
Kentucky	Muhlenberg	Central 9	4.7	80.16	5.24	1.56	4.39	8.65	8.76	35.02	46.80	9.42	11965	13113	14623
Kentucky	Webster	Wheatcroft	5.4	81.04	5.56	1.59	1.57	10.24	9.29	31.97	54.13	7.61	12874	13738	14953
Kentucky	Johnson	Flambeau	4.3	82.45	7.25	1.34	1.13	7.83	2.20	50.64	36.70	10.46	13748	14058	15733
Maryland	Alleghany	Ocean 31/2	7.0	89.48	4.67	1.91	1.13	2.81	2.70	14.50	74.00	8.80	13910	14290	15710
Michigan	Saginaw.	Barnard.	3.0	81.91	5.56	1.46	1.53	9.54	11.91	31.50	49.75	6.84	11785	13374	14499
Missouri.	Macon	Bevier 8	4.9	76.48	5.36	1.34	7.20	9.62	11.50	33,63	38.01	16.86	10179	11502	14207
Missouri	Lafayette	Corder	1.8	77.73	5.85	1.41	5.96	9.05	12.34	34.36	41.97	11.33	10998	12546	14409
Missouri	Bates.	New Homel....	4.9	78.83	5.59	1.30	7.26	7.02	4.92	38.29	42.28	14.52	11975	12596	14864
Missouri	Cooper	Fortuna (pocket)		81.97	7.50	1.40	2.03	7.10	2.60	44.59	43.89	8.92	14333	14718	16200

STATE	COUNTY	MINE	Thickness Seam, Feet	ULTIMATE ANALYSIS Ash and Moisture Free					PROXIMATF: ANALYSIS				British Thermal Units, per Pound		
				C	H	N	S	0	$\mathrm{H}_{2} \mathrm{O}$	Vol.	F. C.	Ash	$\mathrm{Na}-$ tural	Dry	Com-bustible
Oklahom	Pittsbu	Hartsho	4.1	83.54	5.75	2.10	1.66	6.95	3.53	36.34	55.22	4.91	13885	14393	15165
Oklahom	La Flore	Panama	4.0	90.23	4.70	1.84	1.36	1.87	5.17	13.65	73.21	8.03	13662	14398	15728
Oregon	Coos	Beaver	6.0	72.20	5.29	1.67	1.15	19.69	16.10	31.10	39.63	13.17	9031	10764	12769
Pennsylvania	Alleghany	Bertha	5.0	84.57	5.39	1.72	1.38	6.94	2.61	34.92	56.30	6.17	13997	14371	15345
Pennsylvania	Cambria	Sterling 1	3.2	88.71	4.81	1.29	${ }^{1} 87$	3.32	2.90	17.00	73.40	6.70	14310	14740	15840
Pennsylvania	Schuylkill	St. Nicholas	9.0	96.39	1.77	0.71	1.00	0.13	2.80	1.16	88.21	7.83	13298	13682	14882
Rhode 1sland	Newport	Portsmouth	2.3	95.62	0.48	0.29	0.16	3.45	22.92	2.78	58.37	15.93	8528	11063	13946
South Dakota.	Harding	Outcrop	9.0	70.99	4.45	1.20	0.96	22.40	40.25	25.21	27.17	7.37			
Tennessee	Campbe	Rex No.	3.5	82.30	5.27	1.76	1.93	8.74	3.03	34.01	58.05	4.91	13858	14290	15052
Texas	Houston	Wooter	5.7	72.55	5.67	1.33	1.46	18.99	34.70	32.23	21.87	11.20	7056	10805	13043
Utah	Carbon	Aberdeen	22.0	80.11	5.59	1.38	0.35	12.57	4.47	40.79	49.98	1.76	12892	13590	14303
Virginia	Wise	Coburn	6.4	86.89	5.22	1.72	0.72	5.45	3.05	31.65	60.82	4.48	14470	14926	15647
Washington	King	Black Diamond	4.5	77.11	5.56	1.67	0.53	15.13	7.77	37.97	45.10	9.16	11673	12656	14051
Washington	Lewis	Weikel	3.6	90.92	3.71	1.65	0.70	3.02	3.90	7.40	71.20	17.50	11900	12390	15150
West Virginia	McDowe	Carretta	4.1	90.48	4.64	1.46	0.74	2.68	1.72	17.85	73.56	6.87	14571	14827	15941
West Virginia	Marion	Kingmo	7.2	84.86	5.54	1.68	0.98	6.94	1.75	36.77	55.14	6.34	14107	14359	15349
Wyoming.	Carbon.	Hanna	8.0	75.24	5.29	1.08	0.35	18.04	11.30	40.32	41.07	7.31	10755	13125	13216
Wyoming	Sweetwa	Rock Spr	7.0	76.93	5.13	1.38	0.90	15.66	8.53	35.60	50.39	5.48	11833	12937	13761
Montana.	Park	Maxey.	8.7	76.21	4.76	1.17	0.58	17.28	16.33	30.12	40.05	13.50	9247	11052	13178
Montana	Valley	Bruegger	8.7				0.57		43.16	22.03	28.99	5.82	5999	10555	11759
Montana	Carbon	Bear Creek	8.0	71.06	5.11	1.67	1.72	20.44	10.05	37.22	46.70	6.03	11194	12445	13338
New Mexico	Colfax	Dawson 2	5.3	83.08	5.83	1.23	0.91	8.95	2.17	37.93	45.08	14.82	12586	12865	14967
New Mexico.	McKinley	Clarksville	4.4	77.65	5.40	1.51	0.50	14.94	14.49	37.08	44.58	3.85	11468	13412	14043
North Dakota	Billings.	Sand Creek	35.0	71.09	4.40	1.24	1.00	22.27	43.78	26.07	26.33	3.82	5972	10624	11398
Ohio	Belmont	Black Oak	5.0	79.69	5.30	1.40	5.17	8.44	3.44	36.04	47.58	12.94	12287	12724	14693
Ohio	Jefferson		4.5	82.04	5.45	1.50	3.97	7.04	3.53	37.45	49.90	9.12	13072	13550	14965
Oklahoma	Okmulgee	Henryetta 1	3.0	81.43	5.50	1.50	2.31	9.26	7.04	34.55	48.40	10.01	12202	13126	14711

Melting Point and Heat of Fusion of Various

 Substances.| NAME | MELTING POINT | Heat of Fusion | |
| :---: | :---: | :---: | :---: |
| | | Calories per Gram | B. T. U. per Lb. |
| Acetic acid | $3{ }^{\circ} \mathrm{C}=37.4^{\circ} \mathrm{F}$ | 43.7 | 78.7 |
| Ammonia $\left(\mathrm{NH}_{3}\right)$ | $-75{ }^{\circ} \mathrm{C}=103.0^{\circ} \mathrm{F}$ | 108.1 | 194.6 |
| Anilin. | $-7{ }^{\circ} \mathrm{C}=+19.4{ }^{\circ} \mathrm{F}$ | 21.0 | 37.8 |
| Beeswax | $62{ }^{\circ} \mathrm{C}=143.6^{\circ} \mathrm{F}$ | 42.3 | 76.1 |
| Benzol | $20^{\circ} \mathrm{C}=35.6{ }^{\circ} \mathrm{F}$ | 29.1 | 52.4 |
| Bismuth | $266.8^{\circ} \mathrm{C}=514.0^{\circ} \mathrm{F}$ | 12.64 | 22.7 |
| Bromine | $-7.3^{\circ} \mathrm{C}=18.8^{\circ} \mathrm{F}$ | 16.2 | 29.2 |
| Cadmium | $321{ }^{\circ} \mathrm{C}=610.0^{\circ} \mathrm{F}$ | 13.7 | 24.7 |
| Calcium Chloride (CaCl_{2}) | $774{ }^{\circ} \mathrm{C}=1426.0^{\circ} \mathrm{F}$ | 54.6 | 98.3 |
| Carbon dioxide......... | $-56.3{ }^{\circ} \mathrm{C}=133.4{ }^{\circ} \mathrm{F}$ | 43.8 | 78.8 |
| Cast Iron-gray | $1221{ }^{\circ} \mathrm{C}=2330.0^{\circ} \mathrm{F}$ | 23.0 | 41.4 |
| white. | $1093{ }^{\circ} \mathrm{C}=2000.0^{\circ} \mathrm{F}$ | 32.0 | |
| Chlorine | $-103.5^{\circ} \mathrm{C}=154.0^{\circ} \mathrm{F}$ | 22.96 | 41.4 |
| Copper | $1055{ }^{\circ} \mathrm{C}=1930.0^{\circ} \mathrm{F}$ | 43.0 | 77.4 |
| Cresol | $340^{\circ} \mathrm{C}=93.2^{\circ} \mathrm{F}$ | 26.3 | 47.3 |
| Gallium. | $13{ }^{\circ} \mathrm{C}=55.4^{\circ} \mathrm{F}$ | 19.1 | 34.4 |
| Glycerin | $13{ }^{\circ} \mathrm{C}=55.4^{\circ} \mathrm{F}$ | 42.5 | 76.5 |
| Ice. | $00^{\circ} \mathrm{C}=32{ }^{\circ} \mathrm{F}$ | 80.0 | 144.0 |
| Lead | $325{ }^{\circ} \mathrm{C}=617.0^{\circ} \mathrm{F}$ | 5.86 | 10.5 |
| Mercury | $-38.7^{\circ} \mathrm{C}=37.7^{\circ} \mathrm{F}$ | 2.75 | 4.95 |
| Naphthalene | $79.2{ }^{\circ} \mathrm{C}=175.0^{\circ} \mathrm{F}$ | 35.5 | 63.9 |
| Nitrobenzol. | $-9.2{ }^{\circ} \mathrm{C}=15.4{ }^{\circ} \mathrm{F}$ | 22.3 | 40.1 |
| Palladium | $1500.0^{\circ} \mathrm{C}=2732.0^{\circ} \mathrm{F}$ | 36.3 | 65.3 |
| Paraffin. | $50.0{ }^{\circ} \mathrm{C}=122.0^{\circ} \mathrm{F}$ | 35.1 | 63.3 |
| Phenol. | $25.4{ }^{\circ} \mathrm{C}=77.9^{\circ} \mathrm{F}$ | 24.9 | 44.8 |
| Phosphorus | $27.4{ }^{\circ} \mathrm{C}=81.4^{\circ} \mathrm{F}$ | 4.74 | 8.5 |
| Platinum. | $1779.0^{\circ} \mathrm{C}=3234.0^{\circ} \mathrm{F}$ | 27.2 | 49.0 |
| Potassium.......... | $58.0^{\circ} \mathrm{C}=136.4^{\circ} \mathrm{F}$ $360.4{ }^{\circ} \mathrm{C}=681.0^{\circ} \mathrm{F}$ | 15.7 28.6 | 51.5 |
| Potassium Hydroxide | $360.4{ }^{\circ} \mathrm{C}=681.0^{\circ} \mathrm{F}$ $999.0^{\circ} \mathrm{C}=1830.0^{\circ} \mathrm{F}$ | 28.1 | 38.0 |
| Silica. | $1750.0^{\circ} \mathrm{C}=3183.0^{\circ} \mathrm{F}$ | 258.0 | 464.5 |
| Sodium | $96.5^{\circ} \mathrm{C}=206.0^{\circ} \mathrm{F}$ | 31.7 | 57.1 |
| Sodium Chloride | $804.0^{\circ} \mathrm{C}=1479.0^{\circ} \mathrm{F}$ | 123.5 | 222.3 |
| Sodium Fluoride | $992.0^{\circ} \mathrm{C}=1818.0^{\circ} \mathrm{F}$ | 186.1 | 335.0 |
| Sodium Hydroxide | $318.0^{\circ} \mathrm{C}=604.0^{\circ} \mathrm{F}$ | 40.0 | 72.0 |
| Spermeceti | $45.0{ }^{\circ} \mathrm{C}=113.0^{\circ} \mathrm{F}$ | 37.0 | 86.7 |
| Stearic Acid | $64.0{ }^{\circ} \mathrm{C}=147.0^{\circ} \mathrm{F}$ | 47.6 | |
| Sulphur | $115.0^{\circ} \mathrm{C}=239.0{ }^{\circ} \mathrm{F}$ | | 12.9 |
| Thallium | $290.0^{\circ} \mathrm{C}=554.0^{\circ} \mathrm{C}=442 .{ }^{\circ} \mathrm{F}$ | 13.3 | 23.9 |
| Zinc. | $415.3^{\circ} \mathrm{C}=780.0^{\circ} \mathrm{F}$ | 28.1 | |

Heat of Vaporization and Boiling Point of Various Substances.

NAME	Temperature of Boiling (Pressure not given)	Heat of Vaporization	
		Calories per Gram	$\begin{aligned} & \text { B. T. U. } \\ & \text { per Lb. } \end{aligned}$
Acetic acid	$110.0^{\circ} \mathrm{C}=230.0^{\circ} \mathrm{F}$	92.8	167.0
Acetone	$56.6^{\circ} \mathrm{C}=133.8^{\circ} \mathrm{F}$	155.2	279.3
Alcohol (ethyl)	$70.0^{\circ} \mathrm{C}=158.0^{\circ} \mathrm{F}$	208.92	376.0
Alcohol (methyl, wood)	$64.5^{\circ} \mathrm{C}=148.2^{\circ} \mathrm{F}$	267.5	481.5
Ammonia (1 atmos.).	$-33.5^{\circ} \mathrm{C}=-28.3^{\circ} \mathrm{F}$	341.0	614.0
Ammonia.	$17.0^{\circ} \mathrm{C}=62.6^{\circ} \mathrm{F}$	297.0	534.6
Ammonium Chloride	$350.0^{\circ} \mathrm{C}=662.0^{\circ} \mathrm{F}$	709.0	1276.0
Amyl Alcohol	$131.0^{\circ} \mathrm{C}=268.0^{\circ} \mathrm{F}$	120.0	216.0
Amyl Chloride	$107.0{ }^{\circ} \mathrm{C}=224.6^{\circ} \mathrm{F}$	56.3	101.3
Amylene.	$12.5{ }^{\circ} \mathrm{C}=54.6^{\circ} \mathrm{F}$	75.0	135.0
Aniline	$183.0^{\circ} \mathrm{C}=360.5^{\circ} \mathrm{F}$	104.2	187.5
Benzol	$80.0^{\circ} \mathrm{C}=176.0^{\circ} \mathrm{F}$	93.45	168.2
Butyl Alcohol	$83.0^{\circ} \mathrm{C}=181.4^{\circ} \mathrm{F}$	130.4	234.7
Butyric Acid	$163.0^{\circ} \mathrm{C}=325.4^{\circ} \mathrm{F}$	114.0	205.2
Carbon Dioxide	. $0^{\circ} \mathrm{C}=32.0^{\circ} \mathrm{F}$	56.25	101.25
Carbon Disulphide	$46.2{ }^{\circ} \mathrm{C}=115.2^{\circ} \mathrm{F}$	86.67	156.0
Carbon Tetrachloride	$76.2{ }^{\circ} \mathrm{C}=169.2^{\circ} \mathrm{F}$	46.4	83.5
Chloroform	$60.9^{\circ} \mathrm{C}=141.6^{\circ} \mathrm{F}$	58.49	105.30
Cresol.	$201.6^{\circ} \mathrm{C}=395.0^{\circ} \mathrm{F}$	100.5	180.9
Chlorine	$-22.0^{\circ} \mathrm{C}=7.6^{\circ} \mathrm{F}$	67.4	121.3
Decane	$159.5^{\circ} \mathrm{C}=319.0^{\circ} \mathrm{F}$	60.8	109.4
Ether	$34.9{ }^{\circ} \mathrm{C}=94.8^{\circ} \mathrm{F}$	91.11	164.0
Ethyl Acetate	$73.1^{\circ} \mathrm{C}=163.6^{\circ} \mathrm{F}$	84.3	151.7
Formic Acid.	$100.0^{\circ} \mathrm{C}=212.0^{\circ} \mathrm{F}$	120.4	216.7
Gasoline	$40-150.0^{\circ} \mathrm{C}=104-300^{\circ} \mathrm{F}$	75.00	135.0
Heptane	$90.0^{\circ} \mathrm{C}=194.0^{\circ} \mathrm{F}$	77.8	140.0
Hexane.	$68.0^{\circ} \mathrm{C}=154.4^{\circ} \mathrm{F}$	79.4	142.9
Hexylene	.0 $0^{\circ} \mathrm{C}=32.0^{\circ} \mathrm{F}$	92.7	166.8
Hydrogen Sulphide.	$-61.4^{\circ} \mathrm{C}=78.5^{\circ} \mathrm{F}$	132.0	237.6
Iodine.	$174.0^{\circ} \mathrm{C}=345.0^{\circ} \mathrm{F}$	123.95	43.10
Mercury	$350.0^{\circ} \mathrm{C}=662.0^{\circ} \mathrm{F}$	62.0	111.60
Methyl Acetate	$57.1^{\circ} \mathrm{C}=134.8^{\circ} \mathrm{F}$	97.0	174.6
Nitric Acid	$86.0{ }^{\circ} \mathrm{C}=186.8^{\circ} \mathrm{F}$	115.1	207.2
Nitrogen.	$-195.6^{\circ} \mathrm{C}=320.0^{\circ} \mathrm{F}$	174.65	85.8
Nitrous Oxide	$-20.0^{\circ} \mathrm{C}=-4.0^{\circ} \mathrm{F}$	67.0	120.6
Nitrobenzol	$151.5^{\circ} \mathrm{C}=305.0^{\circ} \mathrm{F}$	79.2	142.5
Octane.	$120.0^{\circ} \mathrm{C}=248.0^{\circ} \mathrm{F}$	71.4	128.5
Oxygen.	$-188.0^{\circ} \mathrm{C}=-306.0^{\circ} \mathrm{F}$	58.0	104.4
Pentane.....	$30.0^{\circ} \mathrm{C}=86.0^{\circ} \mathrm{F}$	85.8	154.4
Propyl Alcohol	$90.0^{\circ} \mathrm{C}=194.0^{\circ} \mathrm{F}$	169.0	304.2
Sulphur D	$316.0^{\circ} \mathrm{C}=601.0^{\circ} \mathrm{F}$	362.0	651.5
Sulphuric Acid	0.0 $0^{\circ} \mathrm{C}=32.0^{\circ} \mathrm{F}$	91.7	165.0
Sulphur Trioxide	$326.0^{\circ} \mathrm{C}=619.0^{\circ} \mathrm{F}$	122.1	219.8
Toluol.	$18.0^{\circ} \mathrm{C}=64.4^{\circ} \mathrm{F}$	147.4	265.3
'Turpentine	$110.8^{\circ} \mathrm{C}=231.0^{\circ} \mathrm{F}$	84.0	151.2
Xylol....	$160.0^{\circ} \mathrm{C}=320.0^{\circ} \mathrm{F}$	74.0	133.2
Water	$139.9^{\circ} \mathrm{C}=284.0^{\circ} \mathrm{F}$ $108.0^{\circ} \mathrm{C}=226.0^{\circ} \mathrm{F}$	82.0 535.9	147.6 964.6

Specific Heat of Various Substances Solid and Liquid

Acetic acid-solid	0.627	Glycerin.	0.576
liquid	0.502	Gold.	0.316
Aceton	0.528	Granite	0.190
Alcohol Methyl-absolute	0.600	Graphite	0.202
Alcohol Ethyl-95\%.	0.700	Gypsum, sulphate of lime.	0.197
Alumina...........	0.197	Heptane.	0.487
Aluminum	0.2185	Hexane	0.504
Allyl Alcohol	0.665	Hexadecane	0.496
Ammonia ($0^{\circ} \mathrm{C}$)	0.876	Ice	0.505
$\left(20^{\circ} \mathrm{C}\right)$	1.190	Iodine	0.057
$\left(70^{\circ} \mathrm{C}\right)$	1.233	Iron	0.1130
Ammonium Nitrate (64\%)	0.610	Kerosene	0.490
Amyl Alcohol.	0.455	Lead-liquid	0.0402
Amylene	1.060	Lead.	0.0315
Anilin.	0.512	Limestone	0.210
Antimony	0.495	Manganese	0.1217
Asphalt.	0.550	Magnesium	0.245
Benzol-fluid	0.407	Marble	0.208
solid	0.397	Mercury	0.0331
Beeswax	0.820	Naphthalene	0.314
Bismuth	0.305	Nickel	0.1091
Bismuth-liquid	0.0308	Nonane	0.503
Brass.	0.0939	Octane.	0.505
Brick work and masonry	0.200	Paraffin Wax	0.563
Brine, 25%	0.8073	Pentane	0.476
Cadmium.	0.1804	Petroleum	0.505
Carbon bisulphide.	0.240	Phenol	0.561
Carbon (diamond)	0.145	Phosphorus (red)	0.1698
Carbon dioxide.	0.215	Phosphorus (yellow)	0.202
Carbon (graphite)	0.186	Platinum.	0.0323
Carbon tetrachloride	0.203	Quartz and sand	0.190
Calcium chloride sol.(40\%)	0.636	Quick lime...	0.217
Cast Iron...............	0.180	Rubber	0.481
Cellulose.	0.33	Selerium (cryst.)	0.084
Chalk.	0.215	Selerium (amorph.)	0.112
Charcoal	0.214	Seawater	0.951
Chlorine--solid ($108^{\circ} \mathrm{C}$)..	0.1446	Silver	0.0568
Chlorine-liquid ($0^{\circ} \mathrm{C}$) \ldots	0.2230	Soda Ash	0.231
Coal, average .	0.220	Solium chloride (26\%)	0.780
Coke.	0.203	Sodium nitrate (47%)	0.708
Copper	0.0933	Sulphuric acid (solid)	0.2349
Concrete	0.20	Sulphuric acid (liquid)	0.3315
Corundum	0.198	Sulphuric acid (85\%)	0.406
Cresol.	0.553	Sulphur chloride	0.202
Ether	0.5034	Sulphur	0.1844
Flint and rocks in general.	0.200	Sulphur liquid	0.2340
Fuel oil	0.550	Sulphuric acid (sr.gr. 1.87)	0.3350
Fusel oil	0.5640	Tin.............	0:0559
Gallium-solid	0.079	Toluol	0.363
Gallium-liquid	0.80	Turpentine	
Gasoline...... .	0.475	Wood (dry)	
Gas oil.	0.500	Wood (wet)	0. 500
Glass-plate	0.186	Zinc Chloride (68%)	0.437
Glass-common	0.117	Zinc	0.0938

Specific Heat of Gases and Vapors.

	Constant Pressure	Constant Volume
Acetone	0.3740	0.16847
Acetic acid	0.4125	0.399
Air	0.23751	0.299
Alcohol	0.4534	
Ammonia	0.508	
Argon.	0.123	
Benzol	0.332	
Blast furnace gas	0.2277	
Carbonic acid, CO_{2}	0.217	0.171
Carbon monoxide CO	0.2479	0.1758
Chlorine.	0.124	
Chloroform	0.1567	
Ether	0.4797	0.3411
Flue Gas, 10%, CO_{2}	0.318	
Hydrogen.	3.40900	2.41226
Hydrogen chloride	0.194	
Methane, CH_{4}.	0.5929	0.4683
Nitrous Oxide	0.224	
Nitrogen.	0.24380	0.17273
Olefiant gas, $\mathrm{C}_{2} \mathrm{H}_{4}$ (ethylene)	0.404	0.332
Oxygen. . . . ${ }^{\text {Sulphur dioxide }}$ (O)	0.21751	0.15507
Sulphur dioxide (SO_{2})	0.1553	0.1246
Superheated steam (water vapor) (atmospheric pressure	0.4805	0.346
Helium............	1.250	
Carbon bisulphide (CS_{2})	0.1596	
Nitric oxide..	0.2317	

Thermal Units.

The BRITISH THERMAL UNIT (B. T. U.) is the heat required to raise the temperature of one pound of water, one degree Fahr. (average between 32° and $212^{\circ} \mathrm{F}$). As one kilogram is equal to 2.20462 pounds and one degree Cent. is equal to $9 / 5$ degrees Fahr. the large calorie is $3.96832(2.20462 \times 9 / 5)$ times as great as the British Thermal Unit, the small calorie being 0.00396832 times the British thermal unit.

The SMALL CALORIE is the amount of heat required to raise the temperature of one gram of water one degree Cent. (from 0° to $1^{\circ}, 4^{\circ}$ to 5°, or 15° to 16° being used, giving slightly different values.)

The LARGE CALORIE is the amount of heat required to raise the temperature of one kilogram of water one degree Cent. It is therefore one thousand times as large as the small calorie.

The HEAT OF COMBUSTION of a substance is the number of small or large calories of heat evolved during the combustion of a gram or a kilogram of the substance.

Using the English weights and measures, it is the number of B.T.U. of heat evolved during the combustion of one pound of the substance. To convert the former into the latter value the number of calories must be multiplied by 1.8 (3.96832 $\div 2.20462$).

The HEAT OF FORMATION of a substance is the number of calories of heat evolved or absorbed when a gram molecular weight of the substance is formed. When heat is absorbed, the value found is negative.

The MELTING POINT of the substance is the temperature at which the solid or liquid forms are capable of existing together in equilibrium.

The BOILING POINT of a liquid is the highest temperature at which the liquid and its pure vapor can exist together in equilibrium. This temperature varies with the pressure.

The SPECIFIC HEAT of a substance is the ratio of the number of thermal units necessary to raise the temperature of a substance one degree, divided by the number of thermal units necessary to raise the same weight of water at $60^{\circ} \mathrm{F}$ one degree. It may also be defined as the number of thermal units required to raise the temperature of one gram of a substance one degree Centigrade.

The HEAT OF FUSION of a substance is the number of thermal units required to change a unit mass of the solid at its melting point into liquid at the same temperature.

The HEAT OF VAPORIZATION of a liquid is the number of thermal units required to change a unit mass of the liquid at its boiling point into vapor at the same temperature.

TEMPERATURE UNIT or thermal intensity is measured in degrees Centigrade (Celsius) or regrees Fahrenheit. One degree Cent. is one one-hundredth of the difference of temperature between the freezing point of water and its boiling point at 760 millimeters pressure as indicated by the expansion of mercury. A degree Fahr. is one one-hundred eightieth of the difference of temperature between the freezing point of water and the boiling poin'c of water.

MECHANICAL, EQUIVALENT OF HEAT-779.4 ft. pounds $=1$ B.T.U.

Fif. $7:$ - Shale Oil Fractional Gravity Before and After Cracking.

Distillation Products of Coal and Oil Shale.

Oil shale is a stratified sedimentary rock in which are found numerous fragments of fossil plants and animals, principally aquatic form. Oil shale in its natural form does not contain any oil whatever but it does contain on the average about 35% of organic matter. The mineral base of oil shale presents a suggestion as to the origin of the organic matter. The mineral is a hydrous silicate of alumina and as a general rule hydrous silicates of alumina have great absorptive power for hydrocarbons of large molecular weight. A typical one, Bentonite, as well as Fuller's Earth, has the property of decolorizing and removing complex matter from hydrocarbon oils. Oil shale may then be compared with Fuller's Earth which has turned black or greenish black after absorbing a large amount of coloring matter from petroleum. This may readily have taken place while the petroleum was vaporizing. This organic matter when subjected to pyrogenic distillation forms the following products:

Fuel oil or shale oil, 20.25% equal to 405 lbs . or 54 gal . per ton. Water, 4.08% equal to 83 lbs . or 10 gal.
Combustible gas 8.86% equal to 1,605 cubic cubic feet.
Ammonia as ammonium sulphate, $0.90 \%=34 \mathrm{lbs}$. ammonium sulphate.

Mineral matter and carbonaceous residue 66.0%.
With a low temperature distillation, larger amounts of heavier fuel oil are obtained. With the higher temperature distillation, smaller amounts of shale oil containing more or less naphtha and burning oil are obtained.

A typical distillation of oil shale is as follows:
Commercial Fractions:

Fractional Distillation of Oil:

Fraction

0-10
10- 20
20- 30
30-40
40- 50
50-60
60-70
70-80
80-90
90-100
$\begin{aligned} & 90-100 \text {.. } 350\end{aligned} 0.910=23.8^{\circ} \mathrm{Be} e^{\prime}$ leum and for this reacon the shale oil industry has aroused great interest on account of its possible substitution for petroleum. Shale oil, however, is utilized in only a few countries, chicfly Scotland, though oil shale is very widely distributed throughout the world. The oil shale resources of the United States are so cxtonsive as to furnish an effective guarantee for the future when the underground reservoirs of petroleum are exhausted. The cost of obtaining the
shale oil, however, will in all probability far exceed the present cost of obtaining petroleum. It is possible that the mining of petroleum by shafts will be resorted to before it is necessary to depend upon oil shale as a source of fuel oil. Many difficulties of mining, production, refining and marketing of shale oil must be overcome. Much of the known oil shale is remote from routes of transportation in a territory difficult of access and is far removed from points of fuel oil consumption. Methods of mining and transportation must be developed; processes of extracting the oil from the shale must be perfected; improved methods of refining which do not entail large losses must be worked out. Present methods of refining crude oil cannot be profitably applied to the refining of shale oil on account of the different chemical character. Most oil shale is a tough, brownish to black fine grained rock. It is not an article of commerce except possibly as a road building material and it cannot be transported any great distance from the point where it is mined. The mineral matter is the greater portion of its content and is essentially a disintegrated feldspar impregnated with the organic matter. The composition of the mineral ash of a shale found in Colorado is as follows:

It is estimated that in Colorado alone there is enough shale to produce 20,000 million barrels of oil and 300 million tons of ammonium sulphate.

Oil shale is mined somewhat like coal and is then crushed to convenient size and roasted in retorts, in which its volatile constituents arc driven off. In Scotland and France, the only countries where the oil shale industry has yet been established, the shale is fed by gravity from a storage hopper into the top of a vertical cylindrical retort; in which it is allowed to move slowly downward while it is being roasted until it is discharged from the lower end as waste. The heat is applied externally in such a manner that the temperature increases downward in the retort. The temperature in the upper third of the retort where all the oil gases are driven off does not rise above $900^{\circ} \mathrm{F}$; the temperature in the lower part of the retort is raised to about $1600^{\circ} \mathrm{F}$ in order to convert the maximum amount of nitrogen in the shale into ammonia. The gases and vapors formed in the retort are conveyed through condensing and scrubbing apparatus to separate and clean the oil and ammonia. The oil is then refined by methods similar to those used in refining petroleum and the ammonia is converted into ammonium sulphate by treatment with sulphuric acid.

Fig. T3-Shale Oi! Distilling Temperature Before and After Cracking.

Occurrence and Distribution.-Oil shale, like coal, occurs in beds that range in age from Devonian to Tertiary. The principal beds of oil shale in Scotland, France and Canada are in the older formations, but the richest and largest deposits in the United States are in the Green River formation, of Eocene (Tertiary) age.

Shale from which oil can be distilled probably occurs in nearly all countries but it has been reported in comparatively few, either because it is so similar in appearance to ordinary carbonaceous shale or because there has been so little demand for it while petroleum has been plentiful that no special search has been made for it.

In North America, oil shale occurs in both Canada and the United States but is commercially undeveloped. The richest shales in the Rocky Mountains region of the United States are of Tertiary age but large areas in the eastern part of the United States and eastern Canada are underlain by dark shales of Paleozoic age that are in many places as rich in organic matter from which oil can be distilled as those that are mined commercially in Scotland and France.

Comparatively little is known about oil shale in South America though it is said to occur in Argentina, at several localities in Brazil and in Chile. Unsuccessful attempts have been made to distill oil profitab!y from oil shale in eastern Brazil but the failure is reported to have been due to mismanagement rather than to the poor quality of the shale.

In Africa, thin beds of shale capable of yielding oil when distilled are reported from Angola, the Belgian Congo, Natal and the Transvaal but the shale is mined in none of these countries and the thickness, richness and extent of most of the deposits are not reported. Perhaps the largest area underlain by oil shale is in the Belgian Congo.

In Europe, the commercial development of the oil shale industry began early in the nineteenth century before the rise of the modern petroleum industry. In 1913, the world's output of oil shale was $3,591,810$ metric tons of which $3,573.810$ tons were mined in Europe. About 91 per cent was produced in Scotland, 8 per cent in the Autun and Aumance districts in France and the remainder in Australia, Germany and Italy. In Scotland, the oil shale industry has been able to compete successfully with the petroleum industry because of the output of valuable by-products made in connection with the oil and because of the remoteness of Scotland from the principal sources of petroleum-southern Russia and the United States. Large deposits of oil shale are reported to occur in northern Russia.

Oil shale in Asia is not mentioned in reports but valuable deposits may nevertheless exist there even in areas that have been covcred by grologic studies.

In Occaniea some oil shale has been mined and distilled at sev(wal places in Australia (most of them in New South Wales) and in New /caland, but the total shale of oil produced in all these places has been less than one per cent of the world's output and in none of them is oil shate now mined. In all the areas where oil shale is reported the beds are thin.

Position of the United States.-When petroleum was discovered in quantity in the United States in 1859, oil was being distilled from cannel coal (whence the term "coal oil") but no record has been found of large production of oil from shale in this country. There are, however, extensive reserves of material sufficiently rich to justify the hope that it may form the basis of a great industry and during the last ten years progress has been made in perfecting processes for the commercial distillation of oil from domestic oil shale. The valuable deposits of oil shale in North America are widely distributed and include beds ranging in age from Devonian to Eocene. Local conditions such as remoteness from a supply of petroleum and nearness to a sufficient market, have heretofore made it possible to develop an oil shale industry in Scotland, France, Australia and New Zealand and in view of a possible shortage in the world's supply of petroleum in the near future, it seems probable that an oil shale industry may be developed even in such countries as the United States where petroleum is now abundant. The largest foreign deposits of oil shale are apparently in Brazil and Russia but the most valuable deposits in the world are probably those of Colorado, Utah and Wyoming.

While shale unquestionably is an enormous reserve for fuel oil, it is not so valuable for gasoline. Shale oil holds a position between petroleum and coal tar. Coal tar is not yet satisfactorily treated or cracked for the production of gasoline. Shale oil makes a very poor naphtha in that it contains a very large per cent of olefins. The olefins are decreased materially by cracking at high pressures particularly in the presence of hydrogen. The accompanying graphs show the effect of high pressure cracking in the character of the hydrocarbons in shale oil.

Refining Practice for Shale Oil.*

In refining Scotch shale oil a loss of about 22 per cent is incurred, chiefly in the form of compounds with chemicals used in the treatment. This is over four times the average loss incurred in refining American petroleum. Products made from the crude oil are naphtha, including scrubber naphtha, 9.9 per cent; burning oils, 24.7 per cent; gas and fuel oils, 24.4 per cent; lubricating oils, 6.6 per cent; paraffin wax, 9.5 per cent; still coke, 2 per cent. Satisfactory motor fuels, burning oils and fuel oils are produced. The lubricating oils are not particularly viscous and are not, thercfore, adapted for heavy duty work, such as use in internal combustion motors, high pressure bearings, and the like. A very good quality of paraffin wax is produced which is used chicfly for candle making. The still coke is of rather poor quality, being contaminated with the chemicals used in refining the oils, and on this account docs not bring a very good price. Some oil is recovered from the compounds or sludges formed in chemical treatment of the oils, and this recovered oil is used as part of the fuel in the refinery. At the same time considerable acid is recovered from the sludges, and is used cither in treating other oil or in the production of ammonium sulphate.

At the present time it is impossible to accurately estimate the cost of producing shale oil from American oil shales, and therefore im-
possible to arrive at any satisfactory estimate of possible profit. By basing our calculations on Scotch practice, however, it is possible to give an idea of some of the requirements for an oil shale industry in this country. Assume that an industry producing and refining 50,000 barrels of shale oil per day had been developed in the State of Colorado. This could hardly be termed a large industry nor would it go far in supplying the demands of the nation, which at the present time is using nearly $1,250,000$ barrels of petroleum per day, but if we assume that the shale yielded forty-two gallons of oil to the ton, 50,000 tons of shale would have to be mined each day. I will not venture to predict how many tons of shale a man can mine in this country per day, but in Scotland each man produces about four and one-half tons. Knowing that the American coal miner is a better producer than the British coal miner, for the sake of making an illustration, assume that the American miner will produce ten tons per day. The assumed industry would then require at least 5,000 miners, nearly half as many miners as are employed in producing coal in Colorado at the present time.

If Scotch shale retorts were used the retorting plant investment necessary for the 50,000 -barrel industry would be over $\$ 160,000,000$, based on present estimates of the cost of Scotch retorts, and the refining equipment necessary would require another $\$ 50,000,000$, if we base estimates on the capital required for building refineries for the complete refining of petroleum. Of course, these figures may not apply to American shales and practice, but they give an idea of the capital required by an oil shale industry.

In addition to the large capital required for an oil shale industry, there are many serious technical and cconomic problems to be solved before the industry can hope to succeed in a large way. As yet we do not know what type of process will be required to handle our shales successfully and at a profit, and we know very little regarding the methods of refining these oils or what quality of finished products can be made from them. A large oil shale industry will require a large quantity of labor, and this labor must be obtained and housed.

Starting with shale, adding heat and steam, and treating the water and gas removed, there has now been produced spent shale of no value, gas which is burned in the retort furnaces to supply heat for the distillation operations, sulphate of ammonia which is ready for the market, and a crude oil which requires refining to yield marketable products. A ton of Scotch cil shale, in the treatment of which about 100 gallons of water have keen used, produces at the present time about 24.5 gallons of crude oil, 36 pounds of ammonium sulphate, 10,000 cubic feet of gas of about 240 B . T. U. heat value and about 1,600 pounds of spent shale.

In general Scotch shale oil refining is similar to petroleum refining, but because shale oil contains a greater percentage of objectionable compounds than ordinary petroleum the refinery operation is more complicated and more costly than average petroleum refining. Briefly stated, Scotch shale oils are subjected to more distillation and more chemical treatments than is petroleum when the latter is refined.
*For complete references on oil shale see Reports of Investigations of Burcau of Mines No. 2256, 2176.

FRACTIONAL GRAVITY DISTILLATION ANALYSIS OF SHALE OIL BEFORE CRACKING.

Laboratory Number 46258, Original Shale Oil.
Specific Gravity, $0.920 ;{ }^{\circ} \mathrm{Be}^{\prime}$ U. S. 22.1°; ${ }^{\circ} \mathrm{Be}^{\prime}$ Tag. 22.3°.
Color, Brownish Black; Sulphur=0.49\% B.T.U.\%18,425.

$\%$	Temp. ${ }^{\circ} \mathrm{F}$.	Gravity of Fract on	Gravity of Total Over	Gravity of Stream
				$0.790=47.6^{\circ} \mathrm{Be}^{\prime}$
5	330	$0.790=47.6^{\circ} \mathrm{Be}^{\prime}$	$0.790=47.6^{\circ} \mathrm{Be}^{\prime}$	$0.802=44.9^{\circ} \mathrm{Be}^{\prime}$
	368			$0.814=42.3^{\circ} \mathrm{Be}^{\prime}$
10	378	$0.814=42.3^{\circ} \mathrm{Be}^{\prime}$	$0.802=44.9^{\circ} \mathrm{Be}^{\prime}$	$0.823=40.4^{\circ} \mathrm{Be}^{\prime}$
	398			$0.833=38.3^{\circ} \mathrm{Be}^{\prime}$
15	413	$0.833=38.3^{\circ} \mathrm{Be}^{\prime}$	$0.812=42.7^{\circ} \mathrm{Be}^{\prime}$	$0.839=37.1^{\circ} \mathrm{Be}^{\prime}$
	426			$0.845=35.9^{\circ} \mathrm{Be}^{\prime}$
20	446	$0.845=35.9^{\circ} \mathrm{Be}^{\prime}$	$0.820=41.0^{\circ} \mathrm{Be}^{\prime}$	$0.853=34.4^{\circ} \mathrm{Be}^{\prime}$
25	464 479	$0.861=32.8^{\circ} \mathrm{Be}^{\prime}$	$0.828=39.4^{\circ} \mathrm{Be}^{\prime}$	$0.861=32.88^{\circ} \mathrm{Be}^{\prime}$ $0.869=31.3{ }^{\circ} \mathrm{Be}^{\prime}$
25	494	$0.861=32.8^{\circ} \mathrm{Be}$	$0.828=39.4{ }^{\circ} \mathrm{Be}$	0.876=30.0 ${ }^{\circ} \mathrm{Be}^{\prime}$
30	516	$0.876=30.0^{\circ} \mathrm{Be}^{\prime}$	$0.836=37.7^{\circ} \mathrm{Be}^{\prime}$	$0.883=28.7^{\circ} \mathrm{Be}^{\prime}$
	530			$0.890=27.5^{\circ} \mathrm{Be}^{\prime}$
35	543	$0.890=27.5^{\circ} \mathrm{Be}^{\prime}$	$0.844=36.1^{\circ} \mathrm{Be}^{\prime}$	$0.895=26.6^{\circ} \mathrm{Be}^{\prime}$
	552			$0.900=25.7^{\circ} \mathrm{Be}^{\prime}$
40	576	$0.900=25.7^{\circ} \mathrm{Be}^{\prime}$	$0.851=34.8^{\circ} \mathrm{Be}^{\prime}$	$0.905=24.8^{\circ} \mathrm{Be}^{\prime}$
	586			$0.909=24.1^{\circ} \mathrm{Be}^{\prime}$
45	599	$0.909=24.2^{\circ} \mathrm{Be}^{\prime}$	$0.857=33.6^{\circ} \mathrm{Be}^{\prime}$	$0.910=24.0^{\circ} \mathrm{Be}^{\prime}$
	604 613			$0.911=23.8^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$ $0.916=23.0^{\circ} \mathrm{Be}^{\prime}$
50	613	$0.911=23.8^{\circ} \mathrm{Be}^{\prime}$	$0.867=31.7^{\circ} \mathrm{Be}$	$0.916=23.0^{\circ}{ }^{\circ} \mathrm{Be}$ $0.922=21.9^{\circ} \mathrm{Be}^{\prime}$
55	Gas	$0.922=21.9^{\circ} \mathrm{Be}^{\prime}$	$0.872=30.7^{\circ} \mathrm{Be}^{\prime}$	$0.928=21.0^{\circ} \mathrm{Be}^{\prime}$
				$0.934=20.0^{\circ} \mathrm{Be}^{\prime}$
60	Gas	$0.934=20.0^{\circ} \mathrm{Be}^{\prime}$	$0.877=29.8^{\circ} \mathrm{Be}^{\prime}$	$0.937=19.5^{\circ} \mathrm{Be}^{\prime}$
65	Gas	$0.940=19.0^{\circ} \mathrm{Be}^{\prime}$	$0.882=28.9^{\circ} \mathrm{Be}^{\prime}$	$0.943=18.5^{\circ} \mathrm{Be}{ }^{\prime}$
65	Gas	$0.940=19.0{ }^{\circ} \mathrm{Be}$		$0.947=17.9^{\circ} \mathrm{Be}^{\prime}$
70	Gas	$0.947=17.9^{\circ} \mathrm{Be}^{\prime}$	$0.887=28.0^{\circ} \mathrm{Be}^{\prime}$	$0.950=17.4^{\circ} \mathrm{Be}^{\prime}$

Summary:

Water............................. 2.1%	Olefins . 58.00
42.7° Benzine or Naphtha. 12.9%	Aromatics. $27.0{ }^{\text {a }}$
31° Illuminating oil, unrefined...... 25.0%	Naphthenes and Paraffins 15.0\%
$24^{\circ} \mathrm{Gas}$, Oil or Distillate. 10.0%	
18.5 ${ }^{\circ}$ Wax Distillate. 30.0%	
Residue.... 20.0%	

Ammonia in water portion $=0.422 \%$ as NH_{3}.

FRACTIONAL GRAVITY DISTILLATION ANALYSIS OF SHALE OIL AFTER CRACKING.

Laboratory Number 46258, Shale Oil Residue Cracked at 800 lbs . Pressure.
Specific Gravity, 0.896; ${ }^{\circ} \mathrm{Be}^{\prime}$ U. S. 262 ; ${ }^{\circ} \mathrm{Be}^{\prime}$ Tag. 26.4. Color, Dark Red;

$\%$	Temp. ${ }^{\circ} \mathrm{F}$.	Gravity of Fraction	Gravity of Total Over	Gravity of Stream
0	119			
5	210	$0.681=76.3^{\circ} \mathrm{Be}^{\prime}$	$0.681=76.2^{\circ} \mathrm{Be}^{\prime}$	$\begin{aligned} & 0.681=76.3^{\circ} \mathrm{Be} \\ & 0.690=73.6^{\circ} \mathrm{Be}^{\prime} \end{aligned}$
10	281	$0.717=65.8^{\circ} \mathrm{Be}^{\prime}$	$0.699=70.9^{\circ} \mathrm{Be}^{\prime}$	$0.699=70.9^{\circ}{ }^{\circ} \mathrm{Be}$ $0.710=67.8^{\circ} \mathrm{Be}^{\prime}$
15	334	$0.765=53.5^{\circ} \mathrm{Be}^{\prime}$	$0.721=64.7^{\circ} \mathrm{Be}^{\prime}$	$0.721=64.7{ }^{\circ} \mathrm{Be}^{\prime}$ $0.730=62.3^{\circ} \mathrm{Be}^{\prime}$
15	334	$0.765=53.5 \mathrm{Be}^{\circ}$	$0.721=64.7{ }^{\circ} \mathrm{Be}$	$0.740=59.7{ }^{\circ} \mathrm{Be}^{\prime}$
20	368	$0.798=45.8^{\circ} \mathrm{Be}^{\prime}$	$0.740=59.7^{\circ} \mathrm{Be}^{\prime}$	$0.748=57.7^{\circ} \mathrm{Be}^{\prime}$
25	395	$0.823=40.4^{\circ} \mathrm{Be}^{\prime}$	$0.757=55.4^{\circ} \mathrm{Be}^{\prime}$	0.757 0.764 $0.753 .4^{\circ} .^{\circ} \mathrm{Be}^{\prime}$ Be^{\prime}
				$0.771=530^{\circ} \mathrm{Be}^{\prime}$
30	435	$0.846=35.7^{\circ} \mathrm{Be}^{\prime}$	$0.771=52.0^{\circ} \mathrm{Be}^{\prime}$	$0.777=50.6^{\circ} \mathrm{Be}^{\prime}$
35	454	$0.861=32.8^{\circ} \mathrm{Be}^{\prime}$	$0.784=49.0^{\circ} \mathrm{Be}^{\prime}$	$0.784=49.0{ }^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$ $0.790=47 .{ }^{\prime}$
40	486			$0.796=46.22^{\circ} \mathrm{Be}^{\prime}$ 0.801 $=45.10{ }^{\circ} \mathrm{Be}$
40	486	$0.881=29.1^{\circ} \mathrm{Be}$	$0.796=46.2^{\circ} \mathrm{Be}^{\prime}$	$0.801=45.1^{\circ}{ }^{\circ} \mathrm{Be}^{\prime}$ $0.807=43.8^{\circ} \mathrm{Be}^{\prime}$
45	518	$0.898=26.1^{\circ} \mathrm{Be}^{\prime}$	$0.807=43.8^{\circ} \mathrm{Be}^{\prime}$	$0.812=42.7^{\circ} \mathrm{Be}^{\prime}$
50	543	$0.911=23.8^{\circ} \mathrm{Be}^{\prime}$	$0.818=41.5^{\circ} \mathrm{Be}^{\prime}$	$0.818=41.5^{\circ} \mathrm{Be}^{\prime}$ $0.823=40.4{ }^{\circ} \mathrm{Be}$
55	582	$0.930=20.7^{\circ} \mathrm{Be}^{\prime}$	$0.828=39.4^{\circ} \mathrm{B}$	$0.828=39.4{ }^{\circ} \mathrm{Be}^{\prime}$ $0.833=38.3^{\circ} \mathrm{Be}^{\prime}$
				$0.838=37.3^{\circ} \mathrm{Be}^{\prime}$
60	623	$0.945=18.2^{\circ} \mathrm{Be}^{\prime}$	$0.838=37.3^{\circ} \mathrm{Be}^{\prime}$	$0.844=36.1^{\circ} \mathrm{Be}^{\prime}$
65	651	$0.959=16.0^{\circ} \mathrm{Be}^{\prime}$	$0.855=34.0^{\circ} \mathrm{Be}^{\prime}$	$0.855=34.6^{\circ} \mathrm{Be}^{\prime}$ $0.859=33.2{ }^{\circ} \mathrm{Be}^{\prime}$
			$0.850=34.0{ }^{\circ} \mathrm{Be}$	$0.862=32.6^{\circ} \mathrm{Be}^{\prime}$
70	679	$0.965=15.1^{\circ} \mathrm{Be}^{\prime}$	$0.862=32.6^{\circ} \mathrm{Be}^{\prime}$	$0.865=32.0^{\circ} \mathrm{Be}^{\prime}$

Naphtha in oil charged
Synthetic Oil-
Naphtha.................. 30.0%
Illuminants..................
25.0%
Olefins 27.5%.
The following list of manufacturers of by products coke in the United States May 1 , 1921 , has been comADal Survey:
ADDRESS
Birmingham
..American Tru . American Trust Bldg
Brown Marx Bldg... American Trust Bldg . American Trust Bldg .Woodward.
. Boston Bldg., Denver.
 Muncie . Blosestic Bladianapolis. Majestic Bldg., Indianapolis
208 S. LaSalle St., Chicago. 208 S. LaSalle St., Chicago .
Terre Haute. S. Dearborn St., Chicago.
111 W. Washington, Chicago
Ashland
Bethlehem, Pa
111 Devonshire St., Boston.
Dearborn..
Wyandotte
Detroit....
Dearborn...
Wyandotte
Syracuse, N
United States-Continued.
Name or
Number of Works

Camden Coke Co.
 Wickwire Stcel Co.... American Steel $\&$ Wire Co.
Brier Hill Steel Co.......
Hamilton-Otto Coke Co. Hamilton-Otto Coke Co.
MeKinney Steel Co. National Tube Co...

Penn Iron \& Coal Co.
 Ironton Solvay Coke Co . . Co. Toledo Furnace Co. United Furnace Co.

Youngstown Sheet \& Tube Co. Pennsylvania-

Alleghany By-Product Coke Co
Bethlehem Steel Co
MeKeesport
Bethlehem.
Bethlehem.
wayәリวая
Coal Distillation Plants in the United States-Continued.

60 Cambria-Belgian 92 Koppers, 210 Unitedgian 768 Koppers 212 United-Otto
300 Koppers
40 Semet-Solvay 40 Semet-Ss
100 Koppers 0
0
$=0$
110 Semet-Solvay
40 Koppers
24 Semet-Solvay 20 Klonne

60 Koppers
94 Koppers
120 Semet-Solvay
120 Semet Solvay
108 United-Otto Rosedale........... Franklin. Clairton.. Farrell...
Pittsburg.
Chester. Midland.. Dunbar. Sassafras Point. Alton Park Seattle.. Fairmont.
Follansbee
Benwood Milwaukee
Mayville.
OPERATOR Cambria Steel Co Widener Bldg., Philadelphia Carnegie Bldg., Pittsburg.
Carnegie Bldg., Pittsburg. Carnegie Bldg., Pittsburg
Pittsburg.................

 Philadelphia
.Turks Head Bldg., Providence
James Bldg., Chattanooga .
Stuart Bldg., Seattle.
Drawer 436, Cleveland, Ohio.
Drawer 436,
Steubenville
Pittsburg, P
Milwaukee.
First National Bank Bldg., Milwaukee

Products of Distillation of Coal-(a).

PRODUCT	1917		1918	
	Quantity	Value	Quantity	Value
Gas (M cubic feet)-				
Water gas..	153,457,318	131,876,065	175,431,370	156,150,576
Oil gas.	14,739,508	13,470,911	14,100,601	13,619,264
By-produ	131,026,575	11,360,335	158,358,479	13,699,515
	342,151,129	\$195,031,424	390,520,898	\$226,485,440
Coke (short tons), b-				
Coal gas.	$\begin{array}{r} 1,857,248 \\ \mathrm{c} 22,439,280 \end{array}$	$\begin{array}{r} \$ 10,953,693 \\ \mathrm{c} 138,643,153 \end{array}$	$\begin{array}{r} 1,813,660 \\ \mathrm{c} 25,997,580 \end{array}$	$\begin{array}{r} \$ 14,022,818 \\ \mathrm{c} 193,018,785 \end{array}$
	24,296,528	\$149,596,846	27,811,240	\$207,041,603
Tar (gallons) -				
Coal gas.	53,318,413	\$1,774,326	48,522,987	\$1,886,629
Water gasOil gas..	59,533,208	1,258,683	53,419,753	1,731,714
	727,556 $221,999,264$	$\begin{array}{r} 32,682 \\ 5,566,302 \end{array}$	550,006 $200,233,002$	15,967 $6,364,972$
By-product gas				
	335,578,441	\$8,631,993	302,725,748	\$9,999,282
Ammonia Sulphate or equivalent(lbs.) -				
Coal gas By-product gas	$\begin{array}{r} 88,547,975 \\ 560,792,322 \end{array}$	$\begin{aligned} & \$ 1,362,125 \\ & 17,903,864 \end{aligned}$	$\begin{array}{r} 56,900,464 \\ 69708770 \end{array}$	$\begin{aligned} & \$ 1,453,070 \\ & 26442,951 \end{aligned}$
	649,340,297	\$19,265,989	754,209,234	\$27,896,021
Light oils (gals.), d-				
Coal gas...	770,298	\$448,855		
Water gas Oil gas..	6,420,717	1,655,204	12,292,026	\$6,978,281
By-product gas	205,475	74,035	20,376	- 4,274
	54,42, 266			25,688,446
	61,823,756	\$30,833.298	71,876,778	\$32,671,001
Naphthalene (lbs.) -				
Coal gas.	399,897	\$9,687	508,202	\$14,282
By-product	17,276,044	569,449	15,890,447	650,229
	17,675,941	\$579,136	16,398,649	\$664,511
Waler gas....	252 1,068	\$ 2,733	1,007	\$13,275
By-prorluct	1,068	12,067	$\begin{aligned} & 251 \\ & 655 \end{aligned}$	$\begin{aligned} & 2,230 \\ & 2,732 \end{aligned}$
Lamphlack and carbon residue (short tons) - ()il gas	1,320	\$14,800	1,913	\$18,237
	31,205	\$169,425	17,678	\$95,211

(a) Other products not included in this table, valued at $\$ 807,147$ in 1917 and $\$ 1,808,515$ in 1918 were: From coal-gas plants, creosote, tar, distillery products, pitch, coke breeze and spent iron oxide. From oil-gas plants: Sodium ferrocyanide. From by-product coke oven plants: Coke breeze, sodium ferrocyanide, residue, drip oil, spent oxide and pyridin oil.

Products from One Ton of Dry Coal at Different Temperatures.

(COAL WITH 35% VOLATILE AND 7% ASH.)

Coke or Carbonized Coal	$\begin{gathered} \text { Coke Oven } \\ \left(1700^{\circ} \mathrm{F}\right) \\ 66 \% \\ (1 \% \text { Volatile }) \end{gathered}$	Low Temperature Carbonization (3\% 68\% (3\% Volatile)
Gas, cubic feet per ton	10,000	9,000
Light oil from gas, gallons per ton.	3	2
Ammonium sulphate, pounds per ton	20	20
Tar oils, gallons per ton.	3.8	15
Pitch, gallons.	8.2	0

Fuel Consumed or Lost in Coking.

	BEE HIVE	BY-PRODUCT
	Millions of B.T.U.	Millions of B. T. U.
Gas.	$11,000 \mathrm{cu} . \mathrm{ft} .=6.160$	$4,300 \mathrm{cu} . \mathrm{ft} .=2.480$
Tar	9 gallons=1.401	none
Light oil	4 gallons $=0.527$	none
Coke.	100 pounds $=1.300$	none
Total coal equivalent	$\begin{aligned} & 671 \text { pounds }=9.388 \\ & 33.55 \% \end{aligned}$	$\begin{gathered} 172 \text { pounds }=2.408 \\ 8.6 \% \end{gathered}$

One ton of coal tar may yield:
Pitch 1,000
Naphthalene 112
Anthracite oils 34
Creosote oils 20
Cresylic acid
Carboilc acid $21 / 2$ gals.
Heavy naphtha 1 gal.
Solvent naphtha $11 / 2$ gals.Toluol
Benzol gal.gls.gal.
lbs.
lbs.
gals.
gals.
gals.
gals.
gal.

Composition of Pitch:

Composition of Pitch:	Hard	Soft
Carbon	93.2 \%	91.8\%
Hydrogen	4.4 \%	4.6\%
B. T. U. per pound	15,930	
Moisture.	0.05%	
Volatile	66.85%
Fixed carbon	32.55%	
Ash.	0.60%	
Specific gravity..	1.35	

Yield from Distillation of Eastern High Grade Coals.

(Howard N. Eavenson in Coal Age.)

Kentucky Coals, 24 Samples:

Ash, per cent.	5.29
Sulphur, per cent	0.99
Phosphorus, per cent	0.006
By-product yield, per ne	
Tar, gallon	8.0
Benzol, free, gallon	2.6
Ammonium sulphate, pounds	24.5
Surplus gas, cu. ft	5,069
Yield of coke, per cent	72.8
Fusing point of ash, degrees F	2743

9.09	2.59
2.76	0.63
0.019	0.002
10.6	5.8
3.3	2.1
31.0	21.2
5,340	4,770
76.8	68.2
2970	2610

Pennsylvania Coals, 20 Samples:

Ash, per cent	7.27	10.44	5.32
Sulphur, per cent	1.18	2.14	0.77
Phosphorus, per cent	0.012	0.018	0.005
By-product yield, per net	7.8	10.1	5.8
Benzol, gallons	2.2	10.1	5.8
Ammonium sulphate, pounds	25.1	29.8	22.8
Surplus gas, cu. ft.	5,497	5,654	5,304
Yicld of coke, per cent	67.5	70.0	64.2
Fusing point of ash, degrees F	2366	2390	2350

Gas-Manufacturing Processes in Use in the United States.

The manufactured gas distributed in the United States is of three principal kinds: Coal gas, carbureted water gas and oil gas.

The manufacture of water gas consists essentially of an intermittent process in which a bed of anthracite coal or coke is brought to a high temperature by an air blast and then steam under pressure is blown through the fuel, forming carbon monoxide, hydrogen and a small amount of carbon dioxide by reaction with the carbon in the fuel. The resultant gas, called blue water gas, has a heating value of approximately 300 B.T.U. per cubic foot and almost no luminosity when burned in an open flame. It is conducted into a fire-brick-lined chamber called the carburetor, which contains staggered rows of fire bricks, called checker brick, heated to incandescence during the blow period. Gas oil or fuel is sprayed into the carburetor while the gas is passing through, forming an oil gas which enriches the blue water gas to any desired heating value or candlepower. Another checker-brick-filled chamber, called the superheater, converts most of the oilgas vapors into permanent gases, which will not condense again upon cooling. During the formation of the oil gas certain portions of the hydrocarbons which compose the oil are changed in their composition to form benzol, toluol and related hydrocarbons called aromatic compounds. Considerable tar is formed at the same time. This is condensed, scrubbed and washed out of the gas by various means, but usually at a temperature which permits most of the aromatics to go forward with the gas. The sulphur in the gas is removed by ironoxide purifiers and the gas is metered and leaves the plant at or slightly above atmospheric temperature.

The manufacture of coal gas is essentially different from that of water gas. In this process certain classes of bituminous coals are distilled in fire clay or silica retorts or ovens and the resulting gases are condensed, scrubbed, washed and purified to remove water vapor, tar, ammonia and sulphur. As in the water gas process, certain of the hydrocarbons given off by the coal are transformed by the heat of the retort to aromatic compounds. A small part of these aromatics is washed out of the gas by the wash water and tar, but the larger part remains in the gas. In fact, the cooling of the gas is usually so regulated that most of these substances will remain in the gas to increase its heating value and candlepower. Coal gas retorts take a variety of forms. Among these are coke ovens, chamber ovens, horizontal D-shaped retorts, vertical retorts, inclined retorts, etc. Even those of a given class differ among themselves in details of construction. In most of them the distillation is an intermittent process, but some continuous methods are used. In all these processes the gas produced consists of the same constituents in somewhat different proportions. The form of apparatus used in a given case depends largely upon economic considerations or is governed by certain special qualities which are desired in one or more of the products produced. In all of these coal gas processes coke remains in the retort after distillation. In some of them, as for example in coke ovens, coke is the principal product, but in city gas plants gas is the chief product. The operation is carried out in any case to give most satisfactory qualities
to the principal product and at the same time obtain as high yields and good quality as possible of the secondary or by-products.

Mixed gas is usually understood to be a mixture of carbureted water gas and coal or coke-oven gas. It is supplied in many cities in the United States where the requirements permit of a mixed gas being supplied. The manufacturing installation for mixed gas is practically two complete installations, one for coal gas and one for carbureted water gas, with their avxiliary scrubbing, condensing, purifying, and metering apparatus entirely independent and separate. The manufactured mixed gas, however, is stored in common holders and delivered through a single distribution system. The coal and water gas thus supplement each other. The uniform but more cumbersome coal-gas production furnishes coke as fuel for the water-gas plant. This in turn takes care of the irregularities of the output, and, where necessary, increases the quality of the gas production, especially where a high candlepower standard is in force.

The oil gas process is at present confined chiefly to the Pacific Coast States, where comparatively cheap oil and expensive coal make the coal and water gas processes less feasible. In oil gas manufacture oil alone is used as fuel for heating the checker bricks of the fixing chambers and oil is sprayed by steam into the chambers where, in contact with the bricks, lampblack and permanent gases are formed. In this process also aromatic compounds are included among the constituents of the gas.

Note.-See Bulletin of Bureau of Standards.

Products of Refining of Light Oil of Gas Works.

| |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Average Content of Light Oils in Various Gases.

The amount of benzol and toluol formed in any one of these processes is by no means definite. It depends upon the operating conditions and the quality of the raw materials (coal or oil). It would therefore be impossible to predict exactly what the yield of products in a given case would be, but an extensive inquiry into the operation of a number of typical plants has given the following tabulation as the usual range of figures for the various processes. Individual results may vary widely from them in a particular case.
TABLE 1.-Approximate Yields of Crude Light Oil and Pure Products and Approximate Composition of Crude Light Oil.

APPROXIMATE YIELD OF CRUDE LIGHT OIL.

APPROXIMATE YIELD OF PURE PRODUCTS.

Gallons per short ton coal carbonized:
Benzol
Toluol
Coal gas-

Horizontal retort.	1.5	$0.4-0.5$
Continuous vertical retort	6	
Inclined retort	9	
oke-oven gas, run of oven	1.5	3-. 5

Coke-oven gas, run of oven
1.5
Gallons per 1000 cubic feet of gas:
Carbureted water gas
Oil gas

Paraffins
N-heptane
Triethylmethane
N-octane
Diispbutyl \qquad Specific Gravity Centigrade 0.712 , at $16^{\circ} \mathrm{C} \quad 97$.689, at $27^{\circ} \mathrm{C} \quad 96$ 708, at $12.5^{\circ} \mathrm{C} \quad 125$.714 , at $0^{\circ} \mathrm{C} \quad 108.5$
Yields of Oil from Distillation of Cannel Coal.
Yield of Crude Oil
Locality
Per Ton, Gallons
England:
Derbyshire 82
Wigan cannel 74
Newcastle 48
Scotland:
Boghead cannel 120
Scotch cannel 40
Lesmahago cannel 96
New Brunswick:
Albertite 110
American:
Breckenridge, Ky., cannel 130
Erie R. R., Pa. 47
Falling Rock cannel 80
Pittsburgh 49
Kanawha semi-cannel 71
Elk River semi-cannel 60
Cannelton, Ind. cannel 86
Coshocton, Ohio 74
Darlington, Pa. (Cannelton) 56
Camden lignite, Ark. 64
Missouri, Cooper Co. 75
The coke resulting from cannel coal is not of satisfactory quality for ordinary purposes. However, it is satisfactory for making producer gas or burning as a domestic fuel in hard coal burners, provided a small amount of bituminous matter remains in it.

Refining of Oil for Road Building and Paving Purposes.

The various methods of refining which yield residues adaptable or used for road building and paving purposes are as follows:

Sedimentation.
Dehydration.
Fractional distillation by direct fire.
Forced fire distilation with direct fire.
Steam distillation.
Inert gas distillation.
Air blowing.
In the types of oil which are ordinarily used for making asphalt or road binders, water is one of the most common impurities. The water is ordinarily salt water and may contain more or less other mineral matter than the salt. These impurities are insoluble in the bitumen proper and as they differ from the bitumen in specific gravity, they may be removed wholly or in part by the process of sedimentation or separation by gravity. In the more fluid petroleums, sedimentation occurs during storage in the large tanks and the water is ordinarily automatically drawn off from the bottom of the tank by reason of the different heads produced by the salt water and by the oil. However, a small amount of emulsified water nearly always remains in all petroleums, so that there will always be a small amount of sediment. If the petroleum is very heavy and viscous, approximately equal in gravity to water, then the water will remain emulsified and will not separate by gravity. This type of oil happens to be the most suitable in quality for producing asphalt and special means of removing this water is necessary before the oil can be reduced to the desired consistency. The dehydration processes are designed primarily for removal of the water in the bituminous material which will not completely separate by sedimentation. It is desirable to do this before distillation because of the fact that the presence of the water will cause foaming when the mixture is heated to the temperature of boiling water. Dehydrating plants vary considerably in design, but those more commonly used for petroleum in California are spoken of as topping plants. In this sort of plant the oil is pumped with or without pressure through a length of pipe containing many bends and turns, so that the oil is considerably stirred. The pipe coils are set in furnaces, so that they may be suitably heated to a temperature above that of boiling water. This pipe discharges the foam into a large expansion chamber, where the water and more volatile constituents separate in the form of vapor which is condensed in an ordinary condenser for the recovery of the light products. This sort of plant is commonly spoken of as a pipe still. From the pipe still, the oil passes through another line, direct to a large batch still, where it is subjected to the ordinary fractional distillation.

The essential principle in the distillation of an oil for road purposes is that it shall distill at a temperature sufficiently low to pre-
vent the decomposition of the hydrocarbons. Since asphalt hydrocarbons begin to decompose at a temperature of $600^{\circ} \mathrm{F}$ or slightly below, it is desirable that the fire distillation be carried only to that temperature. After this temperature has been reached, the usual method is to blow superheated steam, which mechanically carries over the more volatile hydrocarbons at a temperature much below the actual boiling point.

This distillation has a special action in removing the paraffin compounds which are particularly undesirable in that they have very little ductility and cementation value. The distillate will contain any light oils such as are used as spindle oils and for general lubrication, as well as any paraffin wax. It is particularly desirable in this distillation to prevent the formation of free carbon or coke. The distillation with steam may be carried down until the residue shows a penetration of about 10 millimeters.

A method of distillation which gives very great yields of solid or semi-solid asphalt even from semi-paraffin base oils is that of blowing the oil at moderately high temperature with air. The amount of air and rate in blowing is usually about 300 cubic feet per barrel of oil per hour (see p. 375). For delivering air to an asphalt blowing still with the oil at a temperature of $400^{\circ} \mathrm{F}$ and producing about 250 bbls . per day, 100 H. P. is required. Air blowing in many MidContinent oils gives much more asphalt than naturally exists in the oil. The action of the air is to produce a more viscous product which is very much less susceptible to temperature changes than the natural asphalt. It is strictly a chemical fransformation process formed from the hydrocarbons in the oil which are ordinarily not useful for asphalt making purposes. It has been found from practical experience that this type of asphalt is not sufficiently cementitious and ductile to be used for ordinary paving purposes in producing first class asphalt pavement. It can, however, be successfully used and is in great demand for water-proofing purposes, for filler in brick and wood block pavement, for roofing purposes and for fluxing ductile asphalt.

The best types of petroleum for asphalt paving purposes are those from California, Mexico, Trinidad and Texas.

ASPHALT PAVEMENT.

Asphalt is a black non-oxidized bituminous hydrocarbon, semifluid to hard in consistency, the heavy residuum from petroleum or occurring naturally. The residua from petroleum are known as oil asphalts and come most largely from California, Mexican, Texas and Mid-Continent petroleums. The most commonly used natural asphalts are Trinidad, Bermudez, Cuban and Gilsonite.

The term asphalt is commonly applied to bituminous pavements, being mixtures usually of oil asphalt with dust, sand, gravel or rock in varying proportions from 6% to 20%. The terms "bitumen" or "asphaltic cement" are commonly applied to the pure asphalt material.

The types of asphalt construction now commonly used are:

1. Asphaltic concretc. This mixture is very common in localities where Joplin chats are available. It is known also as "Topeka Specifi-
cation Pavement" and "Bituminous Concrete," but it might be called bituminous gravel. The stone it carries is of $1 / 2^{\prime \prime}$ and $1 / 4^{\prime \prime}$ size. (Fig. 76.)
2. Sheet asphalt is the original type of asphalt pavement laid in two courses, the bottom one with coarse stone, the top with sand mixed with the bitumen. (Fig. 77.)
3. Bituminous concrete (Warren) is laid with coarse stone in the wearing surface. (Fig. 78.)
4. Bituminous earth is laid without an appreciable amount of sand or rock. (Fig. 79.)

There are two different basic principles involved in proportioning the mineral matter of an asphalt pavement. One is to so grade the coarse mineral particles that they support each other and interlock. The other is to produce a mastic of bitumen and finely divided earthy material that is rigid and self-supporting because of surface tension action. This mastic fills the voids in the coarse material and has a much higher melting point than the pure bitumen and does not so readily allow softening or movement of the pavement.

COMPOSITION OF NATURAL ASPHALT.

Natural Ber- Gra-

Trinidad mudez Gilsonite hamite Cuban

Bitumen	56.0\%	94.0\%	99.4	94.1\%	75.1\%
Mineral Matter	36.8\%	2.0\%	0.5\%	5.7\%	21.4\%
Specific Gravity	1.400	1.085	1.045	1.171	1.305
Fixed Carbon.	11.0\%	13.5\%	13.0\%	53.3\%	25.0\%
Melting Point, ${ }^{\circ} \mathrm{F}$	190	180	300	Cokes	240
Penetration	0.5	2.5	0	0	0
Free Carbon	60%	4.0\%	0.1\%	0.2\%	3.5\%
Sulphur (ash free basis)	6.5\%	5.6\%	1.3\%	2.0\%	8.3\%
Petroleum ether soluble	65.0\%	70.0\%	30.0\%	0.4\%	41.1\%
Total Carbon (ash free)	82.6\%	825%	87.2\%	
Hydrogen (ash free)	10.5\%	10.3\%		7.5\%	
Nitrogen (ash free)	0.5\%	0.7\%	0.2\%	

COMPOSITION OF OIL ASPHALTS.

	Mexican	Mid-Continent Air Blown	California	Stanolind (crackedressure tar residue)
Bitumen	99.5\%	99.2\%	99.5\%	998%
Mineral Matter	0.3\%	0.7\%	0.3\%	0.3\%
Specific Gravity	1.040	0.990	1.045	
Fixed Carbon	17.5\%	12.0\%	15.0\%	17.5\%
Melting Point, ${ }^{\circ} \mathrm{F}$	140	180	140	135
Penetration	55	40	60	50
Free Carbon	0.0\%	0.0\%	0.0\%	0.0%
Sulphur (ash free basis)	4.50\%	0.60\%	1.65\%	$\underset{70.35 \%}{0.0 \%}$
Petroleum Ether Soluble	70.0\%	72.0%	67.0\%	70.0% grood
Cementing Properties	good	poor	rood	$\stackrel{100+}{\text { grood }}$
Ductility Loss at $325^{\circ} \mathrm{F} 5 \mathrm{hrs}$	45 cm	20.1\%	0.2\%	0.1\%
Heat Test	adherent	smooth	adherent	scaly

Composition of Rock Asphalt.					
Bitumen	$\begin{gathered} \text { Ragusa, } \\ \text { Sicily } \\ \ldots . .9 .9 \% \\ \ldots .37 .1 \end{gathered}$	Seyssel, France 59%	Mons, Cass Co., France Missouri $8.9 \% \quad 6.9 \%$		Oklahoma 5.9%
Passing 200 mesh.		44.1	53.1	20.0	9.0
80 mesh.	23.0	15.0	13.0	21.0	8.4
50 mesh.	14.0	9.0	7.0	17.0	9.0
40 mesh.	.. 4.0	7.0	5.0	6.0	9.9
30 mesh.	.. 2.0	7.0	3.0	6.5	15.0
20 mesh.	... 5.0	6.0	5.0	5.1	8.8
10 mesh.	... 5.0	6.0	5.0	7.5	8.0
4 mesh.	. 0.0	0.0	0.0	10.0	26.0
Calcium carbonate.	89.0	91.3	90.0	92.9	96.0

ASPHALTIC SANDSTONES.

Breckenridge		Higginsville, County, Ky.
Mislahoma		
Missouri		

SHEET ASPHALT PAVEMENT.

Sheet asphalt is the standard asphalt pavement. Specifications call for two courses of the following composition and properties:

BINDER OR BOTTOM COURSE.

TOP COURSE.

Composition of Asphalt Pavements.

The following table gives a comparison of a typical composition and properties of good mixtures representing the various types of asphalt wearing surface pavements:

EFFECT OF MINERAL MATTER ON THE PENETRATION OF ASPHALTIC CEMENT (Typical Case).

\% Dust	Penetration	Melting Point
0	200	100
35	128	110
55	92	120
70	34	150

In a general way, 1% of dust in asphaltic cement decreases the penetration 2 points with A. C. of ordinary penetration. This will vary somewhat according to the character of the asphaltic cement. A pavement having a relation of 2 parts dust and 1 part bitumen cannot soften or flow in hot weather.

FLUXING OF HARD ASPHALT.

As a general rule, 30% of $10-12^{\circ} \mathrm{Be}^{\prime}$ asphaltic flux is required to bring Trinidad asphalt to a penetration of 50 . Less of paraffin flux is required. For each 1% of asphaltic flux added to about 50° asphalt the penetration is raised 3 points. For exact results a test should be made with the actual materials in question.

MATERIALS REQUIRED FOR 1000 YARDS OF ASPHALTIC CONCRETE PAVEMENT ARE AS FOLLOWS (Typical):

For wearing surface:
"Chats" or Gravel $=32$ tons
Sand (Coarse) $=32$ tons
Sand (Fine) $=32$ tons
Dust $=7$ tons
Asphaltic Cement $=81 / 2$ tons

For concrete base:
(6 inches of $1: 3: 6 \mathrm{mix}$.) Cement $=732$ sacks $=183$ bbls. Sand $=77$ cubic yards $=$ Rock $=155$ cubic yards Water $=7,000$ gallons

RELATION OF THE DEFECTS OF AN ASPHALT PAVEMENT TO ITS PHYSICAL PROPERTIES.

Cracking is.caused by asphaltic cement without sufficient ductility, with too low penetration, insufficient in quantity or that has been over-heated; Imperfections in the base, such as a cracking in the base or the lack of a rigid base or lateral support; Insufficient compression when laid; Lack of traffic.
Disintegration and Hole Formation are caused by asphaltic cement with poor ductility and cementing value, or insufficient to coat mineral aggregate and fill voids; Dirty sand; Non-uniform thickness of surface mixttre; Weak foundations in spots; Water from beneath.
Scaling of the Surface Mixture is caused by asphaltic cement lacking in cementing power, insufficient in quantity or subject to decomposition by the weather; Improper grading of mineral, particularly insufficient dust; Dirt conglomerates in sand; Insufficient density.
Waviness and Displacement are caused by asphaltic cement without cement power, too soft or in too large quantity; Irregularity of surface thickness, or of composition of asphaltic surface mixture; Insufficient dust or filler; Non-rigid base or expansion of the base; Street with heavy grade.
Marking is caused by asphaltic cement that is too soft or in too large quantity; and that is too uniform; Insufficient dust or filler; Insufficient density.

FUNCTIONS OF VARIOUS CONSTITUENTS OF ASPHALTIC SURFACE MIXTURE.

Gravel and Coarse Sand in proper relation diminish voids, insure greater stability and increase density, allow the use of less asphaltic cement, decrease tendency to displacement, waviness and marking, increase susceptibility to damage by erosion and abrasion.

Sand in proper relation increases stability by filling voids in stone, increases capacity to resist abrasion, diminishes tendency to raveling.
Filler or Very Fine Dust in proper relation increases density and stability by filling voids in sand, increases capacity to resist abrasion, allows wider range in penetration of A. C., diminishes or overcomes tendency to marking, displacement and waviness, increases cementation of mixture, increases capacity for A. C., increases the need for much compression and softer A. C. in laying mixture, eliminates lakes of A. C., decreases brittleness of pavement.
A. C. in proper quantity and relation cements mineral particles together, keeps out water, imparts pliability, resiliency and noiselessness, prevents erosion and disintegration of coarse mineral of pavement.

Specifications for Asphaltic Cement for Asphalt Surface Mixture.

Impurities.

The asphaltic cement shall contain no water, decomposition products, granular particles or other impurities, and it shall be homogeneous.

Ash passing the 200 -mesh screen shall not be considered an impurity, but if greater than 1% corrections in gross weights shall be made to allow for the proper percentage of bitumen.

Specific Gravity.

The specific gravity of the asphaltic cement shall not be less than 1,000 at $77^{\circ} \mathrm{F}$.

Fixed Carbon.

The fixed carbon shall not be greater than 18%.
Solubility in Carbon Bisulphide.
The asphaltic cement shall be soluble to the extent of at least 99% in chemicaliy pure carbon bisulphide at air temperature and based upon ash free material.
Solubility in Carbon Tetrachloride.
The asphaltic cement shall be soluble to the extent of at least 98.5% in chemically pure carbon bisulphide at air temperature and based upon ash free material.

Melting Point.

The melting point shall be greater than $128^{\circ} \mathrm{F}$ and less than $160^{\circ} \mathrm{F}$ (General Electric method). Flash Point.

The flash point shall be not less than $400^{\circ} \mathrm{F}$ by a closed test.

Penetration.

The asphaltic cement shall be of such consistency that at a temperature of $77^{\circ} \mathrm{F}$ a No. 2 needle weighted with 100 grams in five seconds shall not penetrate more than 9.0 nor less than 5.0 millimeters. For asphaltic cement containing ash 0.2 millimeter may be added for each 1.0% of ash to give the true penetration.

Loss by Volatilization.

The loss by volatilization shall not exceed 2%, and the penetration after such loss shall be more than 50% of the original penetration. The ductility after heating as above shall have been reduced not more than 20%, the value of the ductility in cach case being the number of centimeters of elongation at the temperature at which the asphaltic cement has a penetration of 5.0 millimeters. The volatilization test shall be carried out essentially as follows:

F'ifty grams of the asphaltic cement in a cylindrical vessel 55 millimeters in diameter and 35 millimeters high shall be placed in an electrically heated oven at a temperature of $325^{\circ} \mathrm{F}$ and so maintained
for a period of 5 hours. The oven shall have one vent in the top 1 centimeter in diameter, and the bulb of the thermometer shall be placed adjacent the vessel containing the asphaltic cement.

Ductility.

When pulled vertically or horizontally by a motor at a uniform rate of 5 centimeters per minute in a bath of water, a cylinder of asphaltic cement 1 centimeter in diameter at a temperature at which its penetration is 5 millimeters shall be elongated to the extent of not less than 10 centimeters before breaking.

EPITOME OF THE PURPOSES OF CERTAIN SPECIFICATIONS FOR ASPHALTIC CEMENT.

Impurities are a measure of the care with which the asphaltic cement has been refined and handled. Usually the presence of impurities in large quantities indicates a poor grade of asphalt. Water as an impurity would act as a diluent and would cause foaming in the kettle. Ash or mineral matter is not considered an impurity if it is a natural constituent of the asphaltic cement, but the mix and cementing value must be figured on the bitumen alone.

Specific Gravity of the asphaltic cement should be over 1.000. The advantage of a specific gravity more than 1.000 is that there will be less tendency for water to float out the asphaltic cement. The specific gravity is raised by the presence of mineral matter. Asphaltic oils of a penetration satisfactory for paving purposes always have a specific gravity greater than 1.000. Paraffin base oil and air-blown products usually have a specific gravity less than 1.000 .

Fixed Carbon is a measure of the chemical constitution of an asphalt to some extent. Certain types of asphalt such as Mexican have naturally a constitution that yields a large amount of fixed carbon. Fixed carbon is largely used for determining the source and uniformity of an asphalt. Fixed carbon is not free carbon, but includes free carbon, which is practically absent in asphaltic cements.

Solubility in Carbon Bisulphide is a measure of the purity of an asphaltic cement. The cementing value, other things being equal, is proportional to the carbon bisulphide solubility. Any carbonaceous material such as coal tar or pitch is detected by the carbon bisulphide solubility test.

Solubility in Carbon Tetrachloride is very nearly the same as the solubility in carbon bisulphide. It is claimed that an asphalt having more than $11 / 2 \%$ difference in the solubility in carbon bisulphide and carbon tetrachloride has been subjected to excessive heat in refining.

Melting Point is the temperature at which the asphaltic cement will flow readily. The melting point desired is dependent upon the mixturc. If the amount of fine dust in the mineral aggregate is low, the asphalt should have a melting point higher than the highest temperature to which the pavement is subjected.

Flash Point is a measure of the amount of volatile hydrocarbons that are present in the asphalt and its readiness to decompose by heat.

Penetration is a measure of the consistency of the asphaltic cement. It is merely a quick, convenient test for checking up numerous individual samples. The penetration is expressed in degrees and in accordance with the method of the American Society for Testing Materials, each degree representing 1-10 of a millimeter or 1-250 of an inch. The penetration, then, is the number of degrees that a No. 2 sewing needle when weighted with 100 grams will pass vertically into the A. C. at a temperature of $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ in 5 seconds. The penetration to be desired will depend upon the climate, the nature of the traffic, the grading of the mineral particles, the amount of voids, the amount of compression attainable, the ductility and cementing strength of the A. C. and the amount of dust filler.

Loss of Volatilization is a measure of the amount of light hydrocarbons that are present in asphalt and is also a measure of the tendency of an asphalt to oxidize and to lose its ductility and penetration. Asphalt cement which has no ductility after this volatilization test will not be satisfactory for paving purposes.

Ductility is the measure of the ability of an asphaltic cement to expand and contract without breaking or cracking. The same asphalt at a higher penetration should have a higher ductility, so all ductility tests should be based on a certain definite penetration regardless of the temperature, or should be based upon a temperature of $32^{\circ} \mathrm{F}$. Ductility is also a measure of the cementing strength.

Viscosity is a measure of ability of the asphaltic cement to im-
 part plasticity and malleability.

Typical Specifications for Wearing Surface of Asphaltic Concrete

The wearing surface shall be composed of a properly prepared mixture of bitumen, dust, sand and chats, gravel or trap rock.

The amount of asphaltic cement, dust, sand and chats shall be so regulated that the average mixture shall be within the following limits by weight:

Size of
Opening, Lower Upper Average
In. Square Limit Limit Typical
Bitumen
$7.0 \% \quad 10.0 \% \quad 8.0 \%$
Dust passing 200 mesh $00029 \quad 8.0 \quad 18.0 \quad 12.0$
$\begin{array}{llllll}\text { Sand passing } & 80 & \text { mesh } & \text {.. } & 0.0068 & 10.0 \\ 20.0 & 12.0\end{array}$
Sand passing 40 mesh -. $0.0150 \quad 15.0 \quad 25.0 \quad 20.0$
$\begin{array}{llllll}\text { Sand passing } & 10 \text { mesh } & 0.065 & 15.0 & 40.0 & 20.0\end{array}$
$\begin{array}{llllll}\text { Sand passing } & 4 \text { mesh } & 0.185 & 10.0 & 22.0 & 20.0\end{array}$
Sand passing 2 mesh .. $0380 \quad 0.0 \quad 10.0 \quad 8.0$
Ordinarily this mixture is to be obtained by the use of rock, coarse sand, fine bank sand and limestone dust or cement.

All of the mineral ingredients except the dust shall be heated and mixed in a suitable drier to a temperature of from 300 to $350^{\circ} \mathrm{F}$. The bin containing the mineral shall be permanently equipped with a recording or an observation thermometer.

The asphaltic cement shall be added after it has been heated to a temperature not exceeding $360^{\circ} \mathrm{F}$. The heating of the asphaltic cement must be by steam or if by direct fire vigorous mechanical stirring must be used. A recording themometer should be used in the A. C. kettle and the aggregate.

The dust shall be added dry to each batch separately prior to the addition of the A. C. All materials shall be weighed.

The mixing shall be for a sufficient time to thoroughly and uniformly mix all materials and for a period of not less than one minute.

The temperature of the mixture shall be between $270^{\circ} \mathrm{F}$ and $350^{\circ} \mathrm{F}$ when it leaves the plant.

It shall be between $250^{\circ} \mathrm{F}$ and $350^{\circ} \mathrm{F}$ on the street (preferably $300^{\circ} \mathrm{F}$).

The surface of the concrete shall be dry and clean at the time the surface mixture is applied.

The mixture shall be applied and raked to a uniform thickness, none being allowed to remain at the point of dumping and all lumps being thoroughly raked out.

The amount of hot mix applied shall be at least 210 pounds per square yard and shall be of a uniform thickness of 2 inches after rolling.

The compression shall be applied with a 5 -ton roller until complete and sufficient in the judgment of the inspector and as indicated by the tests of the preceding day's laid surface. Hydraulic cement may be dusted over and rolled into the finished pavement.

The specific gravity of the compressed surface mixture shall average 2.20 or more and shall not at any time be less than 2.16. A picce of the compressed surface mixture after being placed in water for 24 hours shall not have absorbed water and shall not have become crumbly or weakened.

Table for Calculating Voids in Sand and Limestone.

Weight in Pounds per Cubic Foot	\% Voids	Weight in Pounds per Cubic Foot	\% Voids
60	63.9		
61	63.3	96	42.2
62	62.6	97	41.6
63	62.1	98	41.0
64	61.5	99	40.4
65	60.9	100	39.8
66	60.3	101	39.2
67	59.6	102	38.6
68	59.1	103	38.0
69	58.5	104	37.4
70	57.9	105	36.7
71	57.3	106	36.2
72	56.7	107	35.6
73	56.0	108	35.0
74	55.4	109	34.4
75	54.8	110	33.8
76	54.2	111	33.2
77	53.6	112	32.5
78	53.0	113	32.0
79	52.4	114	31.4
80	51.8	115	30.7
81	51.2	116	30.2
82	50.6	117	29.6
83	50.0	118	28.9
84	49.4	119	28.3
85	48.8	120	27.8
86	48.2	121	27.2
87	47.6	122	26.6
88	47.0	123	26.0
89	46.4	124	25.4
90	45.8	125	24.7
	45.2		
92	44.6	127	23.5
93	44.0	128	22.3
94 95	43.4 42.8	129	21.7

Grams ner 100 ce $\times .6243=$ pounds per cubic foot.
$\%$ voids $=100-(0.376 \times$ grams per 100 cc$)$.

Specifications of the National Paving Brick Mfgrs. Assn.

Oil Asphalt Filler.
(Squeegee Method.)

Section 1. Description: Asphalt filler shall be homogeneous, free from water and shall not foam when heated to $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$. It shall meet the following requirements:
(a) Flash point-Not less than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$.
(b) Melting point-(Ring and Ball) Not less than $65^{\circ} \mathrm{C}$ ($149^{\circ} \mathrm{F}$).
(c) Penetration: At $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right) 200$ gms. 1 min . not less than 10. At $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) 100 \mathrm{gms} .5 \mathrm{sec}$. $(30-50)$. At $46^{\circ} \mathrm{C}\left(115^{\circ} \mathrm{F}\right) 50$ gms. 5 sec . not more than 110 .
(d) Loss on evaporation: $163^{\circ} \mathrm{C}\left(325^{\circ} \mathrm{F}\right) 5$ hrs. less than 1%.
(e) Ductility-Not less than 3.
(f) \% total bitumen (soluble in carbon tetrachloride) not less than 99%.
(g) \% total bitumen (soluble in carbon bisulphide) not less than 99%.
(h) Reduction in penetration-At $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ due to heating specified under loss on evaporation, not more than 50%.

Section 2. Tests: Tests for the above requirements shall be made according to the following methods:
(a) Flash point-(open cup). U. S. Department of Agriculture Bulletin 314, page 17.
(b) Melting point-American Society for Testing Materials, Standard Method, Serial Designation D 36-19.
(c) Penetration-American Society for Testing Materials, Standard Method, Serial Designation D 36-19.
(d) Loss on evaporation-(Volatilization). U. S. Department of Agriculture Bulletin 314, page 19, 50 gram sample.
(e) Ductility-American Socicty of Civil Engineers, Transactions. Vol. LXXXII, 1918, page 1460.
(f) Total Bitumen-U. S. Department of Agriculture Bulletin 314, page 25.
(g) Percent of Total Bitumerı-(Carbon Tetrachloride). U. S. Department of Agriculture, Bulletin 314, page 29.
(h) Reduction in Penetration: See test for Penetration.

Section 3. Samples: The contractor shall submit with his bid a one (1) pound sample of the asphalt filler proposed to be used in the work, together with a statement as to its source and character.

Section 4. Heating: Filler shall be heated to a temperature not exceeding $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$. It shall be applied at a temperature of not less than $150^{\circ} \mathrm{C}\left(300^{\circ} \mathrm{F}\right)$. The heater shall be equipped with a thermometer capable of registering at all times the temperature of the filler.

Section 5. Cleaning the Surface: Brick shall be clean and dry when the filler is applied. Immediately before filling the joints, the surface of the brick shall be swept clean. All brick shall be filled and a surface dressing applied on the day of laying. Filler shall not be applied if the brick are wet nor if air temperatures are such that the filler will not flow freely to the bottom of the joints.

Section 6. Filling and Squeegeeing: Filler shall be removed from the heater and applied promptly to the pavement before cooling. Filler shall be worked into the joints by means of hot iron squeegees operated slowly backward and forward at an angle with the joints. Squeegee irons shall be kept hot and every precaution taken completely to fill the joints. Squeegeeing shall continue until the joints are full and a thin coating of asphalt remains upon the surface of the brick. Filler shall be applied and squeegeed until the joints remain full.

Section 7. Surface Dressing: Immediately after the joints are filled, a thin coating of dry stone screenings, sand or granulated slag shall be spread upon the surface of the pavement, provided the wearing surface of the brick is wire-cut. Top dressing shall be of such sizes that all will pass a number 4 sieve. As soon as the dressing is spread the surface of the pavement shall be rolled thoroughly to bed the dressing into the asphalt coating.

Section 8. Opening to Traffic: The brick roadway may be opened to traffic immediately upon completion of the surface dressing.
Classification of Solid Bituminous, Substances.

CLASS	Spec. Gravity	Ash	Solubility in		Melting Point	Fixed Carbon	Ash and Moisture Free			
			CS_{2}	88° P. E.			$\begin{aligned} & \text { Car- } \\ & \text { bon } \end{aligned}$	Hydrogen	Sulphur	Nitrogen
1. Ozokerite........ . Utah (waxy)	0.891	0.05	99.5	81.7	$160^{\circ} \mathrm{F}$	9.6	85.4	13.9	0.3	0.4
Montan Wax	1.00	0.4	99.5	85.0	200	10.0				
Paraffin Wax.	0.90	0.0	100.0	100.0	125	0.5	85.2	14.8	0.0	0.0
2. $\begin{aligned} & \text { Baku Pitch. } \ldots \ldots \ldots \text {. Russia. } \\ & \text { Trinidad. }\end{aligned}$	1.110	0.1	91.6	61.3	150	26.8				
	1.400	36.5	56.5	35.6	190	10.8	82.3	10.7	6.2	0.8
	1.082	2.5	95.0	62.2	180	13.4	82.9	10.8	5.9	0.8
	1.305	21.4	75.1	32.4	2.40	25.0			8.3	
	1.064	1.8	96.8	45.7	210	18.0				
	1.063	6.8	89.8	53.4	180	8.0				
	1.034	0.7	99.2	74.1	272	21.5				
	1.044	0.0	99.0	47.2	275	13.0				
	1.071	0.1	99.7	70.0	135	18.8				
	1. 070	0.1	98.2	69.6	164	19.5				
	1.000	0.1	99.4	69.0	163	19.2				
	1.010	6.0	94.7	61.0	178	9.0	82.0	11.0	2.0	3.0
	0.99	0.7	99.2	72.0	180	12.0	84.4	10.4	0.6	4.6
	1.06	0.3	99.5	70.0	135	17.5			0.4	
3. Grahamite.......... Colorado (Dull, irregular fracture.) Oklahoma	1.160	0.1	98.2	0.8			86.0	7.6	0.9	5.4
	1.171	5.7	94.1	0.4	dec.	53.3				
West Virginia.	1.137	2.1	97.8	3.3	dec.	41.0	86.6	8.7	1.8	2.9
Glance Pitch...... . Egypt.....	1.097	0.1	99.7	23.5	260	15.0	80.9	10.4	8.5	0.2
Manjak. Barbadoes.	1.084	0.3	99.3	26.9	250	25.0				
Coal tar pitch-low.	1.15 1.40	${ }_{0.1}^{0.1}$	55.0 90.0	5.0 30.0	90 345	30.0 45	${ }_{95}^{90.0}$	3.0	0.5	
4. Albertite......... $\begin{aligned} & \text { Nova Scotia } \\ & \text { Utah..... } \\ & \text { Mexico... } \\ & \\ & \text { Cuba..... } \\ & \text { Oklahoma. }\end{aligned}$										
	1.075	0.0	5.9	1.5			85.5	13.2		0.4
	1.092	0.2 26.2	5.9 11.9		dec.				1.1	
	1.204	1.1	0.5							
		10.7	1.6	0.0						
Wurtzilite. Utah	1.054	2.5	12.0	1.0	dec.		81.0	11.0	5.5	2.5
Impsonite......... Oklahoma	1.235	2.5	6.0	trace	swells		75.0		1.7	
Elaterite-low.	0.90 105	${ }_{10}^{0.1}$	10.0 20	5.0	dec.	2.0				
					dec.	5.0				

References: Ladoo, Bureau of Mines Report No. 2121. Abraham, Asphalts and Allied Substances,

CLASS	Spee. Gravity	Ash	Solubility in		Melting Points	$\begin{aligned} & \text { Fixed } \\ & \text { Carbon } \end{aligned}$	Ash and Moisture Free			
			CS_{2}	88° P. E.			Car-	$\begin{aligned} & \text { Hydro- } \\ & \text { gen } \end{aligned}$	Sul-	$\begin{aligned} & \text { Nitro- } \\ & \text { gen } \end{aligned}$
5. Peat (dry)...	1.15 1.25 1.25 1.20 1.75 1.75	$2.0+$ $2.0+$ $2.0+$ $5.0+$ $2.0+$ $70.0+$	trace trace 0.0 0.0 0.0 0.0	0.0 5.0 0.0 0.0 0.0 0.0	dec. dec. dec. dec. dec. dec.	35.0 50.0 60.0 40.0 90.0 20.0	80.0	12.0		4.8
Class 1. Substances freely soluble in carbon bisulphide and in U.S.P. petro This class includes paraffin base petroleum residues, Ozokerite, Montan Wax an										
This class includes all commercial asphalts such as asphaltic base petroleum Bermudez asphalt, Gilsonite, Cuban asphalt, Tabbyite, air blown asphalt and pres										
Class 3 . Substances freely soluble in carbon bisulphide and slightly soluble 40%. This class includes the usual binders and pitches such as coal tar pitch, G										
Class 4. Substances slightly soluble in carbon bisulphide. This class includes crite, Impsonite.										
Class 5. . Substances practically insoluble in carbon bisulphide. This class inclu $^{\text {in }}$ us shales such as peat, lighnite, bituminous coal, cannel coal, anthracite coal, bitu										

Characteristics of Typical Blown Petroleum Asphalts.

	Specifie Gravity, $77^{\circ} \mathrm{F}$	$\begin{aligned} & \text { Penet., } \\ & 32^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \text { Penet., } \\ & 77^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \text { Penet., } \\ & 115^{\circ} \mathbf{F} \end{aligned}$	$\begin{aligned} & \text { Ductility } \\ & \text { in Cms., } \\ & 77^{\circ} \mathrm{F} \text {. } \end{aligned}$		Fixed Carbon	Soluble in Carbon Bi sulphide	Soluble in 88° Naphtha
NON-ASPHALTIC PETROLEUM-Ohio-Indiana.	0.987	1.5	4.8	15.9	29.5	106	8.4	99.86	88.5
	0.995	5.85	10.0	25.0	9.0		9.1	99.69	82.0
	1.005	9.8	17.5	31.7	2.5	174.5	9.6	99.43	72.8
	1.015	14.1	21.5	41.9	1.0	209	10.3	99.22	70.5
	1.021	18.3	26.7	49.3	0.5	234.5	11.8	99.13	67.7
	1.012	18.7	28.0	51.9	${ }_{0}^{0.5}$	259 294	12.5	98. 97	61.9 53.6
	1.002	19.6	29.6	58.5	0.125	294		97.58	
MIXED-BASE PETROLEUMS - Illinois.	0.958	2.7	4.3	16.9	56	110	7.8	98.75	85.2
	1.010	10.3	14.6	28.0	1.5	181	10.0	99.20	76.5
Mid-Continent .	1. 009	2.7	5.5	23.5	87.0	108	8.6	99.60	86.5
	1.002	4.8	6.7	24.2	51.0	12.4	9.3 9.9	99.08 99.83	
	0.980 0.985	3.8 4	8.1	29.4	88.0 2.5	135	9.9	99.83 98.45	84.8 80.8
	1.029	5.6	15.7	32.1	2.0	150	12.7	99.25	76.2
	1.054	10.6	18.8	38.0	1.5	171.5	15.3	99.28	70.1
	0.988	14.1	18.2	33.3	0.5	${ }^{236}$	11.4	98.93	68.0
	1.016	22.9	28.3	62.1	0.25	272	12.3		
Mexico.	1.005 1.015	${ }_{3}^{0.0}$	4.3	21.2	50.0 13.0	110	12.8 15.9	99.80 99.83	88.0 80.2
	1.015	3.4 0.0	4.9 7.6	${ }_{28}^{21.5}$	93.5	14.4	15.2	98.80	84.0
	1.038	4.1	22.9	50.7	20.0	161	15.7	99.05	82.2
	1.037	9.0	22.9	61.3	1.0	$18: 3$	17.0	99.50	78.3
	1.032	9.7	25.2	57.5	2.5	182	18.0	98.70	73.4
Gulf.	1.004	2.4	7.7	26.7	56.0	116	10.2	99.50	79.9
	1.032	9.4	17.4	34.2	3.0	157	10.8	99.22	80.7
California.	1. 008	0.0	6.9	30.7	54.5	106.5	9.7	99.78	78.0
	1.050	3.4	12.6	47.9	40.0				
	1.045	7.05	22.2	50.7	23.0 0.5	162	12.4 18.	99.25 98.68	72.0
	1.038 1.060	8.5 9.1	25.2 25.2	65.4 60.4	0.5 0.5	165 180.5	18.0 13.2	98.68 99.25	68.7
	1.070	20.6	36.1	70.5	0.0	195.5	20.0	98.70	62.5

Properties of Typical Road Oils.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. \& Gravity and Weight per Gallon \& Viscosity
\(210^{\circ} \mathrm{F}\)
Uni-
versal \& Viscosity
Furol \(104^{\circ} \mathrm{F}\) \& Asphalt, \% \& \begin{tabular}{l}
Character \\
of Asphalt
\end{tabular} \& \[
\begin{aligned}
\& \text { Loss } \\
\& 350^{\circ} \mathrm{C} \\
\& 24 \text { hrs. }
\end{aligned}
\] \\
\hline 1 \& \begin{tabular}{l}
\[
.933=20.2^{\circ} \mathrm{Be}^{\prime}
\] \\
7.77 lbs .
\end{tabular} \& 46.0 \& 20.8 \& 55.0 \& waxy \& 50.2 \\
\hline 2 \& \[
.933=20.2^{\circ} \mathrm{Be}^{\prime}
\] \& 126.0 \& 172.0 \& 65.0 \& ductile \& 22.2 \\
\hline 3 \& \(951=17.3{ }^{\circ} \mathrm{Be}^{\prime}\) \& 80.0 \& 79.0 \& 66.0 \& granular \& 30.8 \\
\hline 4 \& \(973=13.9^{\circ} \mathrm{Be}^{\prime}\) \& 47.0 \& 25.0 \& 51.5 \& ductile \& 60.2 \\
\hline 5 \& 8.10 lbs.
\(1.028=6.1^{\circ} \mathrm{Be}^{\prime}\) \& 124.0 \& 430.0 \& 66.0 \& excellent
ductile \& 27.0 \\
\hline 6 \& 8.57 libs .

$1.005=9 \mathrm{Be}^{\prime}$ \& 990 \& 72.0 \& 60.0 \& excellent
ductile \& 33.0

\hline 6 \& $$
8.38 \mathrm{lbs} \text {. }
$$ \& \& \& \& excellent \&

\hline 7 \& $0.953=17.0^{\circ} \mathrm{Be}^{\prime}$ \& 139.0 \& 252.0 \& 75.0 \& waxy \& 15.0

\hline 8 \& $0.940=19.0^{\circ} \mathrm{Be}^{\prime}$ \& 122.0 \& 182.0 \& 69.0 \& ductile \& 29.6

\hline 9 \& 7.83 lbs.
$0.940=19.0^{\circ} \mathrm{Be}^{\prime}$ \& 127.0 \& 183.0 \& 69.0 \& ductile \& 29.5

\hline 10 \& 7.83 libs .

$0.950=17.5 \mathrm{Be}^{\circ}$ \& 135.0 \& 252.0 \& 75.0 \& | good |
| :--- |
| waxy | \& 15.0

\hline \& 7.91 lbs . \& \& \& \& \&

\hline 11 \& $0.935=19.8^{\circ} \mathrm{Be}$. \& 99.0 \& 117.0 \& 63.5 \& ductile \& 32.6

\hline 12 \& $$
0.931=20.5^{c} \mathrm{Be}
$$

$$
7.75 \mathrm{lbs} .
$$ \& 115.6 \& 159.0 \& 66.0 \& ductile good \& 26.4

\hline
\end{tabular}

Open Specifications for Road Oil.

Water None
Specific gravity Over . 940 Over . 940
Soluble in carbon bisulphide 99.5°
Per cent asphalt Over 60
Ductility of 100° asphalt at $77^{\circ} \mathrm{F}$ Over 5 cm .Viscosity S. U. at $210^{\circ} \mathrm{F}=100-150$ (must be under 100 if for coldapplication).
Viscosity Furol at $104^{\circ} \mathrm{F}=100-500$ (must be under 199 if for cold application).

Illinois State Highway Specification for Road Oil.

SPECIFICATION S1.

(Heavy Oil, Hot Application.)

HEAVY OIL FOR SURFACE TREATMENT OF BITUMINOUS OR WATERBOUND MACADAM ROADS. The road oil shall be homogeneous, free from water and shall not foam when heated to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$. It shall conform to the following requirements: Specific gravity $25^{\circ} \mathrm{C} / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F} / 77^{\circ} \mathrm{F}\right)$, not less than 0.980 . Flash point, not less than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$.
Specific viscosity at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right), 30.0$ to 70.0 .
Float test at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right), 100$ seconds to 200 seconds.
Loss at $163^{\circ} \mathrm{C}\left(325^{\circ} \mathrm{F}\right) 5$ hours, not over 5.0%.
Float test of residue at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right), 120$ seconds to 240 seconds. Total bitumen, not less than 99.5%.
Per cent of total bitumen insoluble in $86^{\circ} \mathrm{Be}^{\prime}$ naphtha, 10 to 25%. Fixed carbon, 7 to 15%.

SPECIFICATION S2.

(Medium Oil, Hot Application.)

MEDIUM OIL FOR SURFACE TREATMENT OF BITUMINOUS OR WATERBOUND MACADAM ROADS. The road oil shall be homogeneous, free from water and shall not foam when heated to $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$. It shail conform to the following specifications: Specific gravity $25^{\circ} \mathrm{C} / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F} / 77^{\circ} \mathrm{F}\right), 0.960$ to 1,010 .
Flash point, not less than $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Specific viscosity at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right), 5.0$ to 15.0 .
Float test at $32^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right), 30$ seconds to 90 seconds.
Loss at $163^{\circ} \mathrm{C}\left(325^{\circ} \mathrm{F}\right) 5$ haurs, not over 15.0%.
Float test of residue at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right), 90$ seconds to 180 seconds.
Total bitumen, not less than 99.5%.
\% total bitumen insoluble in $86^{\circ} \mathrm{Be}$ naphtha, 7.0% to 20.0%.
Fixed carbon, 5.0% to 10.0%.

SPECIFICATION S3.

(Light Oil, Cold Application.)

LIGHT OIL FOR SURFACE TREATMENT OF BITUMINOUS OR WATERBOUND MACADAM OR OF GRAVEL ROADS: The road oil shall be homogencous and free from water. It shall conform to the following requirements:
Specific gravity $25^{\circ} \mathrm{C} / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F} / 77^{\circ} \mathrm{F}\right), 0.920$ to 0.970 .
Specific viscosity at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right), 30.0$ to 70.0 .
Loss at $163^{\circ} \mathrm{C}\left(325^{\circ} \mathrm{F}\right) 5$ hours, 20.0% to 30.0%.
Total bitumen, not less than 99.5%.
\%e total bitumen insoluble in $86^{\circ} \mathrm{Be}^{\prime}$ naphtha, 5.0% to 20.0%.
Fixed carbon, 4.0% to 10.0%.

GALLONS OF ROAD OIL REQUIRED PER MILE OF ROAD AT GIVEN WIDTH AND RATE

Fig. ion-Amount of Road Oil Required for liffrrent Rates of Application.

Bituminous Acid-Proof Coatings for Acid-Proofing Concrete Surfaces. (Bureau of Standards.)

Acid-Proof Black.

This material shall be composed of a high grade of bitumen thinned with suitable volatile solvents to furnish a smooth, black product which shall dry in twenty-four hours and be unaffected by mineral acids of specified concentration.

It must contain at least 40% of non-volatile, shall not settle, liver or thicken in the container and shall conform to the following requirements.
(a) When flowed on a piece of clean sheet iron approximately $4 \times 6 \mathrm{in}$. and 0.016 in . thick and allowed to dry for one week at room temperature the film must withstand bending double quickly over a rod of 5 mm . in diameter without rracking or flaking.
(b) A test piece prepared as above and dried for one week at room temperature shall be laid flat and in different places several drops each of sulphuric acid, specific gravity 1.3 , nitric acid, specific gravity 1.23 and hydrochloric acid, specific gravity 1.09 shall be allowed to remain on the surface of the film for six hours. On examination, the film shall show only slight dulling and the metal beneath shall show no corrosion.
Bituminous Enamel.
The enamel shall consist of a homogeneous mixture of a bitumen of relatively high melting point and finely powdered siliceous mineral filler. The total amount of mineral filler as determined from the ash, shall not exceed 40% nor be less than 15% by weight. Within the above limits the satisfactory working qualities of the enamel shall control the quantity of mineral filler to be used. The mineral filler must be resistant to hydrochloric, sulphuric and nitric acids, and must pass a sieve the openings of which are not greater than 0.14 mm . (0.0055 in.) (This corresponds to about 100 mesh sieve).

Pituminous Primer.

The primer shall consist of a like bituminous material containing no added mineral matter, thinned with a solvent to a satisfactory brushing consistency. It shall dry to a tacky state in thirty minutes and shall not flash below $30^{\circ} \mathrm{C}$ by the Abel closed tester. The solvent used shall have a minimum toxic effect upon workmen applying the primer within an enclosed space.

Bituminons Acid-Proof Mastic.

The bituminous mastic shall be composed of asphalt cement, clean, sharp grained sand, and fine absorbent siliceous dust. These materials shall be mixed in the proper proportions and shall be applied hot to the concrete surface, which shall be dry and free from dust and shall have been previously coated with a priming or bondirg solution which has just reached the tacky state. Asphalt Cement.

The asphalt cement must be of refined asphalt and shall be homogeneous and free from water.

It shall meet the following requirements:
Melting point (ring and ball) 150 to $180^{\circ} \mathrm{F}$.
Penetration at $25^{\circ} \mathrm{C}, 100 \mathrm{~g} .5 \mathrm{sec} .15$ to 40.
Total bitumen soluble in carbon bisulphide, not less than 90%.
The sand shall be clean, hard grained and moderately sharp. and shall be free from clay, silt and organic matter.

It shall be well graded from coarse to fine, and when tested by means of the laboratory sieves, shall meet the following requirements:

Passing 4 mesh sieve, 100%.
Total passing 20 mesh sieve, 50 to 80%.
Total passing 50 mesh sieve, not more than 30%.
Passing 100 mesh sieve, not more than 5%.

Mineral Filler.

The mineral filler shall be any finely powdered acid-resistant siliceous material, 85% of which shall pass a 100 mesh screen.

Priming Solution.

The priming solution shall consist of an asphaltic base similar to the asphalt cement and shall be thinned to a good brushing consistency with a suitable volatile solvent.

Mixing.

The sand or the mixture of the sand and mineral matter and the asphalt cement shall be heated separately to about $300^{\circ} \mathrm{F}$. When the asphalt cement is completely fluid, the hot dry aggregate is stirred in and thoroughly mixed until the mass is homogeneous and sufficiently fluid for pouring. The temperature of pouring should be between 350 and $400^{\circ} \mathrm{F}$. The aggregate if dry may be stirred in without previous heating but in that case a longer period of heating and stirring will be required.

Laying.

The concrete surface shall be primed and allowed to dry to the tacky state. The hot mixture, prepared as above, shall then be poured spread on, soothed out and worked into place with suitable tools. After the surface has begun to set, it shall be sprinkled with hardgrained sand and a little mineral dust and rubbed down until it is smooth. The finished layer should be at least 1 in . thick.

Approximate Formula.

The composition varies within narrow limits according to the service required of the material, and when ready for laying should be as follows:
Asphalt cement
12 to 15%
Mineral filler
20 to 25%
Sand or other aggregate
60 to 70%

Fig. 76 -Topeka Bituminous Conrrete.

Fig. 77-Sheet Asphalt.

Fig. is-Asphaltic Concrete (Warrenite.)

Fig. 7:-Bituminous Earth lavement.

Fig. Sn-Brick Parement With Asphalt Filler.

Fig. 81-Wood Block With Asphalt Filler.

Fig. 82-Asphalt Macadam Pavement.

Fig. 83-Two-Coursc Concrete Pavoment.

Natural Gas.

Natural gas is an ideal domestic fuel and an almost equally ideal industrial fuel. It is a large item in interstate but not in international trade. About one-fourth of the natural gas consumed in the United States is used for generating power, and its use affects international industry and commerce, for it supplements the supply of coal and oil.

As it saves man power, is especially adapted to certain industrial processes and is cheap, natural gas is used as fuel in many glass works, cement plants, brickyards, factories and metallurgical plants. It is also used in large quantities as raw material in making carbon black, 30 per cent of the natural gas consumed industrially in West Virginia in 1917 having been used in the carbon black industry.

Some natural gas is valuable because of its content of gasoline, and the extraction of gasoline from natural gas is now an industry of increasing magnitude. Some of the gasoline thus obtained is so light that it must be blended with naphthas and other distillates obtained from crude oil before it can be used as a motor fuel. A recently developed process is that of extracting the gas helium from natural gas. It is used in balloons as a non-inflammable substitute for hydrogen.

Natural gas is now used by about 16,500 industrial consumers of whom more than 10,000 employ it for generating power and by about $2,500,000$ domestic consumers. The field operations undertaken to exploit natural gas have been accompanied by enormous waste, which will hasten the exhaustion of this fuel.

Character and Occurrence-Pure natural gas is odorless and colorless, burns with a luminous flame and is highly explosive when mixed with air. Its chief constituent is marsh gas, or methane, a member of the paraffin series. Besides methane, it may contain ethane, a closely related gas and varying amounts of ethylene or olefiant gas, carbon monoxide, carbon dioxide and nitrogen as well as a little oxygen and helium.

Natural gas is classified as either "wet" or "dry" according to its content of gasoline. Wet gas is commonly associated with oil in oil fields and is generally obtained from the same sand or formation that yields the oil or even from the same well. It contains not only ethane, propane, butane and pentane, the lighter members of the methane series, which predominate in the dry gas, but some heavier hydrocarbons. Dry gas contains chiefly methane or marsh gas, the lightest known hydrocarbon, which has a specific gravity of 0.55 ? It is usually not associated with oil in the sand and is gencrally under high pressure.

The close association of oil and gas in both occurrence and origin makes it difficult to consider the two resources separately. Gas invariably accompanies oil wherever the conditions are favorable to its accumulation but it is also found in places far removed from oil fields. Many of the natural gas fields coincide areally with oil fields and the production of oil and that of natural gas are closcly related.

The gas being lighter usually accumulates in the upper parts of the oil and gas bearing deposits. The accumulation of natural gas is governed by features of geologic structure similar to those that govern the accumulation of oil and the origin of natural gas is accounted for by the same theories that account for the origin of oil. Natural gas is found in rocks that range in geologic age from Cambrian to Recent, but most of the world's supply of natural gas is derived from beds of Devonian, Carboniferous and Tertiary age.

Geographic Distribution-The chief natural gas fields of the United States are the Appalachian field, comprising parts of the States of West Virginia, Pennsylvania, New York, Ohio, Kentucky and Tennessee; the Mid-Continent field, including parts of Kansas and Oklahoma; and isolated fields in the states of Louisiana, Texas, Arkansas, California, Illinois and Indiana. Gas is also found in small quantities in Wyoming, Washington, Colorado, Oregon, South Dakota, North Dakota, Montana, Idaho, Iowa, Michigan, Missouri, New Mexico, Utah and Alabama. In foreign countries, natural gas is found in considerable quantities in the provinces of Ontario, Alberta and New Brunswick in Canada and in Great Britain, Italy, Rumania, Galicia, Hungary, Russia, Persia, India, Japan, Mexico, Peru and Argentina. Undoubtedly as the search for petroleum is continued, productive gas fields will be discovered in foreign countries even in countries where natural gas is not now supposed to be present in great quantities.

Production-The commercial production of natural gas is restricted almost wholly to the United States, the available statistics showing that about 95 per cent of the world's output is produced in this country. Canada stands scoond in rank. The United States is likely to lose this remarkable predominance, for she has already apparently passed her maximum production. (See U. S. Geol. Survey.)

The table on page 395 shows the production of the principal natural gas producing countries in the world in 1913 and 1917:

Typical Composition of Commercial Gases.

	Me- thane $\mathrm{CnH}_{2} \mathrm{n}$ +2	Ethylenes $\mathrm{CnH}_{2} \mathrm{n}$	Hydrogen H_{2}	Carbon monox. CO	Carbon diox. CO_{2}	Nitrogen N_{2}	$\begin{gathered} \text { Oxy- } \\ \text { gen } \\ \mathrm{O}_{2} \end{gathered}$	$\begin{aligned} & \text { B.T.U. } \\ & \text { per } \\ & \text { cu. ft. } \end{aligned}$
Coal gas, Germany	34.02	5.09	46.20	8.88	3.01	2.15	0.65	700
Coal Gas, United States.	40.00	4.00	46.00	6.00	0.45	2.05	1.50	755
Lignite gas	15.59	3.25	45.16	17.24	11.51	5.49	1.76	500
Wood distillation gas	21.70	6.00	18.30	31.50	17.40	5.10	0.00	
Cannel coal gas, low temperature.	60.10	6.30	21.20					
Cannel coal gas, high temperature	34.20	3.50	54.50					
Water gas. . . .	2.00	0.00	45.00	45.50	4.00	2.00	1.50	350
Natural gas.	91.58	0.00	0.00	0.00	0.00	7.95	0.00	970
Pressure still ga	73.92	10.43	9.30	0.45	0.22	5.46	0.22	
Oil gas. . . .	57.70	38.10	3.40	0.50	0.30			1390
Producer gas.	1.20		12.00	27.00	2.50	57.30		154
Blast furnace gas	0.5		3.00	26.00	9.5	56.0		
*Still gases from lub stills	77.0	3.5		16.5	3.0			
*Still gases from coking stills.	71.0	17.0	5.0	5.0	1.0			

NATURAL GAS PRODUCED BY PRINCIPAL COUNTRIES 1913 AND 1917 IN THOUSANDS OF CUBIC FEET.

Country-		1913	1917
United States		581,898,239	795,110,376
Canada		... 20,487,000	27,408,940
Austria		250,000	
Italy		210,525	6,750,000
Great Britain		87	85
Japan		Small Amount	
Russia		Small Amount	
World		603,000,000	829,000,000
REPORT OF BUREAU OF LABOR STATISTICS ON PRICE OF 1,000 CUBIC FEET OF GAS USED FOR HOUSEHOLD PURPOSES IN VARIOUS CITIES.			
Natural Gas.			
Buffalo $\$ 0.35$	Kansas City.	\$0.80
Cincinnati	. 35	Little Rock	. 45
Cleveland	. 35	Louisville	. 648
Columbus	. 30	Pittsburgh Co.	35
Dallas	. 45		

Manufactured and Natural Mixed.
Los Angeles $\$ 0.75$
Manufactured Gas.
1919.
\$1.00
\$1.00
A tlanta
75
75
Baltimore
Baltimore
95
95
Birmingham
Birmingham
1.00
1.00
Boston Co. -A
Boston Co. -A
1.10
1.10
Boston Co. - B
Boston Co. - B
95
95
Boston Co. - C
Boston Co. - C 1.10
Buffalo 1.45
Butte 1.485
Charleston (S. C.) 1.10
Chicago 88
Cleveland 80
Denver 95
Detroit 79
Fall River 95
Houston 1.00
Indianapolis 60
Jacksonville 1.25
Manchester 1.10
Memphis 1.00
Milwaukee 75
Minneapolis 95

Natural gas is found trapped in the various strata of the earth, principally in sandstone formations of loose texture, in shale seams and in cavities. It is usually associated with petroleum or coal and occurs in the carboniferous strata or in more recent formations. In coal mines it constitutes what is known as fire damp, being given off from the exposed seams of coal. It is most commonly associated with petroleum in petroleum bearing sand and occupies the space in the sand above the oil. Occasionally it occurs in strata without any oil being present, in which case it is of a slightly different composition than the gas which is found in contact with the oil. In many cases it appears that the gas has been obtained from the atmosphere, the oxygen having been removed by its combination with reducible substances such as sulphides, leaving a residue of nitrogen. This gives to such natural gases the peculiarity of having a very large amount of nitrogen. Associated with the nitrogen there occasionally is found a small amount of helium which is also an ordinary constituent of air in small quantities. It may be that the difference of solubility of the different gases of the air in water may account for the tendency of accumulation of helium in such instances. As a rule, however, natural gas consists of hydrocarbons of the same type as petroleum and identical with the hydrocarbons which are given off by the cracking of petroleum.

The proportions in which the different hydrocarbons exist in ordinary gas such as is delivered to Kansas City, Missouri, is something like the following:

$$
\begin{aligned}
& \text { Methane .. } 84.7 \% \\
& \text { Ethane ... } 9.4 \% \\
& \text { Propane .. } 3.0 \% \\
& \text { Butane ... } 1.3 \% \\
& \text { Nitrogen... } 1.6 \%
\end{aligned}
$$

This gas has the greater portion of the heavy hydrocarbons condensed out on account of the high pressure in the pipe lines. Such a gas is a mixture of methane with a varying amount of the other gases. As shown by the above table, the gases ethane, propane and butane furnish much of the heating value of the gas. A gas with a considerable amount of gasoline vapor in it will have a considerably higher heating value than one from which it has been removed, or known as a dry gas.

The compositions of the natural gas used in eight cities in the United States are as follows:

| City | Methane,
 Per cent | Ethane,
 Per Cent | Nitrogen, |
| :--- | :---: | :---: | :---: | :---: |
| Per Cent | | | |

These analyses were made by the ordinary combustion method and hence show only the two predominating paraffin hydrocarbons.

The composition of gases found in Kansas and Oklahoma as given by Allen and Lyder are shown by the following table:

Location Methane	Ethane	Nitrogen	B.T.U. per Cubic Foot
Augusta, Kas. 10.54	164	87.69	129
Cowley County, Kas.16.27	3.01	80.23	209
Chautauqua County, Kas.42.38	1.85	55.29	441
Chautauqua County, Kas. ... 4901	3.89	46.67	541
Elsworth, Kas. 61.09	1.09	37.20	609
Ponca City, Okla. 44.60	14.86	40.10	688
Kay County, Okla.57.91	9.89	31.65	735
Chautauqua County, Kas. ...85.53	0.15	12.95	839
Chautauqua County, Kas. ...79.13	7.79	11.39	894
Butler County, Kas.6215	18.38	18.64	930
Montgomery County, Kas. .. 83.04	8.54	7.95	970
Blackwell, Okla. 70.69	18.65	9.32	1025
Cushing, Okla. 70.74	2164	7.49	1059
Bartlesville, Okla. 70.50	24.60	3.21	1125

The presence of such a large amount of nitrogen in some cases makes the gas almost valueless unless some process is used whereby the nitrogen may be adapted to chemical processes.

While natural gas has a very high heating value in comparison with water gas, water gas has the advantage in that it gives a more intense flame. The comparison of various commercial gases is shown in the following table:

Natural gas may have its origin from a sand which is entirely separated from sand containing oil or it may come from above the oil in the same sand as oil.

In the latter case the lighter portions of the oil will have been volatilized and carried into the gas. Such a gas is known as a "wet" gas. In other words, the wet gas is composed of the usual constituents of dry gas; that is, methane, ethane, propane and butane, and in addition pentane, hexane and heptane. These last three are liquid at ordinary temperatures and are the most desirable components of gasoline.

Gas coming from a sand containing no oil is "dry" gas and does not contain the pentane, hexane and heptane.

A "wet" gas coming from an unknown sand indicates the presence of oil in that sand.

In the ordinary oil well the gas is allowed to escape between the casing of the well and the tube which has been inserted for withdrawal of the oil. The gas so collecting in the casing is known as casinghead gas and may be used or allowed to escape.

This gas collecting in the casinghead of an oil well is "wet" gas and contains some of the gasoline from the oil. The gasoline which may be compressed from it or refrigerated from it is then known as "casinghead" gasoline.
Comparative Gas Statistics of American Cities, 1918.

CITY	Approximate Population Served	C. F. Annual Sales in Millions	Consumers and Meters	No. of Co.'s	Kind of Gas	Heat Units	Process	Rate per 1000 Feet
*New York	5,300,000	56,184	1,510,173	18	Artificial	708	Coal-Lowe	\$0.80-\$1.00
Chicago...	2,200,000	21,693	689,983	2	Artificial	600	Lowe	\$0.80
Philadelphia	1,767,000	12,643	406,776	2	Artificial		Coal-Lowe	1.00
Boston....	730,600	7,150	201,030	3	Artificial	600	Coal-Lowe	$\begin{array}{r} .80 \\ 85 \end{array}$
St. Louis.	750.000		160,206	1	Artificial	610	Coal-Lowe	
*Pittsburgh.	579,000		270,298	4	Mix. and Nat.	825-900	Oil and Nat.	
\dagger ¢Los Angeles	625,000 765,000	6,629	186,482 290,000	3 1	Mix. and Nat.	825-900	Oil and Nat.	\$0.68-\$0.641/2
Baltimore	700,000	- 4,487	126,550	1	Artificial	600	Lowe	. 85
New Orleans	375,000	1,335	45,710	1	Artificial	600	Lowe	1.19
St. Paul.	262,000	1,463	43,827	2	Artificial	610	Lowe	1.05
Minneapolis	363,000	2,655	83,162	1	Artificial	600	Coal-1 owe	.92
Washington	331,000	2,903	74,608	2	Artificial	637	Coal-Lowe	\$0.75-\$0.95
San Francisco	560,000	4,595	123,272	1	Artificial	606	Oil	. 85
Detroit	750,000	8,000	173,000	1	Artificial		Coal-l owe	. 85
Newark	637,000	4,553	168,642	1	Artificial		Coal-Lowe	. 90
Kansas City	312,000	5,277	69,823	1	Natural		Natural	. 30
Seattle.	348,000	1,078	46,731	1	Artificial		Coal-Lowe	1.25 1.00
Portland	295,000	1,308	46,525	1	Artificial	570	Lowe	1.00
Denver	260,000	1,269	43,199	1	Artificial	615	Coal-Lowe	80.32.95 ${ }^{\text {2 }}$
Buffalo.	468,000		96,428	3	Natural		Natural	\$0.32-\$0.35
Cincinnati	410,000		114,498	1	Natural		Natural	$\begin{array}{r} .40 \\ .40 \end{array}$
Louisville.	264,000			1	Natural		Natural Coal-Lowe	.40 .75
Milwaukee..	436,000	3,700	99,200	1	Artificial	600-650	Coal-Lowe Coke-Water	. 75
Indianapolis.	250,000	2,390	.59,107	1	Artificial		Coke-Water	. 55

Note-*Value of gas sold by four companies for year $\$ 19,870,991.03$.
\dagger One company serves natural gas at 64.5 c and the other two companies a mixture of natural and man-
ufactured gas.

The iighter the cil with which the casinghead gas has been associated, the greater ordinarily will be the amount of gasoline contained in the gas.

Ever since natural gas has been conducted in pipe lines it has been known that gasoline could be separated by pressure and much has been incidentally so produced. More recently the great demand for gasoline has encouraged the design of hundreds of special plants for the extraction of gasoline from natural gas.

In 1904, at Titusville, Pennsylvania, Fasenmeyer made casinghead gasoline by pumping the gas under pressure through a coil under water.

In the early methods pressures of about 50 pounds per square inch were used. Later condensing with a pressure of 400 pounds per square inch was found to produce too "wild" a gasoline or one that escaped too easily on handling. A pressure of 250 pounds per square inch is now used, and the pressure of the condensed liquid is controlled by absorbing it directly into heavier naphtha.

At first the compression was done in one stage, but it is the custom now to do it in two stages. The gravity of the product is from 80 to 100° Baume'.

The amount of casinghead gasoline present in a gas well depend upon the character of the oil associated with it, the temperature, the pressure, the compactness of the sand and the condition in the sand at the point tapped.

The amount of gasoline obtained from casinghead gas in the MidContinent field varies from $1 / 2$ to 8 gailons per 1,000 cubic feet. A typical gas yields $21 / 2$ gallons per 1,000 cubic feet. Many yield 3 to 4 gallons per 1,000 cubic feet.

The total production of casinghead gasoline in the United Statcs is shown on page 400 .

The cost of plants for producing casinghead gasoline has varied from $\$ 12$ to $\$ 25$ per thousand cubic feet of gas handled, and the operation of the plants has been uniformly successful and highly profitable.

While the type of plant ordinarily constructed is for compression methods, it is probable that the absorption method will be more generally adopted. The operation of the absorption method is similar to that of extracting tolvol from coal gas and may be applied to a natural gas capable of yielding 1 pint of gasoline per $1,000 \mathrm{cu}$. ft. By the use of the absorption process 50 million cu. ft. of natural gas would be available per day and 100 million gallons of light gasoline would be made.

Natural Gas Gasoline Produced in the United States, 1911-1920.

Prepared by U. S. Geological Survey, Department of the Interior.

YEAR	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Operators } \end{gathered}$	Number of Plants	GASOLINE PRODUCED		Av. Yield Gasoline per M Cu. Ft. (Gallons)
			Quantity (Gallons)	A verage Price per Gallon (Cents)	
1911	132	176	7,425,839	7.16	3.00
1912	186	250	12,081,179	9.60	2.60
1913	232	341	24,060,817	10.22	2.43
1914	254	386	42,652,632	7.28	2.43
1915	287	414	65,364,665	- 7.88	2.57
1916	460	596	103,492,689	- 13.85	. 496
1917	750	886	217,884,104	18.45	. 508
1918	503	1,004	282,535,550	17.83	. 63
1919	611	1,191	351,535,026	18.26	. 73
1920	577	1,151	383,311,817	18.7	. 772
1921 (Est.)	600	1,200	410,000,000		

Unblended Natural Gas Gasoline Produced in the United States in 1920. (By States).

STATE	No. of Operators	No. of Plants	GASOLINE PRODUCED			Perc. Prod. of State	$\begin{gathered} \% \\ \text { Total } \end{gathered}$
			Quantity (Gallons)	Av. Price (Cts.)	Av. Yield (Gals.)		
Oklahoma	141	312	177,424,824	18.0	2.10	91.7	46.3
West Virginia	74	210	58,941,488	22.0	. 34	27.0	15.4
California.	29	70	48,207,976	17.3	1.10	73.3	12.6
Texas.	20	42	32,956,028	18.0	2.10	91.5	8.6
Pennsylvania	207	306	21,151,135	21.0	. 35	52.0	5.5
Louisiana....	14	31	10,609,629	16.1	. 28	57.3	2.8
Ohio.	32	59	10,015,638	22.0	. 25	23.0	2.6
Wyoming	4	4	8,711,037	20.0	1.81	94.0	2.3
Illinois.	38	92	6,054,916	22.0	2.09	100.0	1.6
Kentucky	6	9	4,497,320	24.0	. 24	4.0	1.2
Kansas.	8	10	4,330,748	19.0	. 37	36.4	1.1
New York	4	4	411,078	18.4	2.53	100.0	. 1
Totals, 1920.	577	1,149	383,311,817	18.7	. 772	73.0	100.0

Charcoal is now used for the absorption of the gasoline from natural gas at atmospheric pressure. Activated charcoal with the gas passing at the right velocity will absorb all of the gasoline and $22-25 \%$ of its weight in gasoline. The gasoline is distilled from the charcoal by means of superheated steam. Bentonite or similar hydrous silicates of alumina have somewhat the same absorption qualities as charcoal.

References for Casinghead Gasoline: Auerswald, Mech. Engr., 43,601, 1921. Oil \& Gas Journal, 20, 74, 1921. U. S. Patent 1402340, Jan. 3, 1922.

FORMULA FOR THE CAPACITY OF ABSORPTION TOWERS OF CASINGHEAD GAS PLANTS.

$\mathrm{C}=2 \mathrm{~d}^{2} \mathrm{~h} \mathrm{sp}$
$\mathrm{C}=$ capacity in cubic feet of gas per day.
$\mathrm{d}=$ diameter of tower in inches
$\mathrm{h}=$ height of tower in feet-baffled portion
$\mathrm{s}=$ fraction of unobstructed cross section
$\mathrm{p}=$ pressure of gas in pounds
With $\mathrm{S}=.50$
$\mathrm{C}=\mathrm{d}^{2} \mathrm{~h} p$
Amount of Absorption Oil required.
$0=.02 \mathrm{C} \mathrm{G}$
$0=$ gallons of oil necessary to circulate per day
$\mathrm{C}=$ capacity in cu. ft. of gas per day
$\mathrm{G}=$ gallons of extractable gasoline per $1000 \mathrm{cu} . \mathrm{ft}$.

$$
A=2 g
$$

$A=$ area of condenser in square feet
$\mathrm{g}=$ gallons of gasoline to condense per hour.

Properties of Hydrocarbons Found in Natural Gas and Casinghead Gas．

	品	悲	号	$\stackrel{\text { cin }}{\tilde{y}}$	¢	悉	总	\％
Formula．	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{2}{ }^{\prime}$	$\mathrm{Ca}_{4} \mathrm{H}_{10}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{C}_{7} \mathrm{H}_{16}$	$\mathrm{C}_{8} \mathrm{H}_{18}$
Molecular Weight	16.03	30.05	4407	58.08	72.10	86.12	100.13	114.15
Specific Gravity of Liquid		$\begin{gathered} .432= \\ 194^{\circ} \mathrm{Be}^{\prime} \end{gathered}$	$\begin{gathered} .515= \\ 142^{\circ} \mathrm{Be}^{\prime} \end{gathered}$	$\begin{gathered} .585= \\ 109^{\circ} \mathrm{Be} \end{gathered}$	$\begin{gathered} .630= \\ 92.2^{\circ} \mathrm{Be}^{\prime} \end{gathered}$	$\begin{gathered} 670= \\ 78.9^{\circ} \mathrm{Be}^{\prime} \end{gathered}$	$\begin{aligned} & .697= \\ & 70.9^{\circ} \end{aligned}$	$\begin{aligned} & .718= \\ & 65.0^{\circ} \end{aligned}$
Specific Gravity of Gas．	0.505	1.049	1.526	2.008	2.496	2.982	3.467	3.952
Boiling point at atmospberic pressure．	$\begin{array}{r} 165^{\circ} \mathrm{C} \\ =265^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & -93^{\circ} \mathrm{C} \\ & =135^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -45^{\circ} \mathrm{C} \\ & =49^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & +1^{\circ} \mathrm{C} \\ & 34={ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 36.3^{\circ} \mathrm{C} \\ & =97^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 69^{\circ} \mathrm{C}= \\ & 156^{\circ} \mathrm{F} \end{aligned}$	$\left.\begin{gathered} 98.4^{\circ} \mathrm{C} \\ =200^{\circ} \mathrm{F} \end{gathered} \right\rvert\,$	$\begin{aligned} & 125.5^{\circ} \mathrm{C} \\ & =253^{\circ} \mathrm{F} \end{aligned}$
Pressure to liquefy at $60^{\circ} \mathrm{F}$ lbs \qquad		475	105	35	6.5	1.8	0.5	0.15
Vapor pressure $70^{\circ} \mathrm{F}$ in per cent of atmosphere．．．．．．．．．	$100+$	$100+$	$100+$	$100+$	55	10	2.7	0.7
Gallons per $1000 \mathrm{cu} . \mathrm{ft}$ ．at B．P．reduced to $60^{\circ} \mathrm{F}$ ．．．．		4.13	7.17	10.72	14.35	18.22	22.05	25.86
Weight 1000 cu．ft．vapor at B．P．reduced to $60^{\circ} \mathrm{F}$ ，lbs ．	42	79.7	116	152.6	189.7	226.6	263.5	300
Shrinkage in volume by 1 gal． liquid removed per 1000 cu．ft．					7．0\％	5．5\％	4.5%	3.9%
Max．possible removable gal． per 1000 cu ．ft．at $70^{\circ} \mathrm{F}$ ， gal． \qquad					7.8	1.8	0.6	0.18
Heating valuc in B．T．L．．per $\mathrm{cu} . \mathrm{ft}$	1065	1861	2685	3447	4250	5012	5780	6542
B．T．U．per lb．	25360	23350	23150	22590	22400	22120	21935	21807
$\mathrm{Cu} . \mathrm{ft}$ air to burn $1 \mathrm{cu} . \mathrm{ft}$ ．gas	9.57	16.72	23.92	31.10	38.28	46.46	53.6	$\begin{aligned} & \text { E4 } \\ & 60.8 \end{aligned}$
Carbon per cent	75.0	80.0	81.8	82.8	83.3	83.7	84.0	84.2
Explosive mixture per cent in air，maximum． Minimum	14.5 5.6	5． 3.0	3.5 2.1	3.0 1.6	2.5 1.3	2.2	1.9	1.6

About Natural Gas and Its Usefulness.

An average sample of natural gas has 950 B.T.U. per cubic foot.
1 lb . mill coal will evaporate 9 lbs . water.
1 gal. oil will evaporate 100 lbs . water.
$1 \mathrm{cu} . \mathrm{ft}$. gas will evaporate 0.85 water.
1 ton coal used under boilers $=18,500 \mathrm{cu} . \mathrm{ft}$. of gas.
1 bbl . oil (42 gal .) under boilers $=5,000 \mathrm{cu}$. ft. of gas.
40 to $50 \mathrm{cu} . \mathrm{ft}$. of gas $=1$ boiler H.P.
Gas Engines:
Highest grade gas engines develop a brake H.P. on 8,500 B.T.U.
Average engine develops a H.P. on 10,500 B.T.U.
Oil well engine develops a H.P. on $20,000 \mathrm{~B}$ T.U.
In a steam turbine plant of over $500 \mathrm{~K} . \mathrm{W}$. capacity 30 cut. ft. gas per K.W. is a fair average.
It requires $40,000 \mathrm{cu}$. ft. of gas to pump one million gallons of water against 200 -foot head.
Brick Plants-Gas Used per Thousand Brick Made:
1,800 cubic feet for power.
1,800 cubic feet for drying.
15,000 cubic feet for kilns.
Ice Plants:
2,000 feet gas per ton of refrigeration.
Zinc Plants:
15,000 cubic feet for roasting per ton of metal produced.
65,000 cubic feet for smelting per ton of metal produced.
20,000 cubic feet for power and miscellaneous uses per ton of metal produced.
Cement Plants:
60 to 100 cubic feet per barrel for power.
80 to 100 cubic feet per barrel for roasters.
1,800 to 2,600 cubic feet per barrel for kilns.
Salt Plants:
Direct-fire pans, 9,000 cubic feet per ton.
Steam pans, 10,000 cubic feet per ton.
Single-effect vacuum pan, 15,000 cubic feet per ton.
Double-effect vacuum pan, 10,000 cubic feet per ton.
Triple-effect vacuum pan, 6,000 cubic fect per ton.
Flour Mills:
200 to 400 cubic feet per barrel.
Gas Compressors:
Horsepower required to compress $1,000 \mathrm{cu} . \mathrm{ft}$. of gas per minute:

To 15 lbs .
To 30 lbs . To 45 lbs . To 60 lbs . To 80 lbs . To 100 lbs . To 200 lbs .

50 H.P.
85 H.P.
111 H.P.
134 H.P.
117 H.P. (2 stages)
151 H.P. (2 stages)
212 H.P. (2 stages)

Horsepower required to compress $1,000 \mathrm{cu} . \mathrm{ft}$. of gas per hr. To 15 lbs.

1 H.P.
1.75 H.P.
8.25 H P.

To 45 lbs . To 60 lbs .
The specific heat of average natural gas is 0.60 B.T.U. per pound, or 0.028 B.T.U. per cubic foot at $32^{\circ} \mathrm{F}$.

Gasoline, Natural Gas and Coal Dust Explosions.

An explosion or a detonation is a chemical reaction which goes on with increasing velocity and is accompanied by a rise of temperature. The lowest temperature at which combustion or explosion of a mixture may take place is called the ignition temperature. This varies greatly with different kinds of gas, about $650^{\circ} \mathrm{C}$. The vapors of some substances such as carbon bisulphide and hydrogen sulphide are capable of ignition at much lower temperatures, even as low as $100^{\circ} \mathrm{C}$. Some gases even inflame spontaneously at room temperature. These are phosphorus tri-hydride, boron and silicon hydride and cacodyl. Ordinarily, explosive mixtures are ignited by the presence of a flame or spark at any point in the mixture ordinarily greater than .2 of a millimeter in length. In order that the gaseous mixture explodes it is necessary that the heat generated by the local combustion be greater than the heat absorbed by the surrounding gases. This means of course that if the mixture is heated to a high temperature it will be more readily explosive though the pressure will exert very little influence. An excess of either the combustible agent or the oxidizing agent in the mixture will have the same cooling effect tha+ is exerted by any inert gas. The result is that the limits of explosi bility of various mixtures of combustible gases and air are dependent upon the heat generated by the combination and by the heat absorbed in raising the temperature of the gases.

In the same manner that mixtures of gas or vapor and air will explode, coal dust, oil mists and dusts of other combustible materials will explode. As a general fact, these explosions will not take place at ordinary room temperature unless there is over one-half pound of dust of suspended matter per 500 cubic feet of air.

For ordinary gases the following limits hold as to the range of combustion with combustible mixtures when air is the oxidising agent:

Limits of Explosibility of Mixtures of Combustible Gases and Air. Gasoline vapor ... 1.5-6.0\% by vol. of mixture Methane .. 5.5-14.5\% by vol. of mixture Ethane .. $25-5.0 \%$ by vol. of mixture Natural gas ... 5.0-12.0\% by vol. of mixture
Acetylene
$3.0-73.0 \%$ by vol. of mixture
Artificial illuminating gas....................... 7.0-21.0\% by vol. of mixture
Hydrogen
$5.0-72.0 \%$ by vol. of mixture
Carbon monoxide ...15.0-73.0\% by vol. of mixture
Blast furnace gas... 65.0% by vol. of mixture
Water gas ... $9.0-55.0 \%$ by vol. of mixture
Coal gas .. 6.0-29.0\% by vol. of mixture
Ethylene .. 4.0-22.0\% by vol. of mixture
Coal dust ... +1 lb . per 500 cu . ft. of air
The striking back of a flame in a burner is caused by the presence of an explosive mixture in the burner. While the usual rate of striking back of the flame or the propagation of an explosion is over 6,000 feet per second and about seven times the rate of sound in the same medium, this rate exists only when there is no retardation of the explosive wave caused by the cooling effect of the orifice or tuhe through which it passes.

Chemical Products from Natural Gas.

Natural gas offers peculiar opportunities for research on the development of various oxidized and chlorinated products of methane and ethane. It is well known that the ordinary natural gas burner if not properly adjusted will emit great quantities of formaldehyde gas probably according to the following reaction: $\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CH}_{3} 0$ $+\mathrm{H}_{2} 0$. The conditions governing the quantitative production of formaldehyde by partial oxidation of natural gas are those of proper mixing, exact temperature and catalysis. Many different methods have been attempted in the production of formaldehyde but most of them will not produce more than 25% of the theoretical yield. Other remote possibilities in the controlled oxidation of natural gas include the production of alcohol and acetone.

The greatest success in the manufacture of chemical compounds has resulted from the chlorination of natural gas. The commercial preparation of mono-chloro-methane or methyl chloride $\mathrm{CH}_{3} \mathrm{Cl}$ is now being carried out successfully by a firm of manufacturing chemists. This compound is used largely as a refrigerant and in the dye stuff industry. Other chlorination products such as chloroform, CHCl_{3} and carbon tetrachloride $\mathrm{CCl}_{\mathrm{t}}$ are not yet made cheaply enough from natural gas to compete with other established ways of making them. They are however successfully made. These chlorination processes are ordinarily carried out by the slow action of chlorine on the natural gas at carefully regulated temperatures and with a proper catalyzer. Catalyzers that have been successfully used are finely divided tin, nickel, copper, lead, dense charcoal, palladium, platinum and the like. Unless low temperatures are used, the chlorine reacts explosively forming only hydrochloric acid and carbon.

Hydrogen may also be made by the heating of natural gas at very high temperature. However, this method of manufacture has always been a method of convenience rather than a commercial method where the making of hydrogen is a business. Amyl acetate may also be indirectly made from natural gas by means of a chlorination process but it is not yet done in competition commanially with other methods of making this chemical.

Methods of Manufacture of Carbon Black.

The processes of manufacturing carbon black now in use or contemplation are as follows:
(1) Channel Process. This process consists in the use of steel channels carried on trucks above gas flames burning from lava tips. The lava tips are fitted so that they burn without sufficient air giving a yellow smoky flame. This flame impinges upon the bottom of the channel bars which are moving slowly so as to present a cool surface to the flame. The channel bars usually are about seven inches wide and weigh about twelve pounds per foot. Scrapers are adjusted to the bottom of the channels to take off the carbon as collected. The carbon falls as the channel passes over the scraper and is conveyed to the packing department. Each lava tip burns from four to fourteen cubic feet of gas per hour and one tip produces about 35 grams of carbon per day. Thirteen tips produce one pound of carbon per day. A sixty barrel plant or one making 3,000 pounds of -arbon black per day requires 38,400 lava tips.
(2) Disc Process. This process was invented by Blood in 1883 and in principle is the same as the channel process except that the cold surface on which the gas flame impinges is a cast iron disc about 40 inches in diameter. The disc rotates at the rate of about four revolutions per hour. The carbon is scraped off in much the same manner as the channel process.
(3) Plate Process. This is known also as the Cabot Process. This consists in perforated circular plates about 24 feet in diameter and is essentially the same in principle as the disc and channel processes. The spent gas passes through the perforated or ventilator holes whereas in the disc process, they pass out over the edge of the disc and in the channel process, between the channel bars.
(4) Roller or Cylinder Process. In this process, the face of the cylinder is exposed to the gas flame. The cylinders are from three to eight feet long and about eight to nine inches in diameter, each weighing about 100 pounds. The cylinder rotates on a horizontal axis.
(5) Thermal Decomposition Methods. In this, the primary object has been to produce hydrogen. There is no o:idation of the gas and the carbon is produced purely by cracking. 'The carbon in this method is comparatively poor, being rather hard and containing some bituminous matter. The temperature of cracking usually is about $1500^{\circ} \mathrm{F}$.
(6) Explosion Method. This method is not operated at present on a commercial scale but has the advantage of being highly efficient and giving a good grade of carbon. A charge of the gas mixed with either air or oxygen is compressed into a heavy metal cylinder and ignited by a spark. The explosion wave goes through the whole cylinder. The cylinder is opened and the carbon brushed out and a new charge placed in. This is repeated indefinitelv.

YIELD OF CARBON BLACK IN DIFFERENT FIELDS.

Plant No.	State	Process	Lbs. of Carbon Black per 1000 Cu . Ft. Gas
1	Louisiana.	Channel, 2-tabie	0.78
2	Louisiana	Channel, 1-table.	0.95
3	Louisiana.	Channel, 1-table.	0.80
4	Louisiana.	Large plate	0.80
5	West Virginia	Large plate.	1.10
6	West Virginia.	Rotary disc.	0.95
7	West Virginia	Roller....	0.80
8	West Virginia.	Rotary disc.	1.00
9	West Virginia.	Channel, 2-table.	1.12
10	West Virginia.	Channel, 1-table.	1.30
11	West Virginia.	Rotary disc.....	1.40
12	Oklahoma....	Channel...	1.20 1.40
13	Wyoming....	Channel.	1.40

COMPARISON OF DIFFERENT METHODS.

Plant	Location	Method	$\begin{aligned} & \text { *Sq. ft. per } \\ & \text { Burner } \\ & \text { Tip } \end{aligned}$	Sq. ft. per Lb. of Carbon Black	$\begin{aligned} & \text { Sq. fu. per } 100 \\ & \text { Cu. ft. of } \\ & \text { Gas Burned } \end{aligned}$
	Louisiana.	Channel, 2-table.	0.21	4.87	3.73
2	Louisiana.	Channel, 1-table.	0.26	4.23	4.04
3	West Virginia.	Roller...........		9.10	7.33
4	West Virginia.	Large plate.....		${ }_{5}^{6.53}$	${ }_{6}{ }_{6} 16$
5	West Virginia.	Channel, 2 table.		5.05 3.10	6.75 2.90
${ }_{7}^{6}$	West Virginia.	Small disc. Channel, 1 -table.		3.10 3.70	$\stackrel{2.90}{3.50}$
	Oklahoma....	Channel. 1 -table.			

*Square foot of depositing surface.
The total quantity of carbon black produced from natural gas in the United States in 1920 was $51,320,892$ pounds, according to E. G. Sievers of the U. S. Geological Survey, a decrease of 1.4 per cent from 1919, notwithstanding an increase in the number of plants. In 1919, the plants were still operating at or near full capacity on account of the war, but since normal conditions have been restored, the production has decreased. The output in 1920 was made by 39 plants operated by 19 producers. The total value was $\$ 4,032,286$ as computed from the prices received by the producers. The prices ranged from 4 cents to 27 cents a pound. The average daily production in 1918 was 120,830 pounds, in 1919 it was 144,600 pounds, and in 1920 it was 140,608 pounds.

About $40,600,000$ cubic feet of natural gas was consumed in the manufacture of carbon black in 1920. In 1919, the quantity consumed was $49,896,200,000$ cubic feet and in 1918 it was estimated at $45,000,000,000$ cubic feet. In 1920 the production of carbon black per thousand cubic feet of gas consumed ranged from 0.45 to 2 pounds, but the average production during the year for all states was about 1.26 pounds.
Range in Production of Carbon Black at Plants in the United States in 1919 and 1920.

Production	Plants	
	1919	1920
Less than 1 pound.	6	6
From 1 to 1.2 pounds	17	19
From 1.3 to 1.6 pounds	11	6
From 1.7 to 2.0 pounds	2	8
Totals	. 36	39

The daily capacity of the plants in volume of gas treated ranges from 172,000 to $20,350,000$ cubic feet and in quantity of carbon black produced from 90 to 23,250 pounds.

Production in 1919.

State	Plants	Pounds
West Virginia	23	29,925,614
Louisiana	7	-14,024,606
Wyoming and Montana	2	4,868,947
Oklahoma and Kentucky	2	2,922,274
Pennsylvania	2	315,500
Total	. 36	52,056,491

Gas $=49.9 \times 10^{3} \mathrm{cu} . \mathrm{ft}$.
Production in 1920.

State	Plants	Pounds
West Virginia	19	26,659,469
Louisiana		18,565,498
Wyoming 17	
Montana 1	5,850,313
Kentucky	1	
Pennsylvania	2	246,612
Totals	39	51,321,892

Gas $=40.6 \times 10^{9} \mathrm{cu} . \mathrm{ft}$.

Uses of Carbon Black.

The uses of carbon black are, in order of importance: (1) the manufacture of printing inks, (2) incorporation with rubber, (3) varnishes and black points, (4) the blackening of ironware, (5) phonographic records, pencils, carbon paper, typewriter ribbons, Chinese inks, artificial stones, insulators and crucibles for steel.

The quantities employed in 1918 were: Printing ink, 5,000 to 6,000 tons, rubber, 10,000 tons, ironware, 2,000 to 3,000 tons and other uses, 500 tons. In regard to printing inks, lamp black has been used since the invention of the printing press and was used exclusively up to 1864 . For certain qualities, where a very fine grain of black was required, much trouble was taken to purify it, but after the discovery of carbon black in 1864 and the lowering of the price of the latter in 1880, the use of the former diminished and at the present day very small quantities of lamp black are being used.

Before 1914, the use of carbon black in the rubber industry was scarcely known, and no differentiation was made between it and lamp
black. The rise in price of zinc oxide then led to the employment of carbon black as a filler in rubber and its valuable properties were for the first time realized. It increases resistance to abrasion, gives softness and in the opinion of many chemists has a favorable effect upon the aging of the rubber. From the economic point of view, carbon black is cheaper than zinc oxide. Its density is 1.8 , that of zinc oxide is 5.8 , so taking equal volumes and the price of carbon black at 10c per pound, the black costs 33 per cent less than the zinc oxide.

By reason of its fine state of division, carbon black constitutes an ideal filling material for rubber, because it can be so intimately mixed with the plastic rubber. It also protects the rubber against the destructive effects of light and it possibly retards oxidation. Carbon black for the rubber industry is usually required to comply with the following specifications:
(1) Moisture, less than 4 per cent.
(2) Acetone soluble matter, less than 05%.
(3) Ash, less than 0.25%.
(4) No gritty particles to be present.

SPECIFIC HEAT OF GASES ENCOUNTERED IN NATURAL GAS AND "CRACKED" GAS.
(H. L. Payne, J. A. \& Appl. Chem.)

> B.T.U. per lb. B.T.U. per cu. ft. per $1^{\circ} \mathrm{F}$ per $1^{\circ} \mathrm{F}$ 0.234 0.018 0.234
> 0.027 $0.245 \quad 0.019$ $3.41 \quad 0.019$ 0.404
> 0.040 0.593
> 0.027 0.244
> 0.019
> 0.019

Air
Carbon dioxide
Carbonic oxide
Hydrogen
"Illuminants"
Methane
Nitrogen
$\begin{array}{ll}\text { Nitrogen } \\ \text { Oxygen ... } & 0.217 \\ \text { Aqueous vapor }\end{array}$
Aqueous vapor
CAlORIFIC VAlUE OF NATURAL AND OIL GASES IN British THERMAL UNITS PER CUBIC FOOT.

Name	$\begin{aligned} & \text { Symbol } \\ & \mathrm{H}_{2} \\ & \mathrm{CO} \\ & \mathrm{CH}_{4} \end{aligned}$	$\begin{array}{r} 60^{\circ} \mathrm{F} \\ \text { Initial } \\ 326.2 \\ 323.5 \\ 1009.2 \end{array}$	From and Ignition to $32^{\circ} \mathrm{F}$ Point ${ }^{\circ} \mathrm{F}$	
Hydrogen			345.4	1085
Carbonic oxide			341.2	00
Methane			1065.0	1230
Illuminants			2000.0	
Ethane	$\mathrm{C}_{\text {- }} \mathrm{H}_{\text {: }}$	1764.4	18	15
Propane	$\mathrm{C}_{3} \mathrm{H}$	2521	2657.0	
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	3274	34.41 .0	
Pentane	$\mathrm{C}_{6} \mathrm{H}_{1}$		42.53 .0	1.400
Hexane	${ }_{C} \mathrm{CH}_{1}$		1674.0	1010
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	1588	2509.0	0.10
Propylene	$\mathrm{C}_{3} \mathrm{H}_{5}$	3807.4	40120	
Benzene	$\mathrm{C}_{\mathrm{C} 2 \mathrm{H}_{0}}$	1476.7	1477.0	788

NATURAL GAS PRO	N THE UN Quantity	ED STATE Price, cents	IN 1916.
State	M. cu. ft.	per M.cu. ft.	Value
West Virginia	.299,318,907	15.90	47,603,396
Pennsylvania	.129,925,150	18.74	24,344,324
Oklahoma	123,517,358	9.70	11,983,774
Ohio	69,888,070	22.32	15,601,144
Louisiana	32,080,975	8.29	2,660,445
Kansas	31,710,438	15.31	4,855,389
California	31,643,266	17.19	5,440,277
Texas	15,809,579	18.89	3,143,871
New York	8,594,187	29.37	2,524,115
Illinois	3,533,701	11.22	396,357
Arkansas	2,387,935	10.13	241,896
Kentucky	2,106,542	35.73	752,635
Indiana	1,715,499	29.34	503,373
Wyoming and Colorado	575,044	14.97	86,077
Montana	213,315	18.21	38,855
Dakotas and Alabama	77,478	40.75	31,573
Missouri	69,236	25.41	17,594
Tennessee	2,000	57.50	1,150
Michigan	1,298	73.04	948
Iowa	275	100.00	275
Totals	753,170,253	15.96	$\overline{120,227,468}$

Testing of Capacity of Casinghead Gas Wells.

To use the orifice well tester the specific gravity of the gas must be taken. This is fully described on page 419.

To test a well, close all openings but one or if the well is shut in at the casinghead, blow off the well before inserting the orifice well tester. Allow the well to blow into the atmosphere for half an hour or until there is no appreciable decrease in the volume of the gas flowing from it. Screw in the orifice well tester, which carries a two-inch thread, and allow the gas to flow into the atmosphere through the proper size of orifice.

Connect a syphon gauge to the nipple on the side of the orifice well tester, using a short piece of common three-eighths-inch rubber hose. The syphon gauge should be filled with water up to the zero mark on the scale. If the well appears to be large use the large-sized orifice. To correctly determine the proper size of orifice it is necessary to read the gauge and note the height of the water in the glass. Read both sides of the scale and add them together. In other words, measure the difference between the two water levels which is the true pressure in inches of water. By referring to tables that accompany each instrument, or as found on pages 420-424, the flow of a well for a twenty-four hour period will be found under the proper gravity and opposite the pressurc.

The specific gravity bottle can be used to take the water pressure of the gas flowing through the orifice in place of the syphon gauge. In this case measure the difference between the two levels of the water.

Use as large an orifice as possible so as not to permit the gas to create a back pressure in the well. A back pressure in the well will decrease the flow of the gas.

Pitot Tube for Testing Open Flow of Gas Wells.

The most accurate way of testing the flow of a gas well is by means of the Pitot tube, which is an instrument for determining the velocity of flowing gas by means of its momentum. The instrument,

Fig. 85-Pitot Tube.
as shown in figure usually consists of a small tube, with one end bent at right angles, which is inserted in the flowing gas, just inside
the pipe or tubing a, at a point between one-third and one-fourth of the pipe's diameter from the outer edge of the pipe. The plane of the opening in the tube is held at right angles to the flowing gas. At a convenient distance, varying from 1 to 2 feet, an inverted siphon or U-shaped gage, usually half filled with mercury or water, is attached to the other end. If the pressure of the flow is more than 5 pounds per square inch, a pressure gage is required.

In small-sized wells with a flow of not more than $4,000,000$ cubic feet per 24 hours, a 12 -inch U-gage with water can be used for flows ranging from $4,000,000$ to $15,000,000$ feet, mercury in a 12 -inch Ugage; for $15,000,000$ to $35,000,000$ feet, a 50 -pound spring gage, and for more than $35,000,000$ feet, a 100 -pound spring gage should be used. The foregoing figures are based on a 6 -inch hole.

For convenience, a scale graduated from the center in inches and tenths of an inch is attached between the two limbs of the Ugage. The distance above and below this center line at which the liquid in the gage stands should be added, the object being to determine the exact distance between the high and low side of the fluid in inches and tenths of an inch.

The top joint of the tubing or casing should be free from fittings for a distance of 10 feet below the mouth of the well where the test is made. The test should not be made in a collar or gate or at the mouth of any fitting. The well should be blown off at least three hours prior to making the test.

After the velocity pressure of the gas flowing from the well tubing has been determined in inches of water, inches of mercury, or pounds per square inch, as outlined above, the corresponding flow may be obtained from the following table*. The quantities of gas stated in the table are based on a pressure of 4 ounces above atmospheric, or 14.65 pounds per square inch absolute pressure, a flowing temperature of $60^{\circ} \mathrm{F}$., a storage temperature of $60^{\circ} \mathrm{F}$., and a specific gravity of 0.60 (air $=1$). If the specific gravity is other than 0.60 the
flow should be multiplied by

*Westcott, H. P.: Handbook of Natural Gas, 1915, pp. 176, 177.
For pipe diameters other than those given in the following table, the following multipliers should be applied to the figures for 1 -inch tubing given in the table.

Multipliers for Pipe Diameters Ranging from $11 / 2$ to 12 Inches.

Diameter of Pipe, Inches	Multi- plier	Diameter of Pipe, Inches	Multi- plier	Diameter of Pipe, Inches	Multi- plier
$11 / 2$	2.25	5	25	8	
$21 / 2$	6.25	558	31.64	$81 / 4$	64
$41 / 4$	18	6	36	9	88
$45 / 8$	21.39	$61 / 4$	39	10	100
		$65 / 8$	43.9	12	144

24 Volume of Gas, in Cubic Feet per Hours, Discharged Through-

Flow of Gas in Pipes-Low Pressure.

The following formulae are intended for low pressure distribution of gas, with comparatively small differences between the initial and final pressurpe.

Pole's Formula

$$
\mathrm{Q}=1350 \mathrm{~V} \frac{\mathrm{~d} \mathrm{~h}}{\mathrm{sl}}
$$

Molesworth's Formula

Gill's Formula

Where $\mathbf{Q}=$ quantity of gas discharged in cubic feet per hour. $\mathrm{d}=$ inside diameter of pipe in inches.
$\mathrm{h}=$ pressure in inches of water.
$\mathrm{s}=$ specific gravity of gas, air being 1. $1=$ length of main in yards.
Oliphant's Formula. A formula determined by F. H. Oliphant for the discharge of gas when the specific gravity is 0.60 is

$$
\mathrm{Q}=42 \mathrm{a} \sqrt{\frac{\overline{\mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2}{ }^{2}}}{\mathrm{~L}}}
$$

Where $\mathrm{Q}=$ discharge in cubic feet per hour at atmospheric pressure.
$\mathrm{P}_{1}=$ initial pressure in pounds per square inch (absolute)
$\mathrm{P}_{2}=$ final pressure in pounds per square inch (absolute).
$\mathrm{L}=$ length of main in miles.
$\mathrm{a}=$ coefficient (see table below).
For gas of any other specific gravity, s, multiply the discharge by

$$
\longdiv { 0 . 6 0 }
$$

$V \frac{}{s}$, for temperature of flowing gas when observed above $60^{\circ} \mathrm{F}$ deduct 1 per cent for each 5° and add a like amount for temperatures less than $60^{\circ} \mathrm{F}$.

According to Oliphant, the discharge is not strictly proportional to
$V \frac{1}{d^{5}}$. Using a coefficient of unity for 1 -inch pipe he gives
$a=v^{-\frac{1}{1}}+\frac{d^{3}}{30}$

Values of Coefficient "a"					
Inside		Inside		Inside	
diameter		diameter		diameter	
inches	a	inches	a	inches	a
$1 / 4$. 0317	3	16.5	12	- 556
1/2	. 1810	4	34.1	16	1160
$3 / 4$. 5012	5	60	18	1570
1	1.00	55/8	81	20	2055
$11 / 2$	2.93	6	95	24	3285
2	5.92	8	198	30	5830
21/2	10.37	10	350	36	9330

For 15 inch outside diameter pipe, $141 / 2$ inches inside dia. $\mathrm{a}=863$
For 16 inch outside diameter pipe, $151 / 4$ inches inside dia. $a=1025$
For 18 inch outside diameter pipe, $17 \frac{1}{4}$ inches inside dia. $\mathrm{a}=1410$
For 20 inch outside diameter pipe, $191 / 4$ inches inside dia. $a=1860$

Capacity of Pipe Lines.

(Metric Metal Works.)
Tables to Find the Cubic Feet, Per Day of 24 Hours, of Gas of .6 Specific Gravity at Certain Pressure in Pipe Lines of Various Diameter and Lengths.

Select in table A the number opposite the gauge pressures, in pounds, then from table B select the number opposite the length of line in miles. Multiply these two numbers together and result is the cubic feet that a 1 -inch line will discharge for the pressures and length named in twenty-four hours. If the diameter of the pipe is other than one inch, select the number in table C which corresponds with the diameter and multiply this number by the discharge for one inch already secured. The result is the quantity in cubic fect in twenty-four hours discharged by a line whose diameter was sclected.

If there are other pressures and lengths not given in the table they can be secured by interpolation. Example-Suppose it is required to find the discharge per day of twenty-four hours of a pipe line having an intake of 200 -pound gauge messure and 25 pounds at the discharge end, the length being 20 miles, and the diameter 8 inches. In table A we find opposite 200 and 25 the number 211.25 , and in table B opposite 20 miles, 22.5 , multiplying these two numbers the result being 47,637 cubic feet that under the above condition of pressure and length a 1 -inch pipe would convey, but the required diameter is 8 inches. Under this number in table (? it will he found that 198 corresponds; therefore $47,637 \times 198=9.433 .126$, which is the cubic feet discharged in 24 hours.

If the pressure were twenty pounds instead of twenty-five at the discharge end it would be found very closely by adding the figures opposite 15 and 25 and dividing by 2 , the resull would be $0,469.151$.

TABLE A.

Intake, Lbs.	Discharge, Lbs.	$\begin{aligned} & \text { Re- } \\ & \text { sultant } \end{aligned}$	Intake, Lbs.	Discharge, L.bs.	$\begin{aligned} & \text { Re- } \\ & \text { sultant } \end{aligned}$	Intake, Lbs.	Discharge, Lbs.	$\begin{aligned} & \text { Re- } \\ & \text { sultant } \end{aligned}$
1	$1 /$	4.7	40	5	51.2	110	75	86.8
1	$1 / 2$	3.9	40	10	49.0	110	85	75.0
2	1/2	6.9	40	15	46.1	110	100	49.0
2	1	4.7	40	20	42.4	125	5	138.6
2	11/2	4.0	40	25	37.8	125	15	136.8
3	1	8.1	40	30	31.6	125	25	134.2
3	2	5.8	40	35	22.9	125	35	130.8
4	1	10.1	50	5	61.8	125	50	124.0
4	2	8.4	50	10	60.0	125	75	107.2
4	3	6.0	50	15	57.7	125	100	79.8
5	1	11.8	50	20	54.8	125	110	63.1
5	2	10.4	50	25	51.2	135	5	148.7
5	3	8.6	50	30	46.9	135	15	147.0
5	4	6.2	50	35	41.5	135	25	144.6
6	1	13.4	50	40	34.6	135	35	141.4
6	3	10.6	50	45	25.0	135	50	135.2
6	5	6.3	60	5	72.3	135	75	120.0
7	1	14.9	60	10	70.7	135	100	96.3
7	3	12.5	60	15	68.8	150	5	168.3
7	5	9	60	20	66.3	150	15	163.3
7	6	6.5	60	25	63.4	150	25	160.1
8	1	16.3	60	30	60.0	150	40	155.6
8	3	14.1	60	40	51.0	150	50	151.7
8	5	11.2	60	50	37.4	150	75	138.3
8	7	6.6	60	55	26.9	150	100	118.3
9	1	17.6	70	5	82.6	150	120	94.9
9	3	15.6	70	10	81.2	175	5	188.9
9	5	13.1	70	20	77.5	175	15	187.6
10	8	6.8	70	30	72.1	175	25	185.7
10	1	19.2 18.3	70 70	40 50	64.8 54.7	175 175	35 50	183.3 178.5
10	4	16.3	70	60	40.0	175	75	167.3
10	6	13.6	80	5	92.8	175	100	151.2
10	8	9.8	80	10	91.6	175	150	94.2
10	9	7.0	80	20	88.3	200	5	214.1
12	1	21.8	80	30	83.7	200	15	212.9
12	3	20.1	80	40	77.5	200	25	211.3
12	6	17.0	80	50	69.2	200	35	209.1
12	8	14.1	80	60	58.3	200	50	204.9
12	10	10.2	80	70	42.4	200	75	195.3
15	1	25.4	90	5	103.1	200	100	181.7
15	3	24.0	90	10	102.0	200	125	163.2
15 15	6 9	21.4 18.0	90 90	20 30	99.0	200 200	150 175	137.9 100.6
15	12	13.1	90	40	89.4	200	190	64.8
20	1	31.1	90	50	82.5	220	5	234.2
20	4	29.4	90	60	73.5	220	15	233.1
20	8	26.4	90	70	61.6	220	25	231.6
20	10	24.5	90	80	44.7	220	35	229.6
20	15	18.0	100	5	113.3	220	50	225.8
20	18	11.7	100	10	112.3	220	75	217.1
25	1	36.7	100	15	111.0	220	100	204.9
25	${ }_{6}$	35.7	100	20	109.5	220	125	188.8
25	6	34.0	100	25	107.8	220	150	167.3
25	10	31.2	100	35	103.6	220	175	138.3
$\stackrel{25}{25}$	15 18	26.5 22.6	100 100	50 75	94.9 71.6	220	200	94.9 244.1
30	18 1	22.6 42.1	100	75 85	71.6 56.8	230	15	243.2
30	3	41.2	100	95	33.5	230	25	241.7
30	${ }^{6}$	39.8	110	5	123.4	230	35	239.8
30	10	37.4	110	15	121.4	230	50	236.2
30	15	33.5	110	25	118.4	230	75	227.9
30	20	28.3	110	35	114.6	230	100	216.3
30	25	20.0	110	50	106.8	230	150	181.5

TABLE A-Continued.

Intake, Lbs.	Discharge, Lbs.	Resultant	Intake, Lbs.	Discharge, Lbs.	Resultant	Intake, Lbs.	Discharge, Lbs.	1 Resultant
230	200	117.5	325	250	213.0	400	225	338.6
230	215	84.4	325	275	177.5	400	250	319.4
250	5	264.2	325	285	160.0	400	275	296.9
250	15	263.3	325	300	128.0	400	300	270.2
250	25	262.0	350	5	364.5	400	325	238.0
250	35	269.2	350	15	363.8	400	350	197.5
250	50	256.9	350	25	362.8	400	375	141.9
250	75	249.3	350	35	361.6	425	5	439.6
250	100	238.8	350	50	359.2	425	15	439.0
250	125	225.0	350	75	353.7	425	25	438.2
250	150	207.4	350	100	346.4	425	35	437.2
250	175	184.7	350	125	337.1	425	50	435.2
250	200	154.9	350	150	325.6	425	75	430.7
250	230	101.0	350	175	311.7	425	100	424.7
275	5	289.3	350	200	295.0	425	125	417.1
275	15	288.4	350	225	275.0	425	150	407.9
275	25	287.2	350	250	251.0	425	175	396.9
275	35	285.7	350	275	221.6	425	200	383.9
275	50	282.6	350	300	184.4	425	225	368.8
275	75	275.7	350	325	132.8	425	250	351.3
275	100	266.2	375	5	389.5	425	275	330.9
275	150	238.5	375	15	388.8	425	300	307.2
275	200	194.6	375	25	387.9	425	325	279.3
275	250	117.8	375	35	286.8	425	350	245.7
300	5	314.4	375	50	384.6	425	375	203.7
300	15	313.6	375	75	379.5	425	400	146.2
300	25	312.5	375	100	372.7	450	5	464.6
300	35	311.0	375	125	364.0	450	15	464.0
300	50	308.2	375	150	353.4	450	25	463.3
300	75	301.9	375	175	340.6	450	35	462.3
300	100	293.8	375	200	325.4	450	50	460.4
300	125	282.2	375	225	307.4	450	75 100	456.2 450.5
300	150	268.3	375	250	286.1 260.8	450 450	100 135	450.5 443.4
300 300	175	251.3	375 375	275 300	260.8 230.0	450 450	135 150	443.4
300 300	200	230.2 170.3	375 375	300 325	230.0 191.1	450	175	424.4
300	275	123.0	375	350	137.4	450	200	412.3
325	- 5	339.4	400	5	414.5	450	225	398.3
325	15	338.7	400	15	413.9	450	250	382.1 363.5
325	25	337.6	400	25	413.1	450 450	275 300	363.5 3.12 .1
325	35	336.3	400	35	412.0 409.9	450	300 325	312.1 317.9
325	50	333.7	400 400	75	409.9 405.1	450	350	288.1
325	75 100	327.9 320.0	400	75 100	398.8	450	375	253.2
325	125	309.8	400	125	390.2	450	400	209.8
325	150	297.3	400	150	380.8	450	425	150.4
325	175	281.9	400	175	369.0 355.0	475 500	50	485.7 510.0
325	200	263.4	400	200	355.0	500	50	

TABLE B.

Miles	Multipliers	Miles	Multipliers	Miles	Multipliers
1.	2880.	19	231.2	61	129.1
$1 / 4$	2016.	20	225.5	62	128.1
$3 / 8$	1652.4	21	220.1	63	126.9
$1 / 2$	1419.7	22	214.9	64	126.0
$5 / 8$	1275.9	23	210.0	65	125.1
$3 / 4$	1158.6	24	205.7	66	124.1
7/8	1083.7	25	201.6	67	123.1
1	1008.0	26	197.6	68	122.2
$11 / 2$	826.2	27	193.8	69	121.3
$13 / 4$	763.6	28	190.5	70	120.4
2	714.9	29	187.0	72	118.7
$21 / 2$ 23	638.0 607.2	30 31	183.9 181.0	74 76	117.2 115.6
${ }_{3}^{3 / 4}$	682.7	32	178.0	78	114.2
$31 / 2$	539.0	33	175.6	80	112.7
4	504.0	34	172.9	82	111.2
$41 / 2$	475.5	35	170.3	84	109.9
5	450.0	36 37	168.0	86	108.7
$6^{1 / 2}$	428.9	37 38	165.8 163.6	88 90	107.5
$61 / 3$	395.3	39	161.3	92	105.1
	380.4	40	159.5	94	103.9
. $71 / 2$	367.9	41	157.5	96	102.9
	356.2	42	155.6	98	101.8
$81 / 2$	345.2	43	153.7	100	100.8
$9{ }_{91 / 2}$	336.0 327.3	44	152.0 150.2	102	99.8 98.3
$10^{1 / 2}$	319.0	46	148.7	107	97.5
$101 / 2$	311.1	47	146.9	110	96.0
11	303.6	48	145.4	112	95.3
$111 / 2$	297.3	49	144.0	115	93.9
12	291.3 284.7	50	142.6 141.2	118	92.8 92.0
13	276.4	52	139.8	122	91.2
131/2	274.6	53	138.5	125	90.2
14	269.5	54	137.1	130	88.4
141\% ${ }^{\text {² }}$	264.6	55	135.8	135	86.8
15	260.5 255.8	56 57	134.8	140	85.2
16	252.0	58	132.3	150	82.3
17 18	244.7	59	131.2		
18	237.5	60	130.1		

TABLE C.

Multipliers for diameters other than 1 inch.

1/4	inch $=$. 0317	3	inch $=$	16.50	12 inch	556
1/2	inch $=$. 1810	4	inch	34.10	16 inch	= 1160
3/4	inch $=$. 5012	5	inch $=$	60.00	18 inch	工 1570
1	inch	1.0000	55/8	inch	81.00	20 inch	$=2055$
11/2	inch	2.9300	6	inch	95.00	24 inch	= 3285
	inch $=$	5.9200	8	inch $=$	198.00	30 inch	$=5830$
$21 / 2$	inch $=$	10.3700	10	inch $=$	350.00	36 inch	$=9330$

For wrought iron pipes greater than 12 inches in diameter the measure is taken from outside, and for pipes of ordinary thickness the corresponding inside diameters and multipliers are as follows: Outside dia. of 15 -inch pipe gives $141 / 4 \mathrm{in}$. inside dia. $=863$ Outside dia. of 16 -inch pipe gives $151 / 4 \mathrm{in}$. inside dia. $=1025$ Outside dia. of 18 -inch pipe gives $171 / 4 \mathrm{in}$. inside dia. $=1410$ Outside dia. of 20 -inch pipe gives $191 / 4 \mathrm{in}$. inside dia. $=1860$

Measuring the Flow of Natural Gas.

ORIFICE METER.

An instrument known as the orifice meter, for testing small flows of natural gas, is shown in the figure. This instrument is simple in construction, consisting of a short 2 -inch nipple, b, with pipe thread on one end and a thin plate disk on the other. The disk carries a 1 inch orifice, a, and a hose connection, c, for taking the pressure. The meter is especially intended for testing small gas wells and "casinghead" gas from oil wells. As a rule the flow of gas from an oil well is rather small, and it is not advisable to test the flow with a Pitot tube such as is used in testing large gas wells. In using the orifice tester, it is necessary to know the specific gravity of the gas in order to obtain the flow.

Before the orifice well tester is attached to the casinghead the well should be permitted to blow into the atmosphere until the head of the gas is reduced and the flow has become normal. Then the tester is attached by simply screwing it into the end of a 3-foot length of 2 -inch pipe and the pressure is read in inches of water on the siphon gage, d.

Fig. SG—Orifice Meler. (T. S. Bureat of Stamdatils.) In the tables * on pages $420-21$, the flow of the well with values for the gas of different gravities is opposite the gage reading. The orifice in the instrument should be kept dry and uninjured; otherwise the page reading will not be correct.
(Temperature, $60^{\circ} \mathrm{F}$; a amospheric pressure, 14.4 pounds per squarc inch.)
ONE-INCH ORIFICE IN PLATE $1 / 8$ INCH THICK.

	$$	 	
	$\stackrel{\square}{-}$	 	8ిర్లిల్లిగ్రి
	$\stackrel{\sim}{\sim}$	 	
	$\stackrel{\sim}{\square}$	 	
	$\stackrel{\square}{-}$	 	ింరి心ిర్లి
	\cdots	 	
	$\stackrel{2}{\square}$	 	
	-	 	
	$\begin{aligned} & \therefore \\ & \stackrel{3}{0} \end{aligned}$	 	
	$\stackrel{9}{0}$	 	
	$\stackrel{\infty}{\infty}$	 	
	\bigcirc	 	
	$\stackrel{18}{\circ}$	 	
	\because	 	
	-	 	
	\bigcirc	 	
	隠		

ONE-HALFANCH ORIFICE IN PLATE $1 / 8$ INCII THICK.

Orifice Capacity.

Diameter, Inches			Morse Drill Gage Size	Cubic Feet per Hour		
Frac.	Decimal	Area Square Inch		Coal Gas, $0.32 \mathrm{sp} . \mathrm{gr}$. $2^{\prime \prime}$ Press	Water Gas, $0.62 \mathrm{sp} . \mathrm{gr}$. $2^{\prime \prime}$ Press	Natural Gas $0.62 \mathrm{sp} . \mathrm{gr}$. 41/2-02. Press
1/64	0.0135	0.000143	80	1.04	0.86	1.67
	0.0145	0.000165	79	1.16	0.97	1.89
	0.0156	0.00019		1.26	1.05	2.05
	0.016	0.00020	78	1.32	1.10	2.14
	0.018	0.00025	77	1.35	1.13	2.20
	0.020	0.00031	76	1.62	1.35	2.63
	0.021	0.00035	75	1.80	1.52	${ }_{3}^{2.96}$
	0.0225	0.00040	74	2.16	1.80	3.51
	0.024	0.000 .45	73	2.29	1.90	3.70
	0.025	0.00049	72	2.46	2.05	4.00
	0.026	0.00053	71	2.70	2.25	4.38
	0.028	0.00062	70	2.79	2.33	4.54
	${ }_{0}^{0.0292}$	0.00067 0.00075	69 68	3.08 2.23	2.57 2.70	4.97 5.26
	0.031 0.031	0.00075 0.00076	68	${ }_{3}^{2.23}$	$\stackrel{2.70}{2.73}$	5.26 5.32
1/32	0.032	0.00080	67	3.42	2.85	5.56
	0.033	0.00086	66	3.53	2.94	5.73
	0.035	0.00096	65	3.69	3.08	6.00
	0.036	$0.00102{ }^{\text {- }}$	64	3.86	3.23	6.30
	0.038	0.00108	63	4.05	3.38	6.60
	0.038	0.00113	62	4.11	3.51	6:84
	0.039	${ }_{0}^{0.0001196}$ E	61	4.50 4.95	3.75	7.31 8.04
	0.040 0.041	0.00126 0.00132	60 59	4.95 5.22	4.12 4.35	8.04 8.48
	0.042	0.00138	58	5.40	4.50	8.67
	0.043	0.00145	57	5.67	4.71	9.2
	0.0465	0.00170	56	6.57	5.47	10.6
3/64	0.0469	0.00173		8.75	5.63	11.0
	0.0520 0.0550	0.0021 0.0023	55 54	8.9 9.0	6.75 7.50	13.2 14.6
	0.0595	0.0028	53	10.8	9.0	17.5
1/16	0.0625	${ }_{0}^{0.0031}$		11.7	7.7	19.0
	0.0635 0.0670	0.0032 0.0035	52 51	${ }_{12}^{11.9}$	10.5	19.3
	0.070	0.0038	50	13.5	11.2	21.8
	0.0730	0.0042	49	14.4	12.0	23.4
	0.076	0.0043	48	15.3	12.7	24.8
6/64	0.0781	0.0048		15.7	13.1	25.5
	0.0785	0.0018	47	15.8	13.2	25.7
	0.081	0.0053	4_{45}^{46}	17	14.3	28
	0.086	0.0058	44 *	18	15	29
	0.089	0.0062	43 ,	19	16.5	32
	0.0935	0.0069	42	20	17	33
3/32	0.0937	0.0069		21	18	35
	0.096 0.098	0.0072 0.0075	41	${ }_{23}^{22}$	19 20	37 39
	0.0995	0.0078	39	24	20.5	40
	0.1015	0.0081	38	25	21	41
	0.104	0.0085	37	26	22	43
	0.1065	0.0090	36	27	22.5	44
7/64	0.1093	0.0094		28	23	45
	0.110 0.111	0.0095 0.0097	35 34	29 30	$\stackrel{24}{25}$	47
	0.113	0.0100	33	31	26	51
	0.116	0.0106	32	32	27	53

ORIFICE CAPACITY-Continued.

Diameter, Inches		Area, Square Inch	Morse Drill Gage Size 3	Cubic Feet per Hour		
Frac.	Decimal			Coal Gas, $0.43 \mathrm{sp} . \mathrm{gr}$. 2" Press	Water Gas. 0.62 sp. gr. $2^{\prime \prime}$ Press	$\begin{aligned} & \text { Natural Gas, } \\ & 0.62 \text { sp. gr. } \\ & 41 / 2-0 \mathrm{z} \text {. Press } \end{aligned}$
1/8	0.120	0.0113	31	33	28	55
	0.125	0.0123		36	30	58
	0.1285	0.0130	30	39	32	62
9/64	0.136	0.0145	29	43	35	68
	0.1405	0.0155	28	44	37	72
	0.1406	0.0155		45	38	74
	0.144	0.0163	27	47	39	76
	0.147	0.0174	26	48	40	78
5/32	0.1495	0.0175	25	51	42	82
	0.152	0.0181	24	52	43	84
	0.154	0.0186	23	53	44	86
	0.156	0.0192		54	45	88
	0.157	0.0192	22	55	46	90
	0.159	0.0198	21	57	47	91
	0.161	0.0203	20	58	48	95
11/64	0.166	0.0216	19	60	50	97
	0.1695	0.0226	18	62	52	101
	0.1719	0.0232		63	53	103
	0.173 0.177	0.0235 0.0246	17	65	54 56	105 109
3/16	0.180	0.0254	15	69	58	113
	0.182	0.0260	14	71	59	115
	0.185	0.0269	13	72	61	119
	0.1875	0.0276		75	62	121
	0.189	0.0280	12	76	63	123
13/64	0.191	0.0286	11	77	64	125
	0.1935	0.0294	10	79	66	129
	0.196	0.0302	9	80	67 69	131
	0.199	0.0311 0.0317	8	83 84 84	69 70	136
	0.201 0.203	0.0317 0.0324	7	86	71	138
	0.204	0.0327	6	87	72	140
	0.205	0.0332	5	89	74	1.4
7/32	0.209	0.0343	4	93	77	150
	0.213	0.0356	3	95	79	15.4
	0.2187	0.0375		97 99	80 82	156
	0.221	0.0384	2	99 104	82 86	160 168
	0.228	0.0408	1	108	86 90	175
$15 / 64$ $1 / 4$	0.2344 0.250	0.0442 0.0491		119	99	193
17/64	0.2656	0.0554		131	109	21\%
9/32	0.2812	0.0621		142	119	232 250
19/64	0.2969	0.0692	.	153	128	165
5/16	0.3125	0.0767		164 176	146	285
21/64	0.3281	0.0845		187	155	302
$11 / 32$ $23 / 64$	0.3437 0.3594	0.0928		198	165	322
23/64	0.375	0.1104		209	174	3.40
25/64	0.3906	0.1198		221	184	360 376
13/32	0.4062	0.1296		231	193	392
27/64	0.4219 0.4375	0.1398		254	211	412
$7 / 16$ $29 / 64$	0.4375 0.4531	0.1612		264	220	430
15/32	0.4687	0.1725		277	230 239	J16\%
31/64	0.4844	0.1843		286	249	485
$1 / 2$ $33 / 64$	0.500 0.5156	0.1963 0.2088		309	257	500
$33 / 64$ $17 / 32$	0.5156 0.5312	0.2088 0.2216		320	267	520 539
35/64	0.5469	0.2349		331 340	276	-fic
9/16	0.5625	0.2485 0.2625		35.3	295	576
$37 / 64$ $19 / 32$	0.5781 0.5937	0.2625 0.2769		365	303	590

ORIFICE CAPACITY-Continued.

Diameter, Inches		Area, Square Inch	Morse Drill Gage Size	Cubic Feet per Hour		
Frac.	Decimal			Coal Gas, $0.43 \mathrm{sp} . \mathrm{gr}$. $2^{\prime \prime}$ Press	Water Gas 0.62 sp. gr. $2^{\prime \prime}$ Press	$\begin{aligned} & \text { Natural Gas, } \\ & 0.62 \mathrm{sp} . \mathrm{gr} \text {, } \\ & \text { 41/2-oz. Press } \end{aligned}$
39/69	0.6094	0.2917		376	313	610
5/8	0.625	0.3068		387	323	630
41/64	0.6406	0.3223		399	333	650
21/32	0.6562	0.3382		410	341	665
43/64	0.0719	0.3546		421	350	682
11/16	0.6875	0.3712		431	369	720
45/64	0.7031	0.3883		443	370	722
23/32	0.7187	0.4057		454	378	737
47/64	0.7344	0.4236		466	387	755
3/4	0.750	0.4418		476	397	774
49/64	0.7656	0.4604		488	406	792
25/32	0.7812	0.4794		499	415	810
51/64	0.7969	0.4988		510	424	827
13/16	0.8125	0.5185		520	433	845
53/64	0.8281	0.5386		532	443	865
27/32	0.8438	0.5591		543	453	884
25/64	0.8594	0.5801		554	461	900
$7 / 8$	0.875	0.6013		565	472	920
57/64	0.8906	0.6229		576	480	938
29/32	0.9062	0.6450		588	490	955
59/64	0.9219	0.6675		599	500	976
15/16	0.9375	0.6903		510	507	985
61/64	0.9531	0.7134		620	517	1010
31/32	0.9687	0.7371		632	526	1025
63/64	9.9844	0.7611		644	536	1047
1	1.0000	0.7854		655	545	1062

NOTE:-The above table is based upon data obtained from gas orifices that are ordinarily used in gas appliances such as the ones used in Hale Gas Mixers.

ARTIFICIAL GAS:--The above figures are based upon 2-inch pressure; for higher pressures these figures should be increased by a percentage as shown below:

3-inch $=25 \%$	
4 -inch $=50$	10 -inch $=120 \%$
5 -inch $=62.5$	12 -inch $=140$
6 -inch $=75$	16 -inch $=180$
7 -inch $=87.5$	20 -inch $=210$

NATURAL GAS:-The above figures for natural gas are based on a gas under $4^{1 / 2}$ oz. pressure having a specific gravity of 0.62 , which is the ordinary gravity of natural gas sold in cities supplied by gas from the Mid-Continent: Pennsylvania and West Virginia fields. When the pressure is greater than $41 / 2 \mathrm{oz}$. the figures in the table should be increased as shown below:

$$
\begin{array}{lr}
5 \mathrm{oz} .=10 \% & 8 \mathrm{oz} .=39 \\
6 \mathrm{oz} .=20 & 9 \mathrm{oz}=47.5 \\
7 \mathrm{oz} .=30 & 10 \mathrm{oz} .=60
\end{array}
$$

Outline of Methods of Analysis of Petroleum Products.

1. Specific Gravity and Baume' Gravity.
(a) With hydrometer.
(d) By fluid suspension.
(b) With picnometer.
(c) With Westphal balance.
(e) By displacement.
(f) Asphaltic Cement.
2. Color of Petroleum.
(a) Saybolt Chromometer.
(d) Iodimetric.
(b) Lovibond Tintometer.
(c) Potassium Bichromate.
(e) Union Colorimeter.
3. Odor of Oil.
4. Transparency.
5. Viscosity or Fluidity.
(a) Saybolt Universal, Engler and Redwood Viscosimeters.
(b) Furol Viscosity for fuel oil and road oil.
(c) Ubbelohde Viscosimeter for thin petroleum products.
(d) MacMichael Disk Friction Viscosimeter.
(e) Float test for viscosity of road oils.
(f) Zero Viscosity for semi-solid petroleum products.
(g) Petrolatum.
6. Melting Point.
(a) Ring and Ball.
(b) Cube method.
(c) "General Electric" method.
(d) Wax.
7. Cold Test.
(a) Cloud test.
(b) Pour test.
(c) Cold test.
8. Water and Bottom Settlings.
(a) By centrifuge.
(b) By distillation.
9. Distillation Tests for Petroleum.
(a) End point distillation.
(b) Fractional-Gravity distillation analysis.
(c) Proximate distillation for water, gasoline, kerosene and residuum.
(d) Fractional-Sample distillation.
10. Flash and Burning Points.
(a) Illuminating oils with closed tester (Tag.).
(b) All types of petroleum products with the Elliott or New York closed tester.
(c) Lubricants and asphalt with Cleveland open cup.
(d) Fuel oil with Pensky-Martens.
11. Pressure-Heat Tests.
(a) Cracking test under high pressure and temperature.
(b) Vapor pressure test at high pressure.
(c) Motor oil lubricant test $\hat{1} 0$ r stability under heat and pressure.
(d) Vapor pressure of light gasoline.
12. Carbon residue.
(a) Conradson carbon test.
(b) Fixed carbon and ash in asphalt.
(c) Asphaltic carbon in lubricating oils.
13. Emulsification test of lubricating oils.
14. Heat of combustion.
(a) By bomb calorimeter.
(b) By calculation from gravity.
15. Sulphur in Petroleum Products.
(a) By bomb calorimeter.
(b) By Eschka method.
(c) By chemical bomb.
(d) In illuminating oils by lamp method.
(e) For Naplitha and turpentine substitute, white lead test.
16. Ultimate Analysis.
(a) Carbon and Hydrogen.
(b) Nitrogen.
17. Doctor Test for Refined Distillates.
18. Olefins, Ethylenes or Unsaturated Hydrocarbons.
(a) Babcock method.
(b) Cylinder method.
(c) Refining loss.
19. Aromatic and Paraffin Hydrocarbons in Petroleum.
(a) Nitrating method.
(b) Distillation method.
20. Acid.
(a) Free acid in petroleum products.
(b) Combined fatty acid.
21. Floc Test.
22. Colrosion and Gumming Test of Gasoline.
23. Penetration or Consistency of Asphalt.
24. Ductility of Asphalt.
25. Resistance of Asphalt and Oil to Evaporation.
26. Determination of Natural Asphalt or Semi-Solid Hydrocarbon in Petroleum. Oxidation of Lubricating Oils.
27. Solubility of Petroleum and Asphalts.
(a) In petroleum ether-
(1) A.S.T.M. precipitation number of lubricating oils.
(2) Tar in lubricating oils, asphaltenes in asphaltic cement.
(b) In carbon bisulphide-total bitumen.
(c) In carbon tetrachloride-carbene free bitumen.
28. Resistance of asphalt to oxidation.
29. Paraffin wax or scale determination.
30. Bitumen and Grading of Asphalt-Mineral Mixtures.
(a) By burning.
(b) By extraction.
31. Tensile and Cementing Strength of Asphaltic Surface Mixtures.
32. Specific Gravity of Gas.
(a) Effusion or viscosity method.
33. Gasoline Determination in Gas.
(a) By absorption test.
(b) Freezing test.
34. Complete Chemical Analysis of Gas with Preparation of Reagents.
35. Heat of Combustion of Gas.
(a) By the calorimeter.
(b) By oxygen consumption.
(c) By calculation from chemical analysis.

Index to Applications of Methods of Analysis.

- PRODUCT	Routine Test	Occasioral Test	Rarely Used
A. Crude Petroleum	$\begin{aligned} & 1 \mathrm{~A}, 2 \mathrm{D}, 3,4 \\ & 8,9 \mathrm{~B}, 9 \mathrm{C}, 15 \end{aligned}$	$\begin{aligned} & 7 \mathrm{C}, 9 \mathrm{D}, 10, \overline{\mathrm{~A}}, \\ & 9 \mathrm{C}, 14,26,29 \end{aligned}$	$2 \mathrm{D}, 7 \mathrm{~B}, 9 \mathrm{D},$
B. Gasoline, Benzine and Naphtha.	$\begin{aligned} & 1,2,3,4,9 \mathrm{~A}, \\ & 17,18,22 \end{aligned}$	$\begin{aligned} & 9 \mathrm{~B}, 14,19,20, \\ & 11 \mathrm{D} \end{aligned}$	${\underset{20}{5 B}, 7 \mathrm{~A}, 15,16}^{2}$
C. Kerosene and Illuminating Oils	$\begin{aligned} & 1,2 \mathrm{ABC}, 3,4, \\ & 5 \mathrm{~B}, 7,9 \mathrm{~B}, \\ & 10 \mathrm{~A}, \quad 15, \quad 17, \\ & 21 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~B}, 14,18, \\ & 20,22 \end{aligned}$	$9 \mathrm{C}, 11 \mathrm{~B}, 16,19$
D. Gas Oil, Straw Oil, Absorption Oil...	$\begin{aligned} & 1,2,3,4,7 \\ & 9 \mathrm{C}, 10,14,15 \end{aligned}$	5, 11A, 12A, 13, 17, 18	16, 19, 20, 21
E. Lubricants, Paraffin Oils.	$\begin{aligned} & 1,2,3,4,5 \mathrm{~A}, \\ & 7,10,12 \mathrm{~A}, 13, \\ & 15,20,27 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14,17,18,11 \mathrm{C} \\ & 12 \mathrm{C} \end{aligned}$	16, 19, 21
F. Fuel Oil, Diesel Engine Oil	$\begin{aligned} & 1,5 \mathrm{C}, 7,8,10, \\ & 144,15 \end{aligned}$	$\begin{aligned} & 5,11,26,27 \mathrm{~A}, \\ & 29 \end{aligned}$	$\begin{aligned} & 2 \mathrm{D}, 3,9,12,16 \\ & 18,19 \end{aligned}$
G. Road Oil, Flux Oil	$\begin{aligned} & 1 \mathrm{AB}, 5 \mathrm{AD}, 8,8, \\ & 10,12,25,26, \\ & 27 \end{aligned}$	7B, 14, 15, 29	2D, 11, 16
H. Asphalt and Pitch	$\begin{array}{lr} \hline 1 \mathrm{DF}, & 5 \mathrm{~F}, \\ 6 \mathrm{ABC}, & 10 \mathrm{C}, \\ 12,23, & 24,27 \end{array}$	$\begin{aligned} & 8 \mathrm{~B}, \quad 15, \quad 2 \varepsilon . . \\ & \hline \end{aligned}$	${ }_{25}^{2 \mathrm{D}, 3,14,16 .}$
I. Wax	1,2,3,6D	4,25	$\begin{aligned} & 11 \mathrm{~A}, 12 \mathrm{~A}, 14, \\ & 15,16,17,18, \\ & 19,20 \end{aligned}$
J. Grease	$\begin{aligned} & 1,2, \quad 3, \quad 4, \\ & 5 \mathrm{DE}, \\ & 27 \end{aligned}$	20, 25	16
K. Asphalt Surface Mix.	1E, 30, 31		
L. Gas	32, 33, 34, 35		16

Note-See special specifications for ather tests of Petrole:m Products.

1. Specific Gravity and Baume' Gravity (General Discussion).

Specific gravity is the relation by weight of the same volume of oil and of water. Unless some other temperature is specifically mentioned the gravity refers to $60^{\circ} \mathrm{F}$. Specific gravity is determined by means of the hydrometer, the Westphal balance, the picnometer and by displacement methods. The absolute specific gravity scale is not commonly used in the oil industry. Instead, the Baume' gravity scale, an entirely arbitrary standard is used. Two Baume' gravity scales are in use in the oil industry; one is that adopted by the U. S. Bureau of Standards and its relation to specific gravity is indicated by the following formula:

140
Specific Gravity $=\frac{1}{130+\text { Baume }^{\prime}}$ for liquids lighter than water.
Another scale possibly more commonly used is that of the American Petroleum Association, which is based upon the following relation to specific gravity:

$$
141.5
$$

Specific Gravity $=\frac{14.5}{131.5+\text { Bavme' }^{\prime}}$ for liquids lighter than water.
The difference between the two readings varies from nothing with very heavy oils to as much as $0.5^{\circ} \mathrm{Be}^{\prime}$ for ordinary gasoline. When the oil is heavier than water a different formula is used for calculating the Baume' gravity, the following being in general use:

145
 Degrees Baume $=145-\frac{14}{\text { Specific Gravity }}$ for liquids heavier than water.
 Specific Gravity

Oils heavier than water are not commonly encountered. The method of using the hydrometer is the same in all cases whether its reading is in terms of the U.S. Bureau of Standards Baume' Scale, the Petroleum Association Baume' Scale, Baume' Scale for liquids heavier than water, or for direct specific gravity. The ideal instrument for all purposes is, of course, that reading directly in specific gravity. By the use of tables these readings can be converted into the Baume' reading desired and without any misunderstanding as to which scale is intended.

Tables for the correction of the specific gravity of oils are to be found on pages 538 to 542 . Tables for the correction of the Baume' gravity of oils to the basis of $60^{\circ} \mathrm{F}$ are to be found on pages 529 to 537 . Baume' values are extended to lower than 10° on page 529.

Fig. 87--Effect of High Temperatures on the Specific Gravity of Oil.

1A. Specific Gravity and Baume' Gravity With the Hydrometer.

The correct method of reading the hydrometer is illustrated in Fig. 88, page 432. The sample of oil is placed in a clear jar or cylinder and the hydrometer carefully immersed in it to a point slightly below that to which it naturally sinks and is then allowed to float freely. The reading should not be taken until the oil and the hydrometer are free from air bubbles and are at rest.

In taking the reading the eye should be placed slightly below the plane of the surface of the oil and then raised slowly until this surface, seen as an ellipse, becomes a straight line. The point at which this line cuts the hydrometer scale should be taken as the reading of the instrument.

In case the oil is not sufficiently clear to allow the reading to be made as above described, it will be necessary to read from above the oil surface and to estimate as accurately as possible the point to which the oil rises on the hydrometer stem. It should be remembered, however, that the instrument is calibrated to give correct indications when read at the principal surface of the liquid. It will be necessary, therefore, to correct the reading at the upper meniscus by an amount equal to the height to which the oil creeps up on the stem of the hydrometer. The amount of this correction may be determined with sufficient accuracy for most purposes by taking a few readings on the upper and the lower meniscus in a clear oil and noting the differences.

In the case of thick viscous oils after the hydrometer has apparently sunk to a stationary position it is well to determine if it will rise to the same position when pushed down into the oil.

A specific gravity hydrometer will read too low and a Baume' hydrometer too high when read at the upper edge of the meniscus. The correction for meniscus height should therefore be added to a specific gravity reading and subtracted from a Baume' reading.

The magnitude of the correction will obviously depend upon the length and value of the subdivisions of the hydrometer scale and must be determined in each case for the particular hydrometer in question.

Specific gravity and Baume gravity readings of oils are conveniently taken at room temperature and these readings must be converted to the gravity at $60^{\circ} \mathrm{F}$. As a general rule it may be said that petroleum oil expands with heat so that 0.0004 must be added as a correction to the specific gravity readings for each degree Fahr. that the oil is above $60^{\circ} \mathrm{F}$ or must be subtracted for each degree Fahr. below $60^{\circ} \mathrm{F}$. On the Baume'scale $0.1^{\circ} \mathrm{Be}^{\prime}$ may be subtracted for each degree Fahr. above $60^{\circ} \mathrm{F}$ or added for each degree Fahr. below $60^{\circ} \mathrm{F}$. For exact temperature corrections for specific gravity, see pages 538 to 542. For exact temperature corrections for Baume' gravity, see pages 529-537. For conversions of Baume' to and from specific gravity, see pages 523-528.

[^6]Volume at 60 F Occupied by Unit Volume of Oil at Various Temperatures.

Observed 'Temperature, Degrees Fahr.	Specific Gravity at $60^{\circ}, 60^{\circ} \mathrm{F}$.								
	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	100
	0.00097^{1}	$0.00081{ }^{1}$	0.000691	0.00059 !	0.00051	0.000451	0.00041	0.00035^{1}	0.00037
30.	1.0288	1.0240	1.0208	1.0178	1.0151	1.0135	1.0123	1.0116	1.0111
32.	1.0269	1.0224	1.0194	1.0166	1.0141	1.0126	1.0115	1.0108	1.0103
34	1.0251	1.0208	1.0180	1.0154	1.0131	1.0117	1.0107	1.0100	1.0095
36.	1.0232	1.0193	1.0167	1.014?	1.0121	1.0109	1.0099	1.0092	1.0085
38	1.0213	1.0177	1.0153	1.0130	1.0111	1.0099	1.0091	1.0085	1.0080
40	1.0194	1.0161	1.0139	1.0118	1.0101	1.0090	1.0082	1.0077	1.0073
42	1.0174	1.0145	1.0125	1.0106	1.0091	1.0081	1.0074	1.0069	1.0066
44	1.0155	1.0129	1.0111	1.0095	1.0080	1.0072	1.00 b̄	$1.00 t i^{2}$	1.0059
46	1.0136	1.0113	1.0097	1.0083	1.0070	1.0063	1.0058	1.0054	1.0051
48	1.0116	1.0098	1.0084	1.0071	1.0060	1.0054	1.0050	1.0046	1.0044
50.	1.0097	$1.008 ?$	1.0070	1.0059	1.0050	1.0045	1.00.11	1.0038	1.0037
52	1.0078	1.0065	1.0056	1.0048	1.0040	1.0036	1.0033	1.0031	1.0029
54	1.0059	1.0048	1.0042	1.0036	1.0030	1.0027	1.0025	1.0023	1.0021
56	1.0040	1.002, 2	1.0028	1.0024	1.0020	1.0018	1.0017	1.0015	1.0014
58	1.0020	$1.001{ }^{\prime}$	1.0014	1.0012	1.0010	1.0009	1.0009	1.0008	1.0007
60.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
62.	0.9981	0.9984	0.9986	0.9988	0.9990	0.9991	0.9992	0.999 ${ }^{\text {2 }}$	0.9992
64	0.9962	0.9968	0.9972	0.9976	0.9980	0.9982	0.9984	0.9985	0.9285
66	0.9942	0.9952	0.9058	0.9964	0.9970	0.9973	09976	0.947	0.9978
68	0.9923	0.9936	0.9944	0.9952	0.9960	0.9964	0.9967	0.4970	0.9971
70	0.9903	0.9919	0.9930	0.9940	0.9950	0.9955	0.9959	0.9462	0.9963
72	0.9881	0.9903	0.9916	0.9923	0.9940	0.9946	0.9951	$0.995 \ddagger$	0.9956
7	0.9864	0.9887	0.9902	0.9917	0.9930	0.9937	リ. 0943	0.9947	0.9945
76	0.9845	0.9871	0.9888	0.9905	0.9920	0.9928	0.9035	0.9939	0.49+1
78.	0.9825	0.9855	0.9875	0.9893	0.9909	0.9919	0.9927	0.94 .31	0.9934
S0.	0.9806	0.9839	0.9861	0.9881	0.9899	0.9910	0.9918	0.9923	0.9927
82	0.9786	0.9823	0.9847	0.9869	0.9889	0.9901	0.9910	0.9915	0.9920
84	0.9767	$0.980{ }^{\circ}$	0.9833	0.9857	0.9879	0.9892	0.9902	0.9908	0.9912
86	0.9748	0.9790	0.9819	0.9845	0.9868	0.9853	0.9593	0.9900	0.9905
88	0.9728	0.9754	0.9805	0.9833	0.9856	0.985	0.9855	0.9843	0.9898
90.	0.9708	0.9758	0.9791	0.9821	0.9848	0.9865	0.9877	0.9855	0.4891
92	0.9688	0.9741	0.977	0.9809	0.9838	0.9556	0.9869	0.95 \%	0.945
94	0.9669	0.9725	0.9763	0.9798	0.9828	0.9847	0.9860	0.9890	0.9837
96	0.9649	0.9708	0.9749	0.9786	0.9818	0.9838	0.9559	0.9563	0.9850
98	0.9629	0.9692	0.9735	0.9774	0.9808	0.9429	0.9841	0.945.56	0.956?
100	0.9610	0.9676	0.9721	0.9762	0.9797	0.9820	0.9536	0.08 .15	
102.	0.9591	0.9660	0.9707	0.9750	0.9787	0.9811	0.9528	0.94 .41	0.93 .45
104.	0.9572	0.9643	0.9693	0.9738	0.9717	0.9802	0.9820	0.95\%33	
106.	0.9552	0.9626	0.9679	0.9726	0.9767	0.9793	0.9512 0.9804	0.9426 0.9519	(1).943. 10.818
108.	0.9533	0.9610	0.9665	0.9714	0.975	0.92 S	0.9804	0.9219	01.8027
110	0.9514	0.9594	0.9651	0.9702	0.9747	0.9370	0.9796	0.9811	(1).941!
112	0.9495	0.957s	0.9637	0.9690	0.9736	0.9767	0.9858	0.0801	10.945
114	0.9476	$0.956 ?$	0.9623	0.9678	0.9726	0.975	0.1788		0.980 .7 11.9209%
116.	0.9456	0.9545	0.9609	0.9666	0.9716	0.9719 0.9711	0.9772	11.9761	0.9691
118.	0.9437	0.9529	0.9595	0.9654	0.9706	0.9710	0.14010	11.961	10.968
120.	0.941	0.9513	0.9581	0.9642	0.9636	0.9731	0.985 \%	11.9301	(1)954

 been computed by using both the A and fi froms amf thorequrn ilffore sh hifl
 column headings.

Fig. 88-Method of Reading the Hydrometer.

1B. Specific Gravity With the Picnometer.
Various types of picnometers may be used for this purpose, each of which has special advantages. Some are plain bottles with capillary openings in a well made ground glass stopper; others have graduated tubes in the stoppers, vacuum walls and inserted thermometers. The Sprengel picnometer is particularly adapted to the handling of very viscous oils as it prevents including air bubbles in the instrument. With any of the various types the perfectly dry and clean picnometer is weighed at $60^{\circ} \mathrm{F}$ to the nearest 0.0001 gram. It is filled with distilled water at $60^{\circ} \mathrm{F}$ and weighed. It is then dried completely and filled with the oil to be tested at $60^{\circ} \mathrm{F}$. The net weight of the oil divided by the net weight of the distilled water gives the specific gravity of the oil. For conversion into degrees Baume ${ }^{\prime}$ the formulae given on page 428 or the tables given on pages 523 to 528 are used.

Fig. 90 Picnometer Without Thermometer.

Fig. 91 Picnometer With Thermometer.

[^7]
1C. Specific Gravity With the Westphal Balance.

This is a very convenient instrument where a great variety of petroleum products are to be tested as it covers any range of specific gravity and can be used for practically any type of liquid. Its character is shown by the figure 92 . The oil is put into the jar and the weights or riders are adjusted on the beam until the pointer is in exact poise. The readings are in specific gravity based on a water temperature of $60^{\circ} \mathrm{F}$ at which temperature the instrument is standardized. The specific gravity may be converted to Baume' scale with the tables.

Fig. 92 - Westphal Ballance.
1D. Specific Gravity of Semi-Solid Petroleum Materials.
A convenient method of taking the specific gravity of asphaltic cement and similar semi-solid petroleun materials is the following. (See Fig. 93.) Roll up a ball of the asphalt about 1 cm . in diameter, being careful that no water or air is inclosed. Place this in a cylinder of cold distilled water from which the air has been removed by previous boiling. If the ball of asphalt floats. denatured alcohol is added until it shows no tendency to go either up or down when placed in the middle of the cylinder. The specific gravity of the liquid is then taken with the Westphal balance or with the hydrometer. If the ball of asphalt sinks a saturated solution of sodium chloride or common salt is added until the asphalt when placed

Fig. 93-Specific Gravity of Asphaltic Cement by Fluid Suspension. in the center of the cylinder shows no tendency to go either up or down. The specific gravity is taken with a hydrometer for liquids heavier than water or with the Westphal balance. It is necessary in performing this test that the bubbles of air which tend to adhere to the surface of the asphalt be occasionally removed, and that the solution be thoroughly mixed. All air bubbles and water must be thoroughly kneaded out of the asphalt. The usual temperature required for the gravity of this material is $77^{\circ} \mathrm{F}$ or $25^{\circ} \mathrm{C}$.

1E. Specific Gravity of Solid Asphaltic Materials.

A fragment of bituminous material is suspended by means of a thread from a hook of one pan support of the balance and about onehalf inch above the pan and weighed. This weight is "a." It is then immersed in water at $25^{\circ} \mathrm{C}$ and suspended, the water container not being allowed to touch the balance and is weighed again. This weight is "b."

The specific gravity is $\frac{a}{a-b}$. (See Fig. 94.)

The sample of asphaltic surface mixture for this test should be cut ort of the street after the pavement has been rolled and cooled. This test is a very good measure of the all around quality of the work. The sample is weighed in the air and in water, the weight in air divided by the loss of weight in water gives the specific gravity. This times 62.4 gives the weight per cubic foot and times 93.6 gives the weight per square yard of 2 -inch surface.

1F. Method of Determining the Specific Gravity of Asphaltic Cement.

Fig. 95 -Capsule for Specific Gravity of Asphaltic Cement.
When considerable accuracy is required, the specific gravity of asphaltic cement may be done in the following manner:

For a receptacle, use a short glass tube as shown in the accompanying figure. This may be a half-inch test tube that has been cut off to a length of about two inches.

Enough of the dry asphalt is put in the tube to fill it about onehalf full. The tube is placed in an air oven at a temperature of from 105° to $150^{\circ} \mathrm{C}$ so that the asphalt melts down compactly in the tube.
The record for determining specific gravity is as follows:
$\mathrm{C}_{1}=$ Weight of the tube in air.
C. = Weight of the tube in water.
$\mathrm{A}_{1}=$ Weight of the tube + the asphaltic cement in air.
$A_{=}=$Weight of the tube + asphaltic cement in water.
These weighings are carried out with the water at a temperature of $77^{\circ} \mathrm{F}$. The specific gravity then is equal to:

$$
\frac{A_{1}-C_{1}}{\left(A_{1}-C_{1}\right)-\left(A_{2}-C_{2}\right)}
$$

2A. THE COLOR OF REFINED PETROLEUM (KEROSENE, NAPHTHA, GASOLINE).

The Saybolt apparatus consists of two color comparison tubes, one being arranged for insertion of a standard yellow glass in the bottom, the other being graduated for different lengths of oil column. (See Fig. 96.)

The yellow glass discs are supplied with each Chromometer.
Two glasses are used to determine color shades up to and including +15 , and only one glass from +16 to +25 .

An excess of oil is filled into the graduated tube so that in drawing off the excess the color of the oil becomes lighter.

The apparatus should be set at a window having a one-light sash so that a good light is reflected from the mirror, but not in the direct rays of the sun, and care should be taken that no colored light is reflected toward the instrument from surrounding buildings, tanks or other objects.

Fig. 96 -S aybolt Chromometer.

Clean the Chromometer before making a new test, by allowing some of the oil to be tested to run through the graduated tube.

After using, do not let the instrument stand with the light reflecting up the tubes.

When not in use, put the color glasses in the pockets prepared for them on the back of the upright stand.

For the purpose of most easily determining color shades, the color of the colunn of oil when nearing the color of the standard glass dises, is lowered shade by shade by use of the pet cock.

Now lower the column of oil one shade more and if it appears whiter than the standard glass disc, the color of the oil is recorded one shade above this last whiter point.

It is evident that no oils are to be compared with one dise unless they positively show whiter at $104 / 8$ inches with two discs.
Moreover, a full tube (20 inches) of white oil that shows whiter than one (1) disc must rate over +25 .

ONE DISC
 Inches of Oil

in Tube	Color Shades
20	+25
18	+24
16	+23
16	+22
14	+21
12	Water
$106 / 8$	+20
$94 / 8$	+19
9818	+18
$72 / 8$	+17
$72 / 8$	
$62 / 8$	+16

TWO	DISCS	$54 / 8$	+ 4	
Inches of Oil		52/8	+3	
in Tube	Color Shades	5	+2	
$104 / 8$	+15	$46 / 8$	+1	
$96 / 8$	+14	$44 / 8$	0	
9	+13	$42 / 8$	-1	
82/8	+12		-2	Standard
$76 / 8$	+11 Standard	$36 / 8$		white
$72 / 8$	$+10{ }^{\text {d }}$ Standard ${ }_{\text {white }}$	$35 / 8$	-4	
6 6/8	+9 white	3 4/8	-5	
$64 / 8$	+8	$33 / 8$	-6	
$62 / 8$	+7	$32 / 8$	- 7	
6	+6	${ }_{3} 1 / 8$	-8	
$56 / 8$	+ 5	3	-9	

2-B. Color by Lovibond Tintometer.

The Lovibond color units and divisions are shown below, together with the color, series and number of each glass. These slides are used for determining the color of the refined products-gasoline, naphtha and kerosene.

Lovibond color units with specifications for the slides

Slide	Color	Series	Number
Water white	C...................llow	510	2.3
1 to 12.0	Red	200	1.6
1	Amber	500	0.1 to 12.0

If the oil is darker than the water white glass, slides are added to the slot containing the standard water white until the color of the oil is matched. When the .2 slide is added in this manner, the color is reported as W.W.- 0.2 the minus sign indicating that the oil is darker than the standard water white. If the color of the oil is lighter than that of the water white glass, additional slides are placed in the slots in front of the oil and should the color be matched in this manner with, say the .5 slide and the .2 slide, the color is reported W.W. +0.70 .

The color equivalent of water white, the standard color for gasoline and naphtha, has been defined as the equivalent of a column 404.6 mm . long of a 0.00027% acidulated solution of potassium chromate.

The most practical adaptation of the tintometer for the color of lubricating oils is in the Union Colorimeter covering the National Petroleun Association standards as shown in paragraph 2-E.

Fig 97-Lovibond Tintometer.

2-C. Color With Potassium Bichromate Solutions.

In the absence of an instrument, standard acidulated solutions may be prepared to correspond with the solutions indicated in the following table. Each of these solutions when placed in four-ounce sample bottles and marked with the equivalent Saybolt value may be used to match samples. Solutions prepared in four-ounce bottles as indicated below are much more convenient and more easily read than in the case of using the Saybolt Chromometer.

Saybolt Color	Milligrams of potassium bichromate per 100 cc of 1% sulphuric acid solution	Saybolt Color	Milligrams of potassium bichromate per 100 cc of 1% sulphuric acid solution
25	. 0.20	9	1.95
24.	. 0.30	8	2.05
23.	. 0.37	7.	2.17
22.	. 0.45	6.	-..-....... 2.30
21. 0.55	5.	-....... 2.40
20 0.65		
19.	. 0.75	4. 2.55
18	-......... 0.85	3.	-......... 2.65
17. 0.95	2	2.75
16.	--7....1.10	1.	${ }^{2.85}$
15.	1.25		3.00

14

1.35
13.-....................... 1.50
12......................... 1.65
11........................ 1.75
10........................ 1.85

2-D. Color of Oil by Iodine Method.

This method may be applied to all dark colored petroleum products. In determining the color by the iodine method a solution is made containing in one liter of very pure distilled water, ten grams of iodine and twenty grams of potassium iodide. This is kept in a glass stoppered bottle. The apparatus necessary is that indicated in Fig. 98 which may be a set of carbon color tubes or two tubes such as are required in the determination of manganese in steel. For crude oil, road oil, fuel oil and other black oils a dilution of $1 / 1000$ in colorless benzol is made by diluting 1cc to 10 cc of benzol and then 1cc of this to 100 cc with benzol. This is thoroughly mixed in one of the glass stoppered color tubes. 1 cc of the standard iodine solution is put into the large color tube which holds 250 cc . It is diluted with distilled water until its color matches that of the oil under test. The color is calculated as follows: $I=$ milligrams of iodine in 100 cc of water in the tube containing the diluted iodine.
$\mathrm{d}=$ The number of cc of benzol to 1 cc of oil.
Color $=\mathrm{I}(\mathrm{d}+1)$.
For gas oil, lubricating oils and yellow oils, a dilution of $1 / 100$ with benzol is sufficient. For gasoline, naphtha, kerosene and illuminating oils there is no dilution with benzol, the comparison being made directly. The union colorimeter may be used for comparison purposes.

The descriptive terms applied in the color of crude oil are black, brownish black, blackish brown, brown, reddish brown, green, greenish brown, brownish green and bluish green. The kerosene is spoken of as being water white, superfine white, prime white, standard white, prime light straw, light straw, and straw. Other colors are designated by yellow, dark yellow, reddish yellow, brownish yellow, yellowish brown, brown red, blood red, and yellowish red.

2-E. Color of Lubrication Oils. (Union Colorimeter)

The color of lubricating oils is determined by placing a 4 -ounce bottle of the oil under examination in the right-hand circular compartment of the instrument. In the compartment behind the slot place a 4 -ounce bottle of water white gasoline or distilled water. Then place one of the standard glasses in the slot and close the slide. The instrument should be directed toward a window so that the ohserver can compare the color of the oil with the standard glass

Fig. 99-Union Colorimeter.
In the case of cylinder stocks (filtered) fifteen cubic centimeters are mixed with 85 cc of water white gasoline or benzol and the color is determined as in the case of lighter lubricating oils. (For dark cylinder stocks use method 2D.)

The following are the NATIONAL PETROLEUM ASSOCIATION STANDARDS for Engine, Machinery and Cylinder Oils:

Tagliabue-Robinson
Colorimeter
Equivalent
A Cylinder-Extra Light Filtered.
D Cylinder-Light Filtered.
E Cylinder-Medium Filtered.
G Lily white.
N. P. A. No. $1 \ldots \quad 20^{3 / 1}$

H Cream white N. P. A. No. $11 / 2$ 1712
I Extra Pale.............................. . A. No. 2
J Extra lemon pale.
K Lemon pale.................................. 3

N. P.......... 5

N Pale
P Light red
N. P. A. No. 6

Q Claret red

Equivalents of the above colors in Lovibond slides and in iodine colors expressed in milligrams of iodine per 100 cc of solution are as follows:

N. P. A. tandard	Red	Lovibond Yellow	Blue	(
A	10.2	29.0	0	50 (dimetric
D	21.0	31.0	0	100 (diluted)
E	89.0	56.0	0	500 (diluted)
G	0.12	2.4	0	2.8
H	0.6	8.0	0	5.7
I	2.5	26.0	0	10.8
J	4.6	27.0	0	20.1
K	6.9	32.0	0	32.1
L	7.8	39.0	0	38.4
M	14.0	50.0	0.55	70.7
N	21.0	56.0	0.55	112.0
O	35.0	93.0	0	195.0
Q	60.0	60.0	0.55	300.0
Q	60.0	106.0	1.8	460.0

3. Odor of Oil.

The odor of oil may be spoken of as sweet, ethereal, aromatic, tarry, fatty, creosotic, acid, sour, sulphurous, sulphuretted hydrogen, pyridine and pungent.

The sour or cracked odor is characteristic of benzine or incompletely refined gasoline. The aromatic odor or odor of benzene (benzol) is characteristic of high temperature cracking or aluminum chloride refining. Sweet ethereal odors are characteristic of naphthas made from low sulphur paraffin base crude oils. Tarry and creosotic odors are characteristic of cracked residues. Fatty odors are often noticed in illuminating oils. Acid and sulphurous odors are found in sludge oils from agitator treatment. Sulphuretted hydrogen and pungent odors come from high sulphur crude oils, such as Mexican. Pyridine odors come from oils containing a large amount of nitrogen (California) and from shale oils.

Odors may be intensified in some cases by mild treatment of the oil with acid or with caustic.

4. Transparency of Oil.

Transparency may be expressed by the thickness of oil in centimeters through which the filament of a fifty watt Mazda electric lamp is visible. It may be also noted whether the oil is fluorescent and the character of the fluorescence, whether bluish, greenish or yellowish by reflected light; also whether any turbidity is of a smoky, granular or flocculent character.

Transparency is usually closely related to color. Transparency is often affected by the blending of oils, the mixing of light crude with heavy crude oil or of paraffin base with asphaltic base crude oil often produces a turbidity.

5-A. Viscosity of Liquid Petroleum Products.

(SAYBOLT UNIVERSAL.) (A. S. 'T. M.)

The apparatus is shown in figure 100 .
To make the test, heat the bath to the necessary temperature and clean out the standard oil tube with the plunger, using some of he oil to be tested. Place the cork stopper into the lower end of the air chamber at the bottom of the standard oil tube. The stopper should be sufficiently inserted to prevent the escape of air, but should not touch the small outlet tube of the standard oil tube. Heat the oil to be tested, outside the viscosimeter, to slightly below the temperature at which the viscosity is to be determined and pour it into the standard oil tube until it ceases to overflow into the overflow cup.

By means of the oil tube thermometer keep the oil in the standard oil tube well stirred and also stir well the oil in the bath. It is extremely important that the temperature of the oil in the bath be maintained constant during the entire time consumed in making the test. When the temperature of the oil in the bath and in the standard oil tube are constant and the oil in the standard oil tube is at the desired temperature, withdraw the oil tube themometer; quickly remove the surplus oil from the overflow cup by means of a pipette so that the level of the oil in the overflow cup is below the level of the oil in the tube proper: place the $60-\mathrm{cc}$. flask in position so that the oil from the outlet tube will flow into the flask without making bubbles; snap the cork from its position. and at the same instant start the stop watch. Stir the liquid in the bath during the run and carefully maintain it at the previously determined proper temperature. Stop the watch when the botton of the meniscus of the oil reaches the mark on the neck of the receiving flask.

The time in seconds for the delivery of 60 -cc. of oil is the Saybolt viscosity of the oil at the temperature at which the test was made.

Viscosity is commonly determined at $100^{\circ} \mathrm{F}, 150^{\circ} \mathrm{F}$ or $210^{\circ} \mathrm{F}$, The bath is held constant within $.25^{\circ} \mathrm{F}$ at such a temperature as will maintain the desired temperature in the standard oil tube. Oil or water is used as the bath liquid. The oil for the bath should be a pale engine oil of at least $350^{\circ} \mathrm{F}$ flash point (open cup). V'iscosity determinations should be made in a rom frec from draughts, and from rapid changes in temperature. All oil introduced into the standard oil tube, either for cleaning or for test, shall first be passed through the strainer.

This is the test for the viscosity of lubricants adopted by the American Society for Testing Materials.

The Saybolt standard universal viscosimeter is made entirely of metal. The standard oil tube is fitted at the top with anllow ow cup and the tube is strrounded by a bath. At the hottom of the standard oil tube is a small outlet tube through which the nil to be tested flows into a receiving flask, whose capacity to a mark on its neek is $60(+0.15)$ cc. The lower end of the outilet tube is cmelosed by a larger tube, which when stoppered by a conk acts as a closed air chamber and prevents the flow of oil through the outlet tube until the cork is removed and the test started. A lonped wire is attached to the lower end of the cork as an aid to its rapid removal. The hath is provided with two stirring paddles and operated by two turm-table

Fig. 100-Saybolt Universal Viscosimeter.
handles. The temperatures in the standard oil tube and in the bath are shown by thermometers. The bath may be heated by a gas ring burner, steam U-tube, or electric heater. The standard oil tube is cleaned by means of a tube cleaning plunger, and all oil entering the standard oil tube shall be strained through a 30 -mesh brass wire strainer. A stop watch is used for taking the time of flow of the oil and a pipette, fitted with a rubber suction bulb, is used for draining the overflow cup of the standard oil tube.

The standard oil tube should be standardized by the United States Bureau of Standards, Washington, and conforms to the following dimensions:

Dimensions	Cm.	Cm.	Cm
Inside diameter of outlet tube	0.1750	0.1765	0.178
Length of outlet tube	1.215	1.225	. 235
Height of overflow rim above bottom of \qquad			
Diameter of container of standard oil tub	ube 2.955	2.975	2.995
Outer diameter of outlet tube at lower	nd 0.28	0.30	0.3

The approximate factors for conversion of readings of the Saybolt Universal to other instruments are as follows: (for the usual range of use):

To Saybolt Furol	. 101	to .113
To MacMichael	. 50	. 65
To Saybolt "A"	0.5	1.0
To Saybolt "C"	. 0.46	. 72
To Engler	0.027	. 51
To Tagliabue	0.25	.51
To Penn. R. R. Pipet	0	. 94
To Scott	. 0.13	
To Redwood	. 0.83	
To Magruder Plunge	.1.25	1.00
To Ostwald	1.30	1.90

These values are not exact as they vary greatly with the actual viscosity readings. For exact conversion to Engler and Redwood values, see the following pages.
$70^{\circ} \mathrm{F}$ may be used for light oils, gas oils, "straw" oils, engine oils, dynamo oils, auto oils, cottonseed oils and the like.
$100^{\circ} \mathrm{F}$ may be used for Engine oils, machine oils and occasionally cylinder oils.
$210^{\circ} \mathrm{F}$ may be used for cylinder oils, road oils, other heavy nils and asphaltic fluxes.
$338^{\circ} \mathrm{F}$ may be used for asphalt, fluxes, paraffin wax and residues.
Other viscosimeters in use are the Engler, Tayliabue, Scolt, Red. wood, Penn. Ry. pipet, MaeMichael, Lamansky-Nobel, Ostwald, Martens, Stormer, Ubbelohde, Lepenau, Kuenkler, Albrecht, Arvine, Banbey, Cockrell, Doolittle, Gibbs, Mason, Napier, Nasmyth, Phillips, Reischauer, Magruder.

Fig. 101-Engler Viscosimeter.

The Redwood viscosity is used extensively in England and its value inay be calculated from the Engler or the Saybolt.
*Tables for the interchange of readings on the Saybolt, Engler and Redwood Viscosimeters are on the following pages.

Fig. 102-Redwood Viscosimeter.

Bureau of Standards-Viscosimeter Comparisons.

Calculated Time Ratios from Equations:
Kinematic Viscosity $=.00147 \mathrm{t}-\frac{3.74}{\mathrm{t}}$ for Engler No. 2204 U (See
Tech. Paper No. 112, p. 14, 1919)
Kinematic Viscosity $=.00220 \mathrm{t}-\frac{1.80}{\mathrm{t}}$ for Standard Saybolt Universal
(See Tech. Paper 112, p. 19, 1919)
1.715 for Redwood (See W. F. Higgins Kinematic Viscosity $=.00260 t-\frac{1}{t}$ Collected Researches, National.

Physical Lab., Vol. 11, p. 18, 1914: quoted in Tech. Paper 112, p. $25,1919$.

Time Engler	Time Engler Time, Second	Time Engler Saybolt Time,
68	1.72	1.93
60	1.71	1.93
62	1.70	1.92
64	1.69	1.91
66	1.68	1.91
68	1.68	1.90
70	1.67	1.90
75	1.65	1.88
80	1.63	1.87
85	1.62	1.86
90	1.61	1.86
95	1.60	1.85
100	1.59	1.84
110	1.58	1.83
120	1.56	1.82
130	1.56	1.81
140	1.55	1.81
150	1.54	1.80
160	1.53	1.80
180	1.52	1.80
200	1.52	1.79
225	1.51	1.79
250	1.51	1.78
275	1.51	1.78
300	1.51	1.78
325	1.51	1.78
350	1.50	1.78
375	1.50	1.77
400	1.50	1.77
500	1.50	1.77
600	$1.50 *$	$1.77 *$

Multiplying factors to reduce Saybolt times to Engler numbers or Redwood times.

Engler	Felwood	
	Saybolt Time.	Time.
Degrees.	Engler Degrees.	Engler Degrees
1.15	29.9	26.5
1.20	30.1	26.7
1.25	30.3	26.8
1.30	30.5	26.9
1.35	30.7	27.0
1.40	30.9	27.1
1.45	31.1	27.2
1.50	31.3	27.3
1.60	31.5	27.4
1.70	31.7	27.5
1.80	31.9	27.6
1.90	32.1	27.7
2.00	32.3	27.9
2.10	32.5	28.0
2.20	32.6	28.1
2.30	32.8	28.2
2.40	32.9	28.2
2.50	33.0	28.3
2.60	33.1	28.3
2.70	33.2	28.1
2.80	33.3	28.4
2.90	33.4	285
3.00	33.5	28.5
3.50	336	286
4.00	33.7	287
4.50	33.9	288
5.00	38.9	288
6.00	34.0	2\% 9
7.00	34.1	98.9
8.00	34.1	$2{ }^{28.3}$
9.00	34.2*	$29.0{ }^{*}$

*This value holds good for all higher viscosities. (Bureau of Standards.)

Viscosimeter Comparisons.

Multiplying factors to reduce Engler degrees to Saybolt or Redwood times.

Saybolt Time.	Engler Degrees. Saybolt Time. 34	Redwood Times.
36	.0335	.890
38	.0332	.886
40	.0330	.884
42	.0328	.882
44	.0326	.879
46	.0324	.877
48	.0322	.875
50	.0319	.873
55	.0317	.871
60	.0315	.869
65	.0313	.866
70	.0310	.864
75	.0308	.861
80	.0307	.859
85	.0305	.858
90	.0304	.857
95	.0303	.856
100	.0302	.855
110	.0301	.854
120	.0300	.853
130	.0299	.852
140	.0299	.851
160	.0298	.850
180	.0297	.849
200	.0296	.848
225	.0295	.848
250	.0294	.848
300	.0293	.847
350	.0293	.847
400	$.0292 *$.847
	$.846 *$	

Redwood to Saybolt and Engler.

Redwood Time.	Saybolt Time. Redwood Seconds. Time.	Engler Degrees. Redwood Time.
32	1.12	.0377
34	1.13	.0375
36	1.13	.0372
38	1.14	.0370
40	1.14	.0369
42	1.15	.0368
44	1.15	.0366
46	1.15	.0365
48	1.15	.0363
50	1.16	.0362
55	1.16	.0361
60	1.16	.0359
65	1.16	.0357
70	1.17	.0355
75	1.17	.0354
80	1.17	.0353
85	1.17	.0352
90	1.17	.0351
95	1.17	.0350
100	1.17	.0350
110	1.18	.0350
120	1.18	.0349
130	1.18	.0348
140	1.18	.0347
150	1.18	.0347
160	1.18	.0347
180	1.18	.0347
200	1.18	.0347
225	1.18	.0347
250	$1.18 *$.0346
		$.0345 *$

*This value holds good for all higher viscosities. (Bureau of Standards.)

5-B. VISCOSITY OF FUEL OILS AND ROAD OILS.

Fig. 103-Furol Viscosity Tube. (Cameragraph Co. of Kansas City.)

Viscosity is determined by means of the Saybolt Furol Viscosimeter.

The apparatus and method of operation is the same as for the Standard Saybolt Universal Viscosimeter, all dimensions being the same except the diameter of the outlet tube which shall be as follows:

Inside diameter of outlet tube, cm.-

Minimum Normal Maximum $\begin{array}{lll}0.313 & 0.315 & 0.317\end{array}$
Outside diameter at lower end, cm.-
Minimum Normal Maximum
$\begin{array}{lll}0.40 & 0.43 & 0.46\end{array}$
Viscosity may be determined at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right), 122^{\circ} \mathrm{F}$ $\left(50^{\circ} \mathrm{C}\right)$ or $70^{\circ} \mathrm{F}$ and is expressed as-seconds, Saybolt Furol, being the time in seconds for the delivery of 60 cc. of oil.

Oil showing a time of less than 25 seconds, Saybolt Furol, at $122^{\circ} \mathrm{F}$, should be tested on the Saybolt Universal at $122^{\circ} \mathrm{F}$. Oil showing a time of less than 32 seconds Saybolt Universal, at $122^{\circ} \mathrm{F}$ should be measured in the Saybolt Universal at $100^{\circ} \mathrm{F}\left(37^{\circ} 8 \mathrm{C}\right)$.

5-C. METHOD FOR DETERMINING THE VISCOSITY OF KEROSENE AND GASOLINE.

Fig. 104-Ubbelohde Viscosimeter.

The apparatus used for this test is essentially that described on pages 55, 56 and 57 of Holde's "Examination of Hydrocarbon Oils." A diagram of the apparatus is shown in figure 104. The instrument is known as the Ubbelohde viscosimeter.

The dimensions are as follows:

Inner diameter of outlet tube at top.
Inner diameter of outlet tube at bottom
Outside diam. of outlet tube at bottom, d_{1}
Length of outlet tube, 1 .
Diameter of container, D
Outside diameter of overflow pipe, $\mathrm{d}_{2} \ldots$.
Initial head on bottom of outlet tube, $\mathrm{h}_{1} \ldots$
Average head, h (calculated)
Water rate
Capacity of container.
The apparatus is placed in a horizontal position by means of the plummet, the outflow tube is examined by looking through from the top with a sheet of white paper underneath to determine if there are any obstructions or dirt. If dirty, the outflow tube is cleaned by drawing a silk thread back and forth through it. Water or cracked ice, depending upon the temperature desired, is placed in the outer vessel, the plug is put in place and an excess of kerosene or gasoline introduced. The excess runs out of the overflow pipe. The plug is loosened sufficiently to allow just a drop of liquid to pass out to the jet. When the proper temperature has been maintained for $15 \mathrm{~min}-$ utes the plug is withdrawn and the time required to fill the 100 cc . flask is determined with the stop watch. The time divided by the time required for water gives the viscosity. For example, if the time of outflow of kerosene is 320 seconds and the water is 200 seconds, the viscosity is 1.6 .

5-D. VISCOSITY WITH THE MacMICHAEL VISCOSIMETER.

In the MacMichael Viscosimeter a disk is suspended in a cup of fluid. The force exerted by the rotation of the fluid on the plunger is measured.

The cup is oil jacketed, being formed of two pieces of heavy spun brass. Within the oil jacket is immersed an electric heating coil. This coil draws current from the same line as the motor, only one connection being necessary. The fluid to be tested is heated in place, no other heating device being required. Stirring is effected by a slight vertical movement of the plunger. For low temperature work, the fluid and the adjacent parts are chilled in an ice bath or brine solution.

The speed control is of the phonograph type. The motor is adapted for ordinary lighting circuits. Variations in voltage do not affect the accuracy of the determinations.

In operating, the cup is filled to the mark on the side with the material to be tested. This requires about 100 cc. The temperature is raised or lowered by means of the heating coils. The deflection noted on the dial is the viscosity of the fluid.

The operation is very rapid, so that the drop in temperature on ordinary work is entirely negligible. For extreme accuracy, the temperature may be raised slightly above the desired point, and an allowance made for the drop up to the moment of reading. This will seldom be found necessary in actual practice. The readings are in degrees of angular deflection, 300° to the circle, designated as ${ }^{\circ} \mathrm{M}$. The practical working unit is $1 / 1000$ of the absolute unit. As water at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$ has exactly $1 / 100$ of the absolute unit of viscosity, water at this temperature reads $10^{\circ} \mathrm{M}$. Thus by shifting the decimal point practical units, absolute units and specific viscosity may be obtained at one reading. Readings are taken directly from the dial, no intermediate calculations being required.

Fig. 105-MacMichaek Viscosimeter.

5-E. FLOAT TEST (VISCOSITY) OF PETROLEUM RESIDUES.

The special apparatus for the float test consists of an aluminum saucer having a diameter of 8.89 centimeters and a depth of 2.54 cm . and a radius of curvature of 5.16 cm . At the bottom there is an opening into which a collar may be screwed. This conical collar is 2.22 cm . long, is 0.95 cm . in diameter at the small end, 1.27 cm . in diameter at the large end and has a wall 0.13 em . thick. This apparatus and method of operating is shown in Fig. 107.

In making the test the brass conical collar is placed with the small end down on a brass plate which has been previously amalgamated with mercuric chloride. A small quantity of the material to be tested is carefully heated until quite fluid. It is then poured into the collar until slightly more than level with the top. The collar and plate are placed in ice water until rigid. The excess of material protruding from the collar is cut off with a warm knife. A pan of water is now heated to the desired temperature. The material should be kept in the ice water at least 15 minutes at a temperature of $5^{\circ} \mathrm{C}$. The collar with the material is quickly screwed into the aluminum float which is immediately placed in the warm bath. As the plug of material becomes warm and fluid it is forced upward and out of the collar until the water gains entrance to the saucer and causes it to sink. The time in seconds between placing the apparatus on the water and when the water breaks through the residue is determined with the stop watch and is recorded as the measure of the consistency of the material. Unless otherwise specified, the float test is made at $50^{\circ} \mathrm{C}$, but it would necessarily be higher with the more viscous materials.

Fig. 107 -Float Test Apparatus.

5-F. ZERO VISCOSITY FOR SEMI-SOLID PETROLEUM PRODUCTS.

The apparatus used is a cylinder shown in the sketch and may be constructed from ordinary iron pipe. The cylinder is 4 cm . in diameter and 13 cm . long with an opening centrally located in the bottom 1 cm . in diameter and with lips 2 mm . thick. A tube 150 cm . long is screwed into the cap on the top.

In making the test the melted asphalt is poured into the cylinder with the cap off of the top and the 1 cm . opening on the flat surface. It is cooled and topped with more asphalt, the cap is put on with 150 cm . tube and the cylinder is packed in pulverized ice and supported horizontally so that the bottom rests on a circular ring at least 1 cm . high which keeps the ice away from the orifice. The tube when ice cold is filled with mercury and after some of the asphalt has protruded from the orifice it is trimmed off flush with the outer edge. The apparatus is now supported vertically at the temperature of $0^{\circ} \mathrm{C}$ for 5 hours. The weight of asphalt or bituminous material protruding from the orifice after this time expressed in decigrams is the zero viscosity.

Fig. 106 -Zero Viscosimeter.

5-G. VISCOSITY OF PETROLATUM.

Obtain a sample that exactly represents batch under inspection. Melt slowly and heat to a temperature $15^{\circ} \mathrm{F}$ above its probable melting point. Chill the thermometer bulb to $40^{\circ} \mathrm{F}$, wipe dry, thrust into melted petrolatum, remove immediately, hold vertically until surface dulls, and suspend at room temperature for 60 minutes.

Suspend thermometer in the test tube with lowest end of bulb 15 mm . from the bottom. While the glass ring above the bulb is expected to prevent rubbing of coating of petrolatum, care should be exercised in inserting thermometer into the test tube.

Surround this assembly with water bath at $60^{\circ} \mathrm{F}$. Raise temperature of bath $2^{\circ} \mathrm{F}$ per minute to $100^{\circ} \mathrm{F}$ then $1^{\circ} \mathrm{F}$ to end of test. Read thermometer when first drop leaves it and record. An average of three such tests, if the variation does not exceed $2^{\circ} \mathrm{F}$, may be given as the melting point of the sample under test. If a greater variation, take the average of five determinations. (From page 359, 1921 Proc. of A. S. T. M.)

6-A. MELTING POINT OF BITUMINOUS MATERIALS. (SOFTENING POINT.) (Ring and Ball Method.)

The apparatus consists of a brass ring $5 / 8$-inch in diameter, $1 / 4-$ inch deep, $3 / 32$-inch wall suspended 1 inch above the bottom of the beaker; a steel ball $3 / 8$-inch in diameter weighing between 3.45 and 3.50 grams, a standardized thermometer and a 600 cc. glass beaker.

Carefully melt the sample and fill the ring with the material to be tested, removing any excess. Place the ball in the center of the ring and suspend in the beaker containing 400 cc . of water at a temperature of $5^{\circ} \mathrm{C}$. Set the thermometer bulb within $1 / 2$ inch of the sample and at the same level. Apply heat uniformly, prefarably with a 200 watt electric hot plate over the bottom of the beaker sufficiently to raise the temperature of the water $5^{\circ} \mathrm{C}$ per minute. Record the temperature at starting the test and every minute thereafter until the test is completed. The softening point is the temperature at which the specimen touches the bottom of the beaker. For temperatures above $99^{\circ} \mathrm{C}$ glycerin should be used instead of water. Tests should check within $3^{\circ} \mathrm{C}$.

Fig. 108-Melting Point, Ring and Ball Method.

6-B. MELTING POINT OF BITUMINOUS MATERIALS. (Cube Method.)

The bituminous material is carefully melted and poured into the $1 / 2$-inch brass cubical mold which has been amalgamated with mercury and which is set on an amalgamated brass plate. The hot material should slightly more than fill the mold and when cold the excess may be cut off with a hot spatula. The cube is removed from the mold and fastened upon the lower arm of a No. 12 wire B. \& S. gauge bent at right angles and suspended beside a thermometer in a tall covered beaker of 400 cc . capacity.

This tall form beaker is set in an 800 cc . low form beaker which is arranged for the application of heat. The wire is passed through the center of the two opposite faces of the cube which is suspended with its base one inch above the bottom of the inside beaker. The inner beaker cover has two openings, one for the wire and one for the thermometer. The wire is held in place by a cork in the cover. The bulb of the thermometer is level with the cube and at an equal distance from the sides of the beaker. Heat is applied to the liquid in the outer vessel in such manner that the thermometer registers an increase of $5^{\circ} \mathrm{C}$ per minute and the temperature at which the bitumen touches a piece of paper placed in the bottom of the beaker is taken as the melting point. Determinations should check within 2°. The temperature at the beginning of the test should be approximately room temperature.

Fig. 109-Melting Point, Cube Methoul.

6-C. MELTING POINT OF BITUMINOUS MATERIALS. (General Electric Method.)

Mold one gram of the bituminous material so that it completely and uniformly covers the short bulb of a thermometer graduated to at least $500^{\circ} \mathrm{F}$. Fit this thermometer with a cork into a $5 / 8 \times 6$-inch test tube with a side tubulation or air vent so that the bulb of the thermometer is $3 / 4$-inch from the bottom of the tube. Support the thermometer and tube with a clamp and immerse the tube to a depth of four inches in 400 cc . of commercial concentrated sulphuric acid in a 600 cc . beaker. The beaker of sulphuric acid is heated by direct contact with an electric hot plate of 220 watt capacity and $41 / 2$ inches in diameter.

The melting point is taken from readings of the thermometer when the bituminous material flows sufficiently that a tear strikes the bottom of the tube.

Fig. 110-Melting Point, General Electric Method.

Comparison of General Electric and Ball and Ring methods for melting point:

B. \& R.	G. E.
$246^{\circ} \mathrm{F}$	$270^{\circ} \mathrm{F}$
220	240
185	200
140	150

6-D. WAX MELTING POINT. (SO CALLED "ENGLISH" METHOD.)

The apparatus is shown in figures 111 and 112.
An average sample of the wax to be tested is melted in a suitable container in a water bath whose temperature is not more than $35^{\circ} \mathrm{F}$ above the approximate melting point of the wax sample. Direct heat, such as a flame or hot plate, must not be used and the wax sample must not be held in the melted condition any longer than nacessary.

The test tube is filled with melted wax to a height of 2 in . The test tube cork, carrying the stirrer and the melting point thermometer, with the $31 / 8-\mathrm{in}$. immersion line at the under surface of the cork, is inserted into the test tube for a distance of $1 / 2-\mathrm{in}$. The lower end of the thermometer bulb is then $3 / 8-\mathrm{in}$. from the bottom of the test tube.

The air bath being in its proper position in the water bath, the latter is filled to within $1 / 2 \mathrm{in}$. of the top with water at a temperature 15 to $20^{\circ} \mathrm{F}$ below the approximate melting point of the wax sample.

Fig. 111-Nelting Point of Wax.
The test tube containing the melted wax, with wax stirrer and thermometer in place is inserted into the air bath in a central vertical position so that the bottom of the test tube is $1 / 2 \mathrm{in}$. from the bottom of the air bath. The temperature of the water bath is adjusted by stirring if necessary, so that it is lower than the temperature of the wax sample by not more than $30^{\circ} \mathrm{F}$ and not less than $25^{\circ} \mathrm{F}$, when the wax sample has cooled to a temperature $10^{\circ} \mathrm{F}$ above its approximate melting point.

When these conditions have been obtained, temperature adjustment and stirring of the water bath are discontinued. The wax is stirred continuously during the remainder of the test, the stirring loop being moved up and down throughout the entire length of the test tube in a steady motion at the rate of 20 complete cycles per minute. The melting point thermometer reading, estimated to $1^{\circ} \mathrm{F}^{\circ}$ is observed and recorded every 30 seconds. The temperature of the wax will fall gradually at first, will then beenime almost constant and will then again fall gradually.

The melting point thermometer reading, estimated to $.1^{\circ} \mathrm{F}$, is observed and recorded every 30 seconds, for at least three minutes after the temperature again begins to fall after remaining almost constant. The record of temperature readings is then inspected and the average of the first four readings that lie within a range of $.2^{\circ} \mathrm{F}$ is the uncorrected melting point.

The A. S. T. M. wax test thermometer should be used (approx. 37 cm . long 3 in . immersion).

The titer test apparatus shown in Fig. 112 gives practically the same results as the above and is very simple and inexpensive.

Fig. 112-Melting Point of Wax (Titer Method).

Fig. 113-Freezing Point Curve of liax.

7-A. CLOUD, POUR AND COLD TESTS.

Fig. 114-Cloud and Pour Test Apparatus.

The apparatus is set up as shown in figure 114. The thermometer is per A. S. T. M. specification, 22.2 cm . long scaled for $41 / 4-\mathrm{in}$. immersion, -36° to $+120^{\circ} \mathrm{F}$.

The oil to be tested is brought to a temperature at least $25^{\circ} \mathrm{F}$ above the approximate cloud point. Moisture, if present, is removed by filtering while warm and thin.

The clear oil is poured into the cold test jar, a, to a height of not less than 1 nor more than $11 / 4 \mathrm{in}$.

The cold test jar is tightly closed by the cork, c, carrying the cold test thermometer, b, in a vertical position in the center of the jar with the thermometer bulb resting on the bottom of the jar.

The disk, e, is placed in the bottom of the jacket, d, and the cold test jar with the ring gasket, f, 1 in . above the bottom shall be inserted into the jacket. The disk, jacket and inside of jacket shall be clean and dry.

The temperature of the cooling bath, g , shall be adjusted so that it is below the cloud point of the oil by not less than 15° nor more than $30^{\circ} \mathrm{F}$ and this temperature is maintained throughout the test. The jacket, containing the cold test jar, is supported firmly in a vertical position in the cooling bath so that not more than 1 in . of the jacket projects out of the cooling medium.

At each cold test thermometer reading which is a multiple of $2^{\circ} \mathrm{F}$ the cold test jar is removed from the jacket, quickly but without disturbing the oil, inspected for cloud and replaced in the jacket. This complete operation must be done in not more than three seconds.

When the bottom of the oil has become opaque, to a height of not less than $1 / 8$ nor more than $\frac{10}{8}$ in., the reading of the cold test thermometer, corrected for error if necessary, shall be recorded as the cloud point. The required height of cloud is approximately at the middle of the thermometer bulb. The cold test jar may be marked to indicate the proper level.

Oils having a viscosity greater than 600 seconds, Saybolt Universal at $100^{\circ} \mathrm{F}$, are allowed to stand in the cold test jar at a temperature of 60° to $85^{\circ} \mathrm{F}$ for at least five hours prior to making the test for pour point. A viscous oil which has been stored in a warm place is liable to show an abnormally low, fictitious pour point
unless this precaution is observed. Oils having a viscosity not greater than 600 seconds, Saybolt Universal at $100^{\circ} \mathrm{F}$, may be tested without such preliminary standing.

After preliminary standing, if necessary, the oil to be tested is brought to a temperature of $90^{\circ} \mathrm{F}$, or to a temperature $15^{\circ} \mathrm{F}$ higher than its pour point, if this pour point is above $75^{\circ} \mathrm{F}$, and is poured into the cold test jar, a, to a height of not less than 2 nor more than $21 / 4 \mathrm{in}$. The jar may be marked to indicate the proper level.

The cold test jar shall be tightly closed by the cork, e, carrying the cold test thermometer, b, in a vertical position in the center of the jar with the thermometer bulb immersed so that the beginning of the capillary shall be $1 / 8 \mathrm{in}$. below the surface of the oil.

The disk, e, shall be placed in the bottom of the jacket, d , and the cold test jar, with the ring gasket, f, 1 in . above the bottom is inserted into the jacket. The disk, gasket and inside of jacket shall be clean and dry.

The temperature of the cooling bath, g, shall be adjusted so that it is below the pour point of the oil by not less than 15 nor more than $30^{\circ} \mathrm{F}$ and this temperature shall be maintained throughout the test. The jacket, containing the cold test jar, shall be supported firmly in a vertical position in the cooling bath so that not more than 1 in . of the jacket projects out of the cooling medium.

At each cold test thermometer reading which is a multiple of $5^{\circ} \mathrm{F}$, the cold test jar shall be removed from the jacket carefully and shall be tilted just sufficiently to ascertain whether the oil around the thermometer remains liquid. As long as the oil around the thermometer flows when the jar is tilted slightly, the cold test jar shall be replaced in the jacket. The complete operation of removal and replacement shall require not more than three seconds. As soon as the oil around the thermometer does not flow when the jar is tilted slightly, the cold test jar shall be held in a horizontal position for exactly five seconds, and observed carefully. If the oil around the thermometer shows any movement under these conditions, the cold test jar shall be immediately replaced in the jacket and the same procedure shall be repeated at the next temperature reading $5^{\circ} \mathrm{F}$ lower. As soon as a temperature is reached at which the oil around the thermometer shows no movement when the cold test jar is held in a horizontal position for exactly five seconds, the test shall be stopped.

The lowest reading of the cold test thermometer, corrected for error if necessary, at which the oil around the thermometer shows any movement when the cold test jar is held in a horizontal position for exactly five seconds, shall be recorded as the pour point.

8-A. SEDIMENT AND WATER IN PETROLEUM (CENTIFUGE METHOD).

The apparatus is shown in Figs. 115 and 116.
Exactly 50 cc . of 90 per cent benzol are measured into each of two centrifuge tubes and exactly 50 cc . of the oil to be tested are then added to each. The centrifuge tubes are tightly stoppered and shaken vigorously until the contents are thoroughly mixed. The temperature of the bath is maintained at $100^{\circ} \mathrm{F}$ and the centrifuge tubes are immersed therein to the 100 cc . mark for 10 minutes.

The two centrifuge tubes are then placed in the centrifuge on opposite sides and are whirled at a rate of 1400 to $1500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or the equivalent for 10 minutes. The combined volume of water and sediment at the bottom of each tube is read and recorded, estimating to 0.1 cc . if necessary. The centrifuge tubes are then replaced in the centrifuge, again whirled for 10 minutes as before and removed for reading the volume of water and sediment as before. This operation is repeated until the combined vo'ume of water and sediment in each tube remains constant for two consecutive readings.

The preferred form of centrifuge has a diameter of swing (tip to tip of whirling tubes) of 15 to 17 in . and a speed of at least 1500 r. p. m. or the equivalent. If the available centrifuge has a diameter of swing varying from these limits, it is run at the proper speed to give the same centrifugal force at the tips of the tubes as that obtained with the preferred form of centrifuge. The proper speed may be calculated from the following formula in which d represents diameter of swing (tip to tip of whirling tubes) of the centrifuge used :

8-B. WATER IN PETROLEUM PRODUCTS (DASTILLATION METHOD).

100 cc . of the oil to be tested are measured in an accurate $100-\mathrm{cc}$. graduated cylinder at room temperature and poured into the distillation flask. The oil adhering to the walls of the $100-\mathrm{cc}$. graduated cylinder is transferred to the distillation flask by rinsing with two successive 25 cc . portions of gasoline, the cylinder being allowed to drain each time. The sample is taken with great care to see that the water and the oil are uniformly mixed, irsuring a representative sample. The apparatus used is that by Dean and Stark (J. of I. and E. Chem, 12-486) a figure of which is shown herewith. The oil and gasoline in the distillation flask is thoroughly mixed by swirling the flask with proper care to avoid any loss of material. A boiling stone, such as a piece of unglazed porcelain, may be introduced for the purpose of preventing bumping during the subsequent distillation.

Fig. 117-Water Determination Iplaaralus.
The flask should be of pyrex glass.
Heat is best applied without danger of bumping or foaming by immersing the flask in a bath of glycerin. It may be applied with care using an electric heater or a gas flame. The graduated receiving tube should be kept cool. Distill until no further increase in the volume of the recovered water is observed.

9-A. END POINT DISTILLATION TESTS OF GASOLINE, NAPHTHA, BENZINE, PRESSURE DISTILLATE, TURPENTINE SUBSTITUTES AND KEROSENE.

The apparatus is shown in Figs. 118 and 119.
The condenser bath is filled with cracked ice or other convenient cooling medium and enough water is added to cover the condenser tube.

The temperature is maintained between $32^{\circ} \mathrm{F}$ and $40^{\circ} \mathrm{F}$.
The condenser tube is swabbed out to remove any liquid remaining from a previous test.

A piece of unstarched absorbent cloth attached to a cord or copper wire may be used for this purpose.

The bulb of the distillation thermometer is covered uniformly with long fiber absorbent cotton weighing between 3 and 5 milligrams.

Fresh cotton is used for each distillation.
One hundred (100) cc. of the naphtha are measured into the 100 cc. graduated cylinder, the naphtha and cylinder being both cooled to a temperature between $55^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ and is transferred direct to the Engler flask using a long stemmed funnel with a small flare so that no liquid is permitted to flow into the vapor tube.

The Engler flask has previously been rinsed with the naphtha under test and has been allowed to drain vertically inverted for at least five minutes.

Fig. 118-End Point Distillation Apparatus.

The thermometer provided with a cork is fitted tightly into the flask so that it will be in the middle of the nack and so that the lower end of the capillary tube is on a level with the inside of the bottom of the vapor outlet at its junction with the neck of the flask.

The charged flask is placed over the $11 / 4$-inch opening in the 6x6-inch asbestos board with the vapor outlet tube inserted into the condenser tube.

A tight connection is made by means of a cork.
The position of the flask shall be so adjusted that the vapor tube extends into the condenser tube not less than one inch nor more than two inches.

The graduated cylinder which has previously been used in measuring the charge, is placed without further draining at the outlet of the condenser tube in such a position that the condenser tube shall extend into the graduate at least one inch but not below the 100 cc. mark.

Fig. 119-End Point Flask.

If the room temperature is above $65^{\circ} \mathrm{F}$, the cylindrical graduate shall be inmersed up to the 100 cc . mark in a glass water bath maintained at a temperature between $55^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$.

The top of the graduate is closely covered with a piece of fiber blotting paper or similar material so that it fits the condenser tube tightly.

Heat is applied at a uniform rate so that the first drop falls from the condenser in not less than five nor more than ten minutes.

When the first drop falls from the end of the condenser, the reading of the distillation thermometer is recorded as the Initial Boiling point.

The receiving cylinder is then moved so that the cnd of the condenser tube shall touch the side of the cylinder.
Heat is then regulated so that distillation procecds at a milform rate of not less than four or more than five cubic centimeters per minute.

The reading of the distillation thermometer is recorded when the bottom of the meniscus of the distillate in the receiving graduate is at each 10 cc . mark or if desired, also at each 5 cc . mark.

After the 90 per cent point has been recorded, the heat may be increased sufficiently to bring over the heavy ends.

There should be no further increase after this adjustment and it is not necessary to maintain the rate as this camot conveniently be done.

However, the time required between 90 per cent and the end point should not be more than 5 minutes.

The heating shall be continued until the mercury reaches a maximum and then starts to fall consistently.

The highest temperature observed shall be recorded as the end point or maximum temperature.

This point will be reached when the bottom of the flask has become dry.

The total volume of distillate collected in the receiving flask is recorded as the total recovery.

The cooled residue in the Engler flask is poured into a cylindrical graduate and the volume is recorded as residue.

The difference between the 100 cc . taken and the sum of the recovery and the residue is calculated and recorded as distillation loss.

Description of Apparatus.

The Flask-The Standard 100 cc . Engler flask is shown in figure 119, the dimensions and allowable tolerance being as follows:
$\left.\begin{array}{lccc} & \text { Centimeters } & \text { Inches } & \text { Tolerances } \\ \text { Diameter of bulb, outside............... } & 6.5 & 2.56 & 0.2\end{array}\right)$

The position of the vapor tube shall be 9 cm . (3.55 in .) (+3 mm .) above the surface of the liquid when the flask contains its charge of 100 cc . The tube is approximately in the middle of the neck and set at an angle of 75° (tolerance +3 deg.) with the vertical.

The Condenser.-The condenser (Fig. 118) consists of a $\frac{9}{16}$ inch (14.29 mm) OD No. 20 Stubbs Gage seamless brass tube, 22 in. (55.88 cm) long. It is set at an angle of 75° from the perpendicular and is surrounded with a cooling bath 15 inches long (38.1 cm .) approximately 4 in . (10.16 cm .) wide by $6 \mathrm{in} .(15.24 \mathrm{~cm}$.) high. The lower end of the condenser tube is cut off at an acute angle and curved downward for a length of 3 in . (7.62 cm .) and slightly backward so as to insure contact with the wall of the graduate at a point 1 to $1^{1 / 4}$ in. (2.54-3.175 cm.) below the top of the graduate when it is in position to receive the distillate.

The Shield.-The shield (Fig. 118) is made of approximately 22 gage sheet metal and is 19 in. (48.26 cm .) high, 11 in. (27.94 cm .) long and 8 in . (20.32 cm .) wide, with a door on one narrow side, with two openings 1 in . (2.54 cm .) in diameter, equally spaced in each of two narrow sides, and with a slot cut in one side for the vapor tube. The centers of these four openings are $81 / 2$ in (21.59 cm .) below the top of the shield. There are also three $1 / 2 \mathrm{in}$. (1.27 cm .) holes in each of the four sides with their centers 1 in . (2.54 cm .) above the base of the shield.

Ring Support and Hard Asbestos Boards.-The ring support is the ordinary laboratory type, $4 \mathrm{in} .(10.16 \mathrm{~cm}$.) in diameter and is supported on a stand inside the shield. There are two hard asbestos boalds: One 6x6x $1 / 4$ inch ($15.24 \mathrm{~cm} . \times 15.24 . \times 6.35 \mathrm{~mm}$) with a hole $11 / 4 \mathrm{in}.(3.175 \mathrm{~cm}$.) in diameter ($11 / 2 \mathrm{in}$. if end point is over $470^{\circ} \mathrm{F}$) in its center, the sides of which shall be perpendicular to the surface; the other, an asbestos board to fit tightly inside the shield with an opening $4 \mathrm{in} .(10.16 \mathrm{~cm}$.) in diameter concentric with the ring support. These are arranged as follows: The second asbestos board is placed on the ring and the first or smaller asbestos board on top so that it may be moved in accordance with the directions for placing the distilling flask. Direct heat is applied to the flask only through the $11 / 4 \mathrm{in} .(3.175 \mathrm{~cm}$.) opening in the first asbestos board.

Gas Burner.-The burner is so constructed that sufficient heat can be obtained to distill the product at the uniform rate specified below. The flame should never be so large that it spreads over a circle of diameter greater than $31 / 2 \mathrm{in}$. (8.89 cm .) on the under surface of the asbestos board. A sensitive regulating valve is a necessary adjunct as it gives complete control of heating.

Electric Heater.-The electric heater which may be used in place of the gas flame, shall be capable of bringing over the first drop within the time specified below when started cold, and of continuing the distillation at the uniform rate. The electric heater shall be fitted with an asbestos board top $1 / 8$ to $1 / 4$ inch (3.175 to 6.35 mm) thick, having a hole $11 / 4 \mathrm{in}$. (3.175 cm .) in diameter in the center. When an electric heater is employed, the portion of the shield above the asbestos board shall be the same as with the gas burner.

Thermometer-Low distillation thermometer is a mercury, nitrogen filled total immersion glass engraved thermometer, length about 381 mm . diameter, 6 to 7 mm . made of pyrex glass with bulb length of 10 to 15 mm . bulb diameter 5 to 6 mm . range $30^{\circ} \mathrm{F}$ to $580^{\circ} \mathrm{F}$. $30^{\circ} \mathrm{F}$ mark 100 to 110 mm . from bottom of bulb. The $580^{\circ} \mathrm{lv}$ mark 35 to 45 mm . from top of stem. Graduated in $2^{\circ} \mathrm{F}$. The allowable error not over $1^{\circ} \mathrm{F}$ at any point.

High distillation thermometer is a mercury, nitrogen filled total immersion glass engraved thermometer, length about 381 mm . diameter, 6 to 7 mm . made of pyrex glass with bulb length of 10 to 15 mm . bulh diameter 5 to 6 mm . range $30^{\circ} \mathrm{F}$ to $76^{\circ} \mathrm{F}$. $30^{\circ} \mathrm{F}$ mark 25 to 35 mm . above bottom of bulb. $760^{\circ} \mathrm{F}$ mark 30 to 45 mm . below top of tube. The scale is graduated in $2^{\circ} \mathrm{F}$. Accuracy within one small scale division.

Graduate.--The graduate shall be a cylindrical type of uniform diameter with a pressed or molded base and lipped top. It is praduated for 100 cc . so that the 10 cc . markings are clearly set out. The graduations must be corrected within $1 / 2$ cc. at any point.

9-B. FRACTIONAL GRAVITY DISTILLATION ANALYSIS OF CRUDE PETROLEUM AND PETROLEUM DISTILLATES.

The apparatus to be used is that shown in Fig. 120. This apparatus consists of a $1,000 \mathrm{cc}$. Claisen distilling flask of heavy pyrex glass having the dimensions shown in the figure. The distilling flask, the condenser and the condenser tube must be of pyrex glass or equally resistant glass. The tubulus and the condenser are set at an angle of 75° to the vertical.

The oil to be tested should be as nearly as possible free from water. Exactly 800 cubic centimeters at $60^{\circ} \mathrm{F}$ are poured into the distillation flask. The thermometer used in the vapor neck of the flask is scaled for 3 -inch immersion and should read to $760^{\circ} \mathrm{F}$. It is inserted so that the top of the mercury bulb is even with the bottom of the tubulus and is in the center of the neck of the flask. The other neck of the flask is fitted with a glass tube which goes to the bottom of the flask and also with a total immersion thermometer reading to $760^{\circ} \mathrm{F}$ and inserted into the oil.

Fractional Gravity Distillation apparatus

Fig. 120-Fractional Gravity Distillation Apparatus.
The distillation is begun using a slightly luminous flame of a Tirrell burner. The flame must be protected from drafts. The flask may be blanketed with asbestos paper. The flame is controlled by a screw pinch cock on the rubber tubing or by a needle valve in the base of the burner.

The condenser water should be at or below $60^{\circ} \mathrm{F}$. If the running water is not sufficiently cold, ice water should be used for circulation at the beginning of the distillation. The temperature at which the first drop falls from the lower end of the condenser tube is recorded as the initial boiling point. The rate of distillation after the first 5% is taken is 8 cubic centimeters or 1% per minute. Temperature readings are taken every $21 / 2 \%$ or 20 cubic centimeters. Five per cent fractions are collected in a 100 cc. graduated cylinder. For smooth operation of the distillation, two 100 cc . cylinders and one 50 cc . cylinder should be available. The 40 cc : of distillate are poured into a 50 cc . graduate to allow the distillate to mix thoroughly. The specific gravity is taken preferably with special 4 -inch hydrometers, each hydrometer having a range in specific gravity of 0.050 . If the special small hydrometers are not available a Westphal balance should be used. The receiving cylinder should be kept cold during the beginning of the distillation.

The record of the distillation is conveniently made on a special form. The specific gravities with the temperatures of observation are recorded and later corrected to the basis of $60^{\circ} \mathrm{F}$. All observations should be in terms of specific gravity and converted to Baume gravity.

The straight fire distillation is continued until a temperature of $572^{\circ} \mathrm{F}$ is reached. An even cut in the distillation should be made on the 5% fraction whose end point is first above $572^{\circ} \mathrm{F}$. Beyond this temperature inert gas such as natural gas, coal gas or carbon dioxide is introduced in sufficient quantity to carry the rate of distillation without the temperature at any time exceeding $650^{\circ} \mathrm{F}$ in the oil. Gas is introduced at the rate of about $10 \mathrm{cu} . \mathrm{ft}$. per hour when cracking hegins to take place or at a temperature of $600^{\circ} \mathrm{F}$ in vapor. After temperature of $572^{\circ} \mathrm{F}$ has been reached, the condenser water is turned off so that the condenser may be warmed up sufficiently to prevent any wax that may be present from occluding the condenser tube. *With ordinary light crude oil, 90% should be distilled withmut cracking. In asphaltic base oils, 70% should always be distilled without cracking. The residue in the flask while warm is pourcd out and weighed in a seamless tin box and its consistency determined -ither by use of the penetrometer if the petroleum is asphalt base or कy the Saybolt viscosimeter at $210^{\circ} \mathrm{F}$ if paraffin basc. If the residue is fluid, it may be suitable for cylinder stock.

In the case of distillates such as pressure distillate, gas oil, kerosene, gasoline, naphtha, turpentine substitutes, etc., it is not neeessary to use the gas tube or the thermometer in the oil unless specially desired. In this case, a dry point can be reached usually without appreciable cracking. From the gravity of the 5 ; fractions the gravity of the total distillate at any per cent or temperature may be calculated as well as the gravity of the stream. This type of analysis is indispensable in calculation of the gravity of the product from the receiving house gravities in the refinery. (Sce page 241 for record form.)
*The rate of distillation cannot ordinarily he mithtainml for flom heavy fractions.

9-C. PROXIMATE DISTILLATION OF PETROLEUM.

400 cc . of the petroleum are poured into a $1,000 \mathrm{cc}$. flask which is connected to a condenser (as shown in Fig. 120). The thermometer is inserted so that the top of the bulb is just below the outlet of the flask. The flame is gradually applied to the oil so that any foaming will tend to make itself evident. If there is foaming it will be necessary to heat the upper portion of the flask. Befora the application of the flame to prevent foaming, it is necessary to get the temperature at which the first drop falls into the receiver. This is the initial boiling point. The distillate is collected until a temperature of $410^{\circ} \mathrm{F}$ is reached when distillation is proceeding at the rate of 5 cc. per minute. The fraction collected up to this temperature is the gasoline or naphtha, the gravity of which is determined. If the gravity is less than 57, it is classified as naphtha, if above this, it is classified as gasoline. Or if initial b. p. is over $160^{\circ} \mathrm{F}$ the distillate is classed as naphtha. The distillation is continued at the same rate until a temperature of $572^{\circ} \mathrm{F}$ is reached. This fraction is kerosene and its gravity is determined. The residue in the flask is fuel oil and is used for the determination of wax or asphalt, gas oil or lubricants. The information given by this distillation is:

Water	(Grem
Gasoline (- $-410^{\circ} \mathrm{F}$)	$\left(\mathrm{Gr} .=\square=-\mathrm{Be}{ }^{\circ}\right)-$
Kerosene ($410-572{ }^{\circ} \mathrm{F}$)	$\left(\mathrm{Gr} .=\square\right.$ - $=-\mathrm{Be} \mathrm{e}^{\circ}$)
Fuel Oil-Residuum	$\left(\mathrm{Gr} .=\square=-\mathrm{Be}^{\circ}\right)-$
	100.0\%

9-D. SAMPLE PREPARATION DISTILLATION OF CRUDE OIL.

The apparatus consists of a 5 -gallon steel still, condenser, gas burner, water supply under pressure, steam producers, superheater gauges and connections.

Ten thousand cubic centimeters is a convenient charge, giving a 5% fraction of 500 cc., which is sufficient for special tests. The still is covered with chicken wire and asbestos cement for insulation. Direct firing is used until a temperature of slightly above $500^{\circ} \mathrm{F}$ is indicated in the vapor or a gravity of $40^{\circ} \mathrm{Be}^{\prime}$ (0.825 specific gravity) is shown in the distillate fraction. At this temperature superheated steam or gas is introduced.

10A. FLASH POINT OF KEROSENE AND OTHER VOLATILE INFLAMMABLE LIQUIDS.

(With Standard "TAG" Closed Tester.)

This is essentially in accordance with the method of the American Society for Testing Materials, Book of Standards, 1921, page 669.

The test must be performed in a dim light so as to see the flash plainly.

Surround the tester on three sides with an inclosure to keep away drafts. A shield about 18 inches square and 2 feet high, open in front, is satisfactory. See that tester sets firmly and level.

For accuracy, the flash point thermometers which are especially designed for the instrument should be used as the position of the bulb of the thermometer in the oil cup is essential.

Put the water-bath thermometer in place. Place a receptacle under the overflow spout to catch the overflow. Fill the water bath with water at such a temperature that when testing is started, the temperature of the water bath will be at least $10^{\circ} \mathrm{C}$ below the probable flash point of the oil to be tested.

Put the oil cup in place in the water bath. Measure 50 cc . of the oil to be tested in a pipet or a graduate and place in oil cup. The temperature of the oil must be at least $10^{\circ} \mathrm{C}$ below its probable flash point when testing is started. Destroy any bubbles on the surface of the oil. Put on cover with flash point thermometers in place and gas tube attached. Light pilot light on cover and adjust flame to size of the small white bead on cover.

Light and place the heating lamp, filled with alcohol in base of tester and see that it is centrally located. Adjust flame of alcohol lamp so that temperature of oil in cup rises at the rate of about $1^{\circ} \mathrm{C}$ $\left(1.8^{\circ} \mathrm{F}\right)$ per minute or not faster than $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ nor slower than $0.9^{\circ} \mathrm{C}\left(1.6^{\circ} \mathrm{F}\right)$ per minute.

Record the "time of applying the heating lamp," record the "temperature of the water ," bath at start," record the "temperature of the oil sample at start."

When the temperature of the oil reaches about $5^{\circ} \mathrm{C}$ below the probable flash point of the oil, turn the knob on the cover so as to introduce the test flame into the cup and turn it promptly back again. Do not let it snap back. The time consumed in turning the knob down and back should be about one full second, or the time required to pronounce distinctly the words "one thousand and one."

Record the "time of making the first introduction of the test flame" and record the "temperature of the oil sample at time of first test."

Repeat the application of the test flame at every $0.5^{\circ} \mathrm{C}$ rise in temperature of the oil until there is a flash of the oil within the cup. Do not be misled by an eniargement of the test flame or halo around it when entered into the cup or by slight flickering of the flame; the true flash consumes the gas in the top of the cup and causes a very slight puff.

Record the "time at which the flash point is reached," and the "flash point."

If the rise in temperature of the oil from the "time of making the first introduction of the test flame" to the "time at which the flash point is reached" was faster than $1.1^{\circ} \mathrm{C}$ or slower than $0.9^{\circ} \mathrm{C}$

Thermonneter, indicating the temperature of the nil.
Thermometer, indicating the temperature of the water bath.
A miniature oil well to supply the test flame when gas is not available, mounted on the axis about which the test-flame burner is rotated, which axis is hollow and provided with connection on one end for gas hose, and provided also with needle valve for controlling gas supply, when gas is available, the gas passing through the empty oil well.
Gas or oil tip for test flame
Cover for oil cup, provided with three openings, which are in turn covcred by a movable slide operated by a knurled band knob, which also operates the test flame burner in unison with the tnovable slide, so that by turning this knob. the test flame is lowered into the middle opening in the cover, at the same time that this opening is uncovered by the movement of the slide.
Oil cup (which cannot be seen in the illustration), of standardized size, weight and shape, fitting into the top of the water bath.

Overflow spout.
Water batb, of copper, fitting into the top of the body, and provided with an overflow spout and openings in its top, to receive the oil cup and water bath thermometer.
Body of metal, attached to substantial cast metal baw provided with three feet
Alcobol lamp for heating the water bath
Gas hosa

Fig. 122-A. S. T. M. Flash Tester.
per minute, the test should be questioned and the alcohol heating lamp adjusted so as to correct the rate of heating. It will be found that the wick of this lamp can be so accurately adjusted as to give a uniform rate of rise in temperature of $1^{\circ} \mathrm{C}$ per minute and remain so.

Repeat Tests.-It is not necessary to turn off the test flame with the small regulating valve on the cover, but leave it adjusted to give the proper size of flame.

Having completed the preliminary test, remove the heating lamp, lift up the oil cup cover and wipe off the thermometer bulb. Lift out the oil cup and empty and carefully wipe it. Throw away all oil samples after once using in making test.

Pour cold water into the water bath, allowing it to overflow into the receptacle until the temperature of the water in the bath is lowered to $8^{\circ} \mathrm{C}$ below the flash point of the oil as shown by the previous test. With cold water of nearly constant temperature it will be found that a uniform amount will be required to reduce the temperature of the water bath to the required point.

Place the oil cup back in the bath and measure into it a 50 cc . charge of fresh oil. Destroy any bubbles on the surface of the oil,
put on the cover with its thermometer, put in the heating lamp, record time and temperature of oil and water and proceed to repeat test as described above. Introduce test flame for first time at a temperature $5^{\circ} \mathrm{C}$ below the flash point obtained on the previous test.

Precautions.-Be sure to record barometric pressure either from laboratory barometer or from nearest Weather Bureau station. Record temperature of room.

Note and record any flickering of the test flame or slight preliminary flashes when the test flame is introduced into the cup before the proper flash occurs. Record time and temperature of such flickers or slight flashes if they occur.

10B. FLASH AND BURNING POINTS OF ALL TYPES OF PETROLEUM OILS AND ASPHALTS.
 (With New York or Elliott Closed Tester.)

The bath surrounding the oil cup is filled with very high flash fluid oil or is left unfilled if the oil to be tested has a very high flash point. The oil cup is filled with the material to be tested to within 3 millimeters of the flange joining the cup and the vapor chamber above. The glass cover is then placed on the oil cup and the thermometer adjusted so that its bulb is just covered by the oil or bitumen. The flame is appliad to the bath in such manner that the temperature is raised at the rate of about $5^{\circ} \mathrm{C}$ per minute. Every half minute the testing flame is inserted in the opening in the cover and about halfway between the surface of the material and the cover. The first appearance of a faint bluish flame on the entire surface of the bitumen or oil shows that the flash point has been reached, and this temperature is recorded.

The burning point of the material is now obtained by removing the glass cover and replacing the thermoneter in the frame. The temperature is raised at the same rate and material tested as before. The temperature at which the oil or bitumen ignites and burns is recorded as the burning point. The flame should be extinguished with the metal cover very promptly after the burning point is reached.

Fig. 123-Elliott Flash Tester.

10C. FLASH AND FIRE TESTS (CLEVELAND OPEN TESTER).

Fig. 125-Clevelant? Flash Tester.

The apparatus is shown in Figs. 125 and 126.
The thermometer is suspended or held in a vertical position by any suitable device. The bottom of the bulb is placed $1 / 4 \mathrm{in}$. (0.635 cm .) from the bottom of the cup, and above a point half way between the center and back of the cup.

The cup is filied with oil to be tested in such a manner that the top of the meniscus is exactly at the filling line at room temperature. The surface of the oil shall be free from bubbles. There shall be no oil above the filling line or on the outside of the apparatus.

The test flame shall be approximately ${ }_{32}^{52}$ in. (0.397 cm .) in diameter.

The test flame is applied as the temperature read on the thermometer reaches each successive $5^{\circ} \mathrm{F}$ mark. The flame is passed in a straight line across the center of the cup. The test flame shall be while passing across the surface of the oil, in the plane of the upper edge of the cup. The time for the passage of the test flame across the cup shall be approximately one second.
The rate of heating of the oil shall be such that the temperature read in the thermometer increases not less than 9 nor more than $11^{\circ} \mathrm{F}$ per miuute.

The flash point is taken as the temperature read on the thermometer when a flash appears at any point on the surface of the oil. The true flash must not be confused with a bluish halo that sometimes surrounds the test flame.

After determining the flash point the heating is continued at the specified rate, and application of the test flame is made at the specified intervals until the oil ignites and continues to burn for a period of at least five seconds. The temperature read when this occurs shall be taken as the fire point.

The flash point and fire point tests must be made in a room or compartment free from air drafts. It is desirable that the room or compartment be darkened sufficiently so that the flash may be readily discernible.

This method is suitable for lubricants. heavy fuel oils, road oils and asphalts The A. S. T. M. flash point thermometer shnuld be used. It is 38 cm . long and cealod for 1 inch immersion.

Fig. 126-Cleveland Flash Cup.

10D. FLASH POINT OF FUEL OIL (PENSKY-MARTENS).

The apparatus is the Pensky-Martens tester as described in tentative methods of A. S. T. M. for 1921, page 258. (See Fig. 127).

All parts of the cup and its accessories must be thoroughly clean and dry before starting the test. Particular care must be taken to avoid the presence of any gasoline or naphtha used to clean the apparatus after a previous test.

The cup is filled with the oil to be tested up to the level indicated by the filling mark.

The lid is placed on the cup and the latter set in the stove. Care shall be taken to have the locating devices properly engaged. The thermometer is inserted. If it is known that the oil will flash above $220^{\circ} \mathrm{F}$ the high temperature thermometer may be selected; otherwise, it is preferable to start with the low temperature thermometer and change in case a temperature of 220 to $230^{\circ} \mathrm{F}$ is reached.

Fig. 127 - PenskyMartens Flash Testor for Fuel Oil.

The test flame is lighted and adjusted so that it is of the size of a head ${ }_{32}^{5} \mathrm{in}$. (3.97 mm .) in diameter.

Heat is supplied at such a rate that the temperature read on the thermometer increases not less than 9 nor more than $11^{\circ} \mathrm{F}$ per minute. The stirrer is turned at a rate of from 1 to 2 revolutions per second.

Application of the test flame is made at cach temperature reading which is a multiple of $2^{\circ} \mathrm{F}$ up to $220^{\circ} \mathrm{F}$. For the temperature lange above $220^{\circ} \mathrm{F}$, application shall be made at cach temperature reading which is a multiple of $5^{\circ} \mathrm{F}$. Application of the test flame is made by operating the device controlling the shutter and test flame burner so that the flame is lowered in one-half second, left in its lowered position for one sccond, and quickly raised to its high position. Stirring is discontinued during the application of the test flame.
The flash point is taken as the temperature read on the thermometer at the time of the flame application that causes a distinct flash in the interior of the cup. The true flash must not be confused with the bluish halo that sometimes surrounds the test flame for the applications preceding the one that causes the actual flash.

The barometric pressure is observed and recorded. No comections need be made except in case of dispute when the flash point figures may be corrected according to the following rule:

For each inch (25 mm .) below 29.92 in . (760 mm .) barometric reading add $1.6^{\circ} \mathrm{F}$ to the flash point.

For each inch (25 mm .) above 29.92 in . (760 mm .) barometric reading subtract $1.6^{\circ} \mathrm{F}$ from the flash point.

CORRECTIONS OF FLASH POINT FOR NORMAL BAROMETRIC PRESSURES.

To correct readings made at other pressures to the standard barometric pressure of 760 mm .
Barometer Millimeters 700
705
710
715
720
725
730
735
740
745
750
755
760
765

TYPICAL COMPARISON OF FLASH POINTS.

A. S.T. M. Closed (Tag) $100^{\circ} \mathrm{F}$ Elliott or N. Y. Closed. $100-105^{\circ} \mathrm{F}$ Abel.... $102-106^{\circ} \mathrm{F}$ Abel-Pensky $102-105^{\circ} \mathrm{F}$ Pensky-Martens $102-106^{\circ} \mathrm{F}$ Tag Open Cup...........108-112 ${ }^{\circ} \mathrm{F}$ Cleveland Open Cup.... $110-115^{\circ} \mathrm{F}$ -2.1
-1.9
-1.7
-1.6
-1.4
-1.2
-1.0
$-.9$
$-.7$
$-.5$
$-.3$
$-.2$
0
$+.2$ Clo

Correction

 Degrees C.

-.3
-.2
-.2

11A. CRACKING TEST FOR HEAVY PETROLEUM HYDROCARBONS.

The apparatus is set up as shown in figure 128. (a) is a cylindrical tube tested out to a pressure of 3,000 pounds such as is ordinarily used for dispensing oxygen gas. (b) is a thermometer well or plug with a tapered thread and of sufficient length that it protrudes well into the interior of the vessel (a). This plug has an opening from the outside into which the thermometer (c) is inserted. This mercury thermometer is graduated preferably in single degrees Centigrade and is of borosilicate glass, nitrogen filled and reading up to a temperature of $550^{\circ} \mathrm{C}$. (d) is an extra heavy ammonia pipe fitting connected to a valve (e) and a pressure gauge (f). Pressure gauge (f) should read to at least 200 atmospheres or 200 kilograms per square centimeter. Heat is applied by gas burners (g) such as are used in combustion furnaces and the whole apparatus is supported on a stand with the end carrying the pressure gauge slightly elevated.

The capacity of the bomb is 1,500 to 1,600 cubic centimeters and 500 cc . of oil to be tested are poured into it at a temperature of approximately $20^{\circ} \mathrm{C}$. The plug (b) is inserted and screwed in very tightly, using Stilson wrenches. An iron gasket should ba used if necessary to give shoulder contact. The threads on the plug may be dressed with a mixture of equal parts of glycerin, litharge and copper oxide. The flame is applied so that it does not excessively heat the portion of the container not in contact with the oil. The total time consumed for the test after the beginning of the application of the heat should be between 55 minutes and 70 minutes. The heating is carried on until a pressure of 55 atmospheres is attained, based on a temperature of $400^{\circ} \mathrm{C}$. It is desirable to keep the container covered with a sheet of asbestos during the operation. The temperature should not ordinarily exceed $425^{\circ} \mathrm{C}$. The apparatus is cooled to about $20^{\circ} \mathrm{C}$ before opening.

The constants in this test are the dimensions of the apparatus, the amount of oil used, the rate of application of heat and maximum pressure at $400^{\circ} \mathrm{C}$.

The variables are the percentage by volume of oil recovered after cracking, the amount of carbon formed, the amount of gas formed, the specific gravity of the gasoline and the total yield of gasoline. (See pages 235 and 237.)

Variations are due to the character of the oil treated, the specific gravity of the gasoline being higher, the recovery higher, the carbon and gas formation less and the total amount of oil recovered greater with paraffin base and with low specific gravity oils than with naphthene base and high specific gravity oils.

From one such equilibrium test it is possible to approximately estimate the amount of total gasoline which it would be possible to obtain from an oil. This may be calculated from one equilibrinm test by taking into consideration the shrinkage or cracking and the increase in specific gravity of the residuc above $210^{\circ} \mathrm{C}$ after cracking.

11B. VAPOR P'RESSURE.

The vapor pressure of light petroleum hydrocarbons is determined with the same apparatus used for making the cracking test. The pressure readings with the corresponding temperature readings should be taken every 30 pounds and a curve plotted for intermediate points. The temperature should not be carried above $350^{\circ} \mathrm{C}$ as cracking will take place. (See curves on page 234.)

11C. HEAT-PRESSURE TEST FOR THE STABILITY OF MOTOR LUBRICANTS.

The apparatus used for this test is that shown in figure 128 , being the same as that used for cracking test of heavy petroleum hydrocarbons.

Exactly 400 cubic centimeters of lubricating oil at a temperature of approxinately $70^{\circ} \mathrm{F}$ is placed in the 1,600 cubic centimeter cylinder. The cylinder is tightly closed with the plug, using a soft iron gasket to prevent any leakage. The apparatus is set up on a suitable stand and with a row of Bunsen burners is brought up to a temperature of $425^{\circ} \mathrm{C}$. It is maintained at exactly this temperature for 15 minutes. At the end of this time the pressure is recorded. The cylinder is now quickly cooled with water and the oil is emptied. The foinowing notations are made:

The total amount of oil recovered by distilling 100 cubic centimeters according to method $9-\mathrm{A}$, the gravity of the fraction at a vapor temperature of $410^{\circ} \mathrm{F}$. The amount of kerosene and its gravity. This is the fraction collected between vapor temperatures of $410^{\circ} \mathrm{F}$ and $572^{\circ} \mathrm{F}$. The residue is collected and its gravity is taken. The amount of pitch in the recovered oil is obtained by evaporating the oil in an oven in accordance with method 26. The residue is heated at a temperature of $500^{\circ} \mathrm{F}$ until it ceases to lose weight. The residual pitch is calculated to the basis of the residual oil. The recovered oil is tested for acidity in accordance with method 20-A.

This test is of great value in determining the stability of motor oils in use. An oil having poor stability will have an increase in Baume' gravity of 7° or more and will have a acidity of 10 points or more expressed in terms of percentage tenth normal acid. Vegetable or animal oils by this test give an acid value approximately 200 times as great as mineral oils. This test serves as a very delicate means of detecting small quantities of animal or vegetable oil in mineral oils. The higher the pressure developed the more susceptible the oil is to decomposition by heat. (See pages 277 and 278.)

11D. VAPOR PRESSURE TESTS FOR LIGHT GASOLINE MADE FROM GAS.

(Westcott, Handbook of Casinghead Gasoline.)

Apparatus shown on page 466 consists of iron or steel pipe of 2 inch size, with caps screwed on ends. Upper cap has 0.25 inch nipple screwed in and is connected by a coupling to a 3 inch 30 lb . pressure gauge. Gauge is known as Inspector's Gas Gauge. All joints must be perfectly tight. Joints between large pipe and caps are best sealed with solder. Approximate external dimensions are indicated in Fig. 129. In addition to apparatus indicated, there is
also required a tin cylinder for filling test tube, 12 by 3 inches, that can be slipped over outside of tube for convenience in carrying when not in use. The tin cylinder is provided with a lip for pouring. A small tin cover 0.75 inch deep, fitting over the bottom of the tin cylinder may be renoved and used for measuring off one-tenth capacity of test tube. A small tin funnel 2.5 inches in diameter with stem 3 inches long and three-sixtcenths inch in diameter should be used.

Remove the gauge from the tube and fill tube to 90 per cent of its capacitv. Fill tube preferably by lowering it into the storage tank in upright position by means of a cord or wire. Leave the tube entirely immersed for several minutes, withdraw it and pour off sufficient liquid so that the tube will contain 90% of its capacity. A small measure having capacity of 10% of the test tube should be used for that purpose.

Fig. 129
Vapor Pressure Apparatus.

In case it is impracticable to lower the tube into the storage tank, draw the liquid off into the vessel of capaçity about equal to the test tube. Pour liquid into the test tube until about half filled. Shake tube and contents gently in order to bring both to the same temperature. After standing for several minutes, pour out all the liquid from the tubc. Draw another sample from the storage tank into the cylinder and pour through funnel into the tube until the latter is cntirely full. Withdraw one-tenth as before. Screw gauge tightly into position, using a little liquid shellac or pyroxylin cement on joint to insure a tight fit.

Immerse the tube in water at a temperature of $70^{\circ} \mathrm{F}$ and allow it to remain for five minutes. Then remove it from the water and unscrew the gauge sufficiently to relieve the pressure indicated by the gauge for a period of 20 seconds and screw the gauge tightly into the tube again. Then place the tube in water at a temperature of $100^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{F}\right.$ from Nov. 1 st to March 1 st$)$. The level of the water must be just below the lower edge of the pressure gauge. Stir the water continually and maintain the temperature exactly constant for ten minutes, then tap the gauge lightly with the finger and read the pressure.

A correction of pressure figures should be made according to the initial temperature of the gasoline. This correction should be as follows:

For tests on samples taken at a temperature of 50 to $59^{\circ} \mathrm{F}$, inc., deduct 1 lb .
For tests on samples taken at a tempcrature of 40 to $49^{\circ} \mathrm{F}$, inc., deduct 2 lbs .

For tests on samples taken at a temperature below $40^{\circ} \mathrm{F}$, deduct 3 lbs.

The gravity of the liquicl, the temperature of liquid gas placed in tube, the pressure at $70^{\circ} \mathrm{F}$ before venting tube, the corrected pressure at $100^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{F}\right.$ from Nov. 1st to March 1 st) after venting int $70^{\circ} \mathrm{K}^{\circ}$ should all be recorded.

12A. CARBON RESIDUE IN LUBRICANTS AND DISTILLATES. (Conradson Method.)

The apparatus consists of:
(a) Porcelain crucible, wide form, glazed throughout, 25 to 26 cc capacity, 46 mm . in diameter.
(b) Skidmore iron crucible, 45cc ($11 / 2$-oz.) capacity, 65 mm . in diameter, 37 to 39 mm . high with cover, without delivery tubes and one opening closed.
(c) Wrought iron crucible with cover, about 180 ce capacity, 80 mm . diameter, 58 to 60 mm . high. At the bottom of this crucible a layer of sand is placed about 10 mm . deep, or enough to bring the Skidmore crucible with cover on nearly to the top of the wrought iron crucible.
(d) Triangle, pipe stem covered, projection on side so as to allow flame to reach the crucible on all sides.
(e) Sheet iron or asbestos hood provided with a chimney about 2 to $21 / 2$ inches high, $21 / s$ to $21 / 4$ inches in diameter to distribute the heat uniformly during the process.
(f) Asbestos or hollow sheet iron block, 6 to 7 inches square, $1^{1 / 4}$ to $1^{1 / 2}$ inches high, provided with opening in center $31 / 4$ inches in diameter at the bottom and $31 / 2$ inches in diameter at the top. The test shall be conducted as follows:

Ten grams of the oil to oe tested are weighed in the porcelain crucible, which is placed in the Skidmore crucible and these two crucibles set in the larger iron crucible, being careful to have the Skidmore crucible set in the center of the iron crucible, covers being applied to the Skidmore and iron crucibles. Place on triangle and suitable stand with asbestos block and cover with sheet iron or asbestos hood in order to distribute the heat uniformly during the process.

Heat from a Bunsen burner or other burner is applied with a high flame surrounding the large crucible, as shown in Fig -, until vapors from the oil start to ignite over the crucible, when the heat

Fig. 130 - Conradson Carbon Apparatus. is slowed down so that the vapor (flame) will come off at a uniform rate. The flame from the ignited vapors should not extend over two inches above the sheet iron hood. After the vapor ceases to come off, the heat is increased as at the start and kept so for five minutes, making the lower part of large crucible red hot, after which the apparatus is allowed to cool somewhat before uncovering the crucible. The porcelain crucible is removed, cooled in a dessicator and weighed.

The entire process should require about one-half hour to complete when heat is properly regulated. The time will depend somewhat upon the kind of oil tested, as a very thin, rather low flashpoint oil will not take as long as a heavy, thick, high flash-point oil. (See A. S. T. M. 1918 Standards, page 620.)

12B. FIXED CARBON AND ASH IN OIL AND BITUMINOUS MATERIALS.

The apparatus used is that shown below, or the furnace shown on page-, such as is used for burning out mineral aggregates, is quite satisfactory.

Between .4500 and .5500 gram of the material is placed in a $20-$ gram platinum crucible having a tightly fitting cover. It is heated for seven minutes with the full flame of a Bunsen burner, as shown, or at $950^{\circ} \mathrm{C}$ in the electric furnace. With the open flame the crucible should be supported with its bottom 6 or 8 cm . above the top of the burner and the flame should be at least 20 cm . high when burning freely. A shield is used to protect from drafts. The crucible while remaining covered is placed in a dessicator, cooled and weighed, then ignited with lid removed until nothing but the ash remains. The loss is the fixed carbon and the residue is the ash.

Fig. 131-Bunsen Burner for Fixed Cirlion.

13. EMULSIFYING PROPERTIES OF LUBRICATING OILS.

The oil and water to be emulsified are contained in an ordinary commercial 100cc graduated cylinder, $11 / 16$ to $12 / 16$ inches inside diameter. An oil or water bath is provided for maintaining the contents of the cylinder at a temperature of $130^{\circ} \mathrm{F}$, except when a different temperature is specified, both during the stirring and subsequent settling out of the oil from the emulsion. The paddle used in stirring is a copper plate $43 / 4$ inches long, between three-fourths and seven-eighths inch wide and one-sixteenth inch thick. Means are provided for revolving this paddle about a verticle axis parallel to and midway between its two longer edges and for keeping the speed fairly constant at 1,500 r.p.m. A stop should be provided so that when the paddle is lowered into the cylinder (or bath raised) the distance from the bottom of the paddle to the bottom of the cylinder will be about one-fourth inch. To save time otherwise lost in waiting for the filled cylinders to come to the temperature of the bath it is desirable that the bath should be large enough to contain several cylinders.

Pour 27 cc of the oil to be tested and 53cc of distilled water into a cylinder, place cylinder in bath and heat to $130^{\circ} \mathrm{F}$. Submerge the paddle and run it for five minutes at a speed of 1,500 r.p.m. Stop the paddle, withdraw it from the cylinder, and use the finger to wipe off the emulsion clinging to the paddle and to return it to the cylinder. Wipe off the paddle with paper so that it will not contaminate the next sample. Keep the temperature of the cylinder constant at $130^{\circ} \mathrm{F}$ and take readings every minute of the position of the line of demarcation between the topmost layer of oil and the adjoining emulsion. The first reading is taken one minute after stopping the paddle. With oils which act normally the rate of settling out of the oil increases up to a maximum and then decreases and the maximum value in cc per hour is called the "demulsibility" and is recorded as the numerical result of the test. Each rate of settling is the average rate calculated from the time of stopping the paddle to the time of reading, as shown in the following condensed table:

TIME	Time Since Stopping Paddle, Minutes	Reading at Interface Be- tween Oil and Emulsion	Oil Settled Out, c. c.	Rate of Settling, c. c. per Hour
$9.50 \ldots \ldots \ldots \ldots$	0	80	0	0
$9.55 \ldots \ldots \ldots \ldots \ldots$	5	77	3	36
$10.02 \ldots \ldots \ldots \ldots \ldots$	12	67	13	65
$10.05 \ldots \ldots \ldots \ldots \ldots \ldots$	20	63	17	68
$10.10 \ldots \ldots \ldots$	61	19	57	

The demulsibility in this case would be 68, the highest value in the last column. In cases where the maximum rate of settling has not been reached at the end of one hour, the test is discontinued and the demulsibility taken as the number of cc that settled out in the hour. (See page 34, Bulletin 5 of Bureau of Mines on Report of Committee for Standard of Petroleum Specifications.)

14. A HEAT OF COMBUSTION OR CALORIFIC VALUE.

The apparatus used for the heating value, calorific value or British thermal units of petroleum products is shown in figures 132, 133 and 134.

Any type of oxygen bomb calorimeter is satisfactory. Among these are the Atwater, Mahler, Parr and Kroeker bombs. The description of the operation of one bomb calorimeter is typical of all.

Fig. 132-Emerson Bomb Calorimeter.

The lower half of the bomb is placed in the cast iron holder. About one gram of the oil is weighed to the nearest 0.0001 gram into the fuel pan and is placed in the bomb on the fuel pan holder. If the oil is volatile it is not advisable to pour the fuel directly into the fuel pan. For this purpose, small gelatine capsules weighing .1 gm . are used and may be filled with ignited asbestos and into this the light oil is discharged from. a weighing pipet. The capsule is immediately closed leaving a minimum amount of air space. A similar capsule has been previously weighed and its calorific value determined. A stock of standardized capsules should be kept on hand in an air tight receptacle. The platinum fuse wire is cut equal in length to the taper pin wrench which is connected to the terminal, being careful that it does not touch the pan. The wire is bent down so that it is covered by the oil or by the lips of the capsule. The upper half of the bomb is carefully fitted on the lead gasket to the lower half. The nut is screwed down over the upper half being careful not to cross the threads. The bomb nut is now tightened by the use of a long wrench, being careful to cause no sudden jerking or vibrating which will throw the oil from the pan. The bomb is now carefully lifted out and placed on the swivel table and connected with the oxygen piping. The valve in the top of the bomb is opened about one turn and the valve in the oxygen cylinder is carefully and slowly opened so that the pressure in the bomb as shown by the indicator rises to 300 pounds. The bomb valve is now closed and the oxygen cylinder is closed. Exactly 1900. grams of water at a temperature of about 4° below room temperature is weighed into the calorimeter water bucket. This is placed in the calorimeter container. The bomb is connected with the electric wire and is introduced into the water, being careful to place it in the center of the bucket. Two 100 watt lamps placed in parallel are in series with the fuse wire when a 110 volt circuit is used for firing. The spring motor is placed in series

Fif. 1 33-
 lolth for 1.1 qu1 d Fuい!s, Fitc.
with a 60 watt lamp on a 110 volt circuit. The cover is put on, the connections to the bomb wire are made and the stirrer is introduced as far down as it will go. It should not touch the bomb. The thermometer is introduced and stirring is continued for about five minutes. The temperature is read and the stirring continued for exactly five minutes and the temperature is again read and the charge is fired by quickly throwing in the switch and withdrawing it. The stirring is continued for five minutes, the temperature being read at minute intervals or at the end of five minutes unless extreme accuracy is required. The stirrer is then run for an additional five minutes and the temperature is again read. The thermometer is corrected in accordance with the corrections furnished by the Bureau ofi Standards. The radiation corrections may be applied to each one minute interval but for ordinary purposes one-fifth of the radiation for the five minute period before firing is applied on the 5 minute period immediately after firing and four-fifths of the radiation in the third five minute period is applied on the five minute period immediately after firing. The calorimeter constant (usually about 2400) is determined by a blank test using exactly 1 gram of benzoic acid. This constant always remains the same with the same calorimeter
 a change is made in the calorimeter. In the case of oil in which it has been necessary to use the capsule the correction made must be applied for the calorific value of the capsule. This is most conveniently applied to the corrected net rise in temperature of the thermometer. To convert British thermal units per pound to calories per gram, multiply by five-ninths. To obtain the water evaporative power, multiply the B. T. U. per pound by 1.035 and divide by 1000. To obtain the B. T. U. per gallon, multiply the B. T. U. per pound by the weight per gallon.

Fig. 134-Calorimeter Oxygen Connections.

14B. HEAT OF COMBUSTION FROM GRAVITY OF FUEL OILS.

An approximation of the heating value of fuel oil can be obtained by the following formula:
B. T. U. per $\mathrm{lb} .=18700+40\left({ }^{\circ} \mathrm{Be}^{\prime}-10\right)$.

15A. TOTAL SULPHUR IN PETROLEUM PRODUCTS.

The apparatus is shown in Fig. 132 and may be any standard oxygen bomb calorimeter.

The deternination may be made at the same time as a determination of calorific value.

Place 20cc of distilled water in the bottom of the bomb. Use 0.5 to 1.0 g . of oil, weighed into the sample cup of the bomb, when the material is not volatile. For volatile materials use either a small gelatine capsule or a very small glass bulb of the type used in the ultimate organic analysis of such liquids. If the latter is used, place a few drops of sulphur-free alcohol in the sample cup to start combustion. Arrange the ignition mechanism and close the bonb tightly. Admit oxygen until a pressure of 35 to 40 atmospheres is reached. The higher pressure is preferable. Ignite. Place the bomb in cold water for 20 minutes. Shake vigorously for 25 seconds and allow to drain for five minutes. Release the pressure rather slowly and open the bomb. Using distilled water in a wash bottle with a very fine jet, wash the wires and cover thoroughly, allowing the washings to collect in the bomb. In the same way wash the sample cup held by small tongs. Transfer the solution from the bomb to a 500 ce beaker and wash the inside of the bomb thoroughly. The total volume of solution thus obtained need not exceed 350 cc . Avoid any loss of material by spattering or otherwise in the various washings.

Filter the solution through a washed filter paper into another beaker, of smaller size if possible. Wash the filter thoroughly. Add 2 cc of HCl (sp. gr. 1.20) and 10 cc of saturated bromine water. To the hot solution add 10 cc of a 10% barium chloride solution, as hot as possible, in a very fine stream or dropwise so that 30 to 45 seconds are required. Stir vigorously with a glass rod during this addition and for four minutes afterward. Allow the precipitate to settle for one hour on a steam bath. Cool and let stand for at least one hour at room temperature. Filter carefully through a suitable ashless filter paper and wash the precipitate with hot water, first by decantation and then on the filter till free from chloride. Transfer the wet filter paper and precipitate to a weighed platinum crucible. Dry carefully over a low flame. Allow the filter paper to burn away and then ignite until the precipitate is just burned whitc. Cool in a desiccator and weigh. From the increase in weight which is barium sulphate, calculate the percentage of sulphur as follows:
grams of $\mathrm{Ba} \mathrm{SO} \times 13.734$
Percentage of Sulphux $=\frac{\text { grams of oil used }}{}$

15B. SULPHUR BY THE CHEMICAL BOMB.

To the perfectly clean and dry bomb as shown in Fig. 135 add ten grams of pure sodium peroxide.

Fig. 135-Parr Sulphur Bomb.
Then add one gram of finely pulverized potassium chlorate.
Thoroughly mix them by shaking.
Add from a weighing pipe approximately one-half gram of oil, which would be about twenty drops.

Mix thoroughly by shaking.
Fit the cover on tightly and screw down the cover with a wrench.
Ignite by holding the bottom of the fusion cup in the small pointed flame of the Bunsen burner for a moment (or electrically).

Remove from the flame as soon as the reaction has commenced which is indicated by the lower portion of the cup becoming a dull red.

After the charge has ignited, the bomb may be cooled in cold water (or maintained in cold water during ignition).

It is now rinsed off with distilled water and placed in a beaker.
The cover is rinsed off with hot distilled water and hot distilled water is squirted into the fusion cup until solution is complete.

The fusion cup is now rinsed off thoroughly with hot distilled water.

The contents of the beaker are boiled to complete solution and filtered.

Hydrochloric acid is added to the filtrate until the reaction is distinctly acid.

Ten cubic centimeter of 5 to 10% barium chloride are now added and barium sulphate is precipitated and filtered in the usual manner.

The barium sulphate is weighed.
This value $\times 27.47$ gives the percentage of sulphur.
Correction should be made for sulphur present as impurities in the chemicals used.

15C. SULPHUR BY THE ESCHKA METHOD.

This method is not good for oils, in most instances giving a low result, but may be used where accuracy is not necessary. Weigh out approximately 1 gram of the oil and mix it with 2.5 grams of sodium carbonate and 5 grams of calcined magnesia in a platinum dish or crucible. Heat gradually increasing the temperature until the mass has a low red color and the mixture on cooling has a grayish tint. Cool and wash into a 500 cc beaker with distilled water and add about 1cc of bromine. Mix until the bromine is thoroughly dissolved and allow some time for the bromine to react. Now add hydrochloric acid until the reaction is decidedly acid, the beaker being covered in the meantime to prevent any mechanical loss. Filter off and wash any undissolved residue. Precipitate in the usual manner with barium chloride and weigh as barium sulphate.

Weight of Barium Sulphate $\times 13.73=\%$ Sulphur.

15F. SULPHUR IN CORROSIVE FORM.

A clean strip of pure sheet copper about one-half inch wide and three inches long is heated to redness in a Bunsen flame, and while red hot dropped into alcohol. The strip is then allowed to dry as quickly as possible in the air and dropped into a sample of the oil contained in a clean test tube about half the length of the copper strip being submerged. The test tube is then closed with a stopper and left to stand over night at a temperature of $150^{\circ} \mathrm{F}$.

At the end of this time the copper strip is removed and washed free from oil with gasoline. It is then compared with a similar strip of copper freshly cleaned by heating to redness in a Bunsen flame and dropping into alcohol while hot.

If sulphur or corrosive sulphur compounds are present in the oil the copper test strip will appear discolored when compared with the freshly cleaned copper, since elementary sulphur attacks copper.

15D. SULPHUR IN NAPHTHAS AND ILLUMINATING OILS.
The apparatus is shown in Fig. 136.
Pass two strands of new cotton wicking about 4.5 in . long through the $1 / 8-\mathrm{in}$. diameter wick tube so that they are not twisted, but parallel in the wick tube. Trim the wick with very sharp scissors. Pour into the clean dry lamp about 20 cc of the oil to be tested, insert the wick and cork and weigh the assembly with an accuracy of 0.001 g . It is advisable to make a blank determination at the same time and under the same conditions by burning sulphur-free alcohol in a similar lamp.

Fig. 136-Sulphur Apparatus for Illuminating Oils.
Rinse out the absorber containing the glass beads thoroughly with distilled water and add exactly 10.0 cc of the standard sodium carbonate solution from an accurately calibrated burette, allowing the burette to drain for three minutes before taking the reading. Rinse the chimney and the spray trap with distilled water, dry the chimney and connect both to the absorber as shown in Fig. 136. Set up the apparatus for the blank determination in exactly the same manner and using exactly 10.0 cc of the sodium carbonate solution. Apply gentle suction to both absorbers, light both the weighed oil lamp and alcohol lamp and then place in position under the chimneys so that the tops of the wick tubes extend into the chimneys not more than one-sixteenth inch. Adjust the wick height and the suction so that the flame is steady, free from smoke and approximately one-quarter inch high. This requires that the wick be flush with the top of the wick tube for naphthas, and a little higher for illuminating oils. The room must be free from drafts. The suction on the blank should be
so adjusted that air is drawn through both determinations at the same rate. Continue burning for about two hours, or less if the sulphur content of the oil is high. During this time the oil should be consumed at the rate of about 1 gm . per hour.

Extinguish the flames and stop the suction on both absorbers. Weigh the oil lamp immediately and calculate by difference the weight of oil consumed. Working with the blank first, disconnect the spray trap and chimney and wash them thoroughly with methyl orange solution, using a wash bottle with a very fine jet and collecting the washings in the absorber. The amount of solution required for washing should not exceed 35 cc . Carefully titrate the very faintly yellowish solution in the absorber with standard HCl , added to the suction side of the absorber from an accurately calibrated burette. During this titration, the contents of the absorber should be agitated carcfully, either by blowing through a rubber tube held between the operator's lips and connected at the other end with the chinmey side of the absorber or else by the use of a suitable rubber syringe bulb. As the end point is approached, draw the liquid back into the chimney side between each addition of acid and then blow it into the suction side, agitating as before. As soon as the first permanent pink color appears, the end point has been reached. Read and record the volume of HCl solution used.

Rinse the chimney and spray trap used in the actual determination into the absorber to which they were connected, exactly as prescribed for the blank. If the methyl orange solution in the absorber has a pirk color, too much oil has been burned and the determination must be repeated, burning for a shorter time. Titrate just as in the blank, making sure that the absorber is cold. Read and recoid the volume of HCl solution required.

Calculate the sulphur content of the oil by substituting the proper values in the following formula:

$$
\begin{aligned}
& \text { Percentage of Sulphur }= \\
& \qquad(\mathrm{HCl} \text { for blank, } \mathrm{cc}-\mathrm{HCl} \text { for sample, } \mathrm{cc}) \times 0.1
\end{aligned}
$$

grams of oil burned

If a blank is not run, the formula is:

$$
\text { Percentage of Sulphur }=\frac{\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{cc}-\mathrm{HCl}, \mathrm{cc}\right) \times 0.1}{\text { grams of oil burned }}
$$

These formulae are correct only for the standard solutions specified, 1cc of each being equivalent to 0.001 g . of sulphur. The use of solutions of any other strength, such as N/10, is satisfactory and the percentage of sulphur may be calculated.

APPARATUS.

Absorber of chemically resistant glass, about 150 ce capacity containing glass beads or short pieces of class rod in the suction side as shown.

Fig. 137-Sulphur Photometer.
Chimney of chemically resistant glass connected with the absorber by a rubber stopper.

Spray trap of chemically resistant glass connected with the absorber by a rubber stopper.

Small lamp of about 25 cc capacity. This lamp may conveniently consist of a 25 to 35 cc Erlenmeyer flask and a cork carrying a short section of glass tubing about one-eighth inch in inside diameter. The cork must be grooved along the sides so that air may enter the flask while the oil is being consumed.

Ordinary cotton wicking.
Filter pump or other means for continuous suction and rubber tubing to connect with spray trap.

SOLUTIONS REQUIRED.

Hydrochloric acid-Solution containing $2275 \mathrm{~g} . \mathrm{HCl}$ per liter and carefully checked for accuracy.

Sodium Carbonate-Solution containing $3.306 \mathrm{~g} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ per liter. Exactly 10.0 cc should be required to neutralize 10.0 cc of the hydrochloric acid solution.

Methyl Orange-Solution in distilled water, containing 0.004 g . methyl orange per liter.

15E. SULPHUR TESTS FOR TURPENTINE SUBSTITUTES.
Place 25 grams of dry white lead in a small porcela n dish and mix thoroughly with 50 ce of the turpentine substitute to ba tested. Cover with a watch glass, place on a steam bath for two hours, remove, and observe the color after aighteen hours. There shall be no appreciable darkening of the white lead. This test must be performed in an atmosphere free from hydrogen sulphide.

Place five drops of the oil on clean white filter paper and allow the liquid to evaporate at room temperature, away from direct sunlight. There should be no oily spot left after thirty minutes.

1GA. CAREON AND HYDROGEN IN PETROLEUM PRODUCTS.

The most convenient method is to burn the oil in a special calorimeter bsmb of the type of the Kroeker. (Fig. 138.)

The bomb must be perfectly dred on the inside by drawing dry air through the apparatus.

Approximately one gram of oil is now burned exactly as in the determination of heat of combustion.

The bomb is taken from the calorimeter and is connected on the tube side with Drechsel bottles containing moist soda lime in the first bottle and calcium chloride in the second bottle. The outlet of the bomb is now connceted in series with a
 U tube containing granulated zinc to decompose any acid formed in the combustion, with a glass stoppered U tube filled with calcium chloride of about 10 mesh size, with a g!ass stoppered U tube filled in the first arm with soda lime coataining 10 /8 water and the upper part of the second arm with calcium chloride comected then with an a apirator bottle.

The outlet of the bomb is gradually opened so that at least ten minutes is required to release all of the pressure.

The bomb is now heated and the aspirator is run at such a rate that about five callons of air are drawn through the bomb durine a period of between one and two hours. The carbon is calculated from the increase in weight of the soda lime U tule and the hrdiogen is calculated from the increase in weight of the calcium chloride U tube.
$\frac{\mathrm{CO}=27273}{\text { weight of sample }}=\because$ carhon
$\frac{\mathrm{HOO} \times 11.190}{\text { weight of sample }}=\because$ halrogen

Fig. 138-Kroeker Bomb.

16B. DETERMINATION OF NITROGEN IN PETROLEUM OR ASPHALT, BY THE KJELDAHL METHOD.

Five grams of the sample are weighed into a pyrex Kjeldahl digesting flask. Fifty cc of the digestion mixture composed of concentrated sulphuric acid containing 20% of phosphorous pentoxide is added to the flask. About one-third gram of mercuric oxide is added and the contents of the flask are heated with a strong flame until the solution has become pale yellow or colorless. The digested material is now cooled, diluted with about 150 cc of water and neutralized with strong caustic soda solution. Zinc shavings and some Potassium Sulphide are added. The flask is quickly connected with the condenser tube and the ammonia is distilled off into a 25 cc of $\mathrm{N} / 10$ sulphuric acid. The excess of acid is titrated with N/10 alkali. Each cubic centimeter of sulphuric acid consumed is equivalent to .001404 gram of nitrogen.

17. DOCTOR TEST FOR GASOLINE.

Reagent.

Sodium plumbite or "doctor" solution-Dissolve 125 grams of sodium hydroxide (NaOH) in a liter of distilled water. Add 70 grams of litharge (PbO) and shake vigorously for 15 or 30 minutes or let stand with occasional shaking for at least a day. Allow to settle and decant off the clear liquid. Filtration through a mat of asbestos may be employed if the solution does not settle clear. The solution should be kept in a bottle tightly stoppered.

Test.
Shake vigorously for about 15 seconds two volumes of gasoline and one volume of the "doctor" solution. Note color. A small pinch of flowers of sulphur should be added and the tube again shaken for 15 seconds and allowed to settle. The quantity of sulphur used should be such that practically all of the sulphur floats on the surface, separating the gasoline from the "doctor" solution.

Interpretation.

If the gasoline is discolored or if the sulphur film is so dark that its yellow color is noticeably masked, the test shall be reported as positive, and the gasoline condemned as "sour." If the liquid remains unchanged in color and if the sulphur film is bright yellow, or only slightly discolored with gray or flecked with black, the test shall be reported negative and the gasoline considered "sweet."

18A. OLEFINS OR UNSATURATED HYDROCARBONS AND REFINING LOSS IN PETROLEUM PRODUCTSWITH BABCOCK BOTTLE.

Use apparatus and equipment as shown in Figs. 139-140.
Weigh up a clean and dry 30% Babcock cream bottle, add to it exactly 5cc of the oil to be tested. Weigh again, giving the amount of oil used. Cool in ice water and add 10cc of concentrated commercial sulphuric acid, letting the acid run down the sides of the bottle. Shake while cooling in the ice water. Keep stoppered with a rubber stopper. Let stand for one-half hour with occasional shaking and constant cooling. Add sufficient concentrated sulphuric acid (commercial) to bring the reading about to the top of the scale on the neck of the bottle. Centrifuge for five minutes in the No. 1 centrifuge with the resistance at the first notch from the left. This gives a speed of 1,000 r.p.m. Keep the rubber stopper in while centrifuging so that there will be no evaporation. The stopper shall be large enough so that it is not forced into the bottle.

The reading on the neck of the bottle divided by five is the net amount of saturated hydrocarbons contained. This multiplied by twenty and taken from 100 gives the per cent of unsaturated hydrocarbons. For great accuracy the oil may be corrected for specific gravity and temperature and for the amount adhering to the sides of the pipet in which case the weighings are used. The waste acid from the Babcock bottle is poured into a bottle from which the sulphuric acid may be recovered by separating the oil and oxidising the organic material in the acid.

Fig. 139-Hand Centrifuge.

Fig. 140-niofin Tubes.

18B. METHOD USING A 10CC GLASS STOPPERED CYLINDER.

Use apparatus and equipment as shown in Fig. 140.
Add exactly 5cc of the oil to be tested to the cylinder and 2cc of sulpheric acid of gravity 1.84. Shake thoroughly for about five minutes and place in centrifuge and centrifuge at the rate of 1,000 r.p.m. for five minutes. The shrinkage of the oil in cubic centimeters $\times 20$ is the percentage of olefins.

18C. REFINING LOSS OF PETROLEUM PRODUCTS.

Use the color tube as shown in Fig. 98.
To a 50 cc color tube that is graduated in . 1 cc and glass stoppered, add 45.0 cc of the oil. Add exactly 1cc of 66° Baume' sulphuric acid. Shake thoroughly for about five minutes. Set rertically in a rack for at least one hour and preferably over night. The increase in rolume of the acid in the bottom of the tube $\times 2-2 / 9$ is the refining loss.
19A. METHOD FOR DETERMINING AROMATIC AND PARAFFIN HYDROCARBONS IN PETROLEUM PRODUCTS.

The apparatus is shown in Fig. 141. The flask containing 30 cc of fuming nitric acid (specific gravity 1.52) is cooled to $-10^{\circ} \mathrm{C}$ by a salt ice freezing mixture. The separatory funnel is filled to the 10 cc mark with the oil under test. The oil is run drop by drop with continuous shaking into the cooled acid during a period of not less than 45 minutes. With uncracked petroleum products 15 minutes is sufficient. The mixture is allowed to stand 15 minutes after completion of the reaction and then enough nitric acid (ordinary concentrated) at -10° temperature is added to the contents of the flask until the-oil under the surface is brought into the graduated neck. The volume is read when the neck is at room temperature, the body of the flask being in the freezing mixture. This volume represents the paraffin hydrocarbons.

The mixture is transferred to a separatory funnel, the lower layer run off into a 500 ce measuring flask containing 150 cc of water. The neck should be graduated for a 10 cc portion into $1 / 10 \mathrm{cc}$. The temperature will rise in proportion to the amount of olefins and aromatics present and more or less oil will separate according to the amount of paraffin hydrocarbons present.

The unattacked oily layer in the separatory funnel is washed with water and then examined for specific gravity and boiling point. The aqueous layer of nitric acid is warmed for 15 minutes to dissolve as completely as possible the resinous substances formed. The cooled liquid is shaken with 100 cc of ether, the aqueous layer separated and the ether layer again washed free from acid with water, then with a solution of caustic potash containing 50 grams of KOH in 500 cc of water with 50 cc of alcohol.

The caustic potash is drawn off and again the ether layer is washed with water. It is now dried with calcium chloride, filtered, the ether evaporated and the residue weighed. The residue consists of reddish brown oil, aromatic nitro-derivatives. The weight divided by . 115 gives the percentage of aromatic hydrocarbons.

The difference between the aromatic and cyclic hydrocarbons and the paraffin hydrocarbons and 100% is the amount of olefins. This may be checked by direct determination as shown under olefins.

19B. SHORT METHOD FOR AROMATIC AND CYCLIC HYDROCARBONS.

Distillation of 800ce of the hydrocarbons under examination may be made in a one liter distilling flask in accordance with the apparatus set forth in Fig. 120. Cuts may be made at $95^{\circ}, 120^{\circ}$ and $150^{\circ} \mathrm{C}$ and the percentage of aromatic compounds calculated from the specific gravity using the following specific gravities as the basis:

Specific Gravity of Aromatic	Specific Gravity of Non-Aromatic Hydrocarbon
0.880	Hydrocarbon
0.871	0.720
0.869	0.730
	0.760

This is in accordance with the Bulletin No. 114 of the Bureau of Mines, page 95.

20A. FREE FATTY ACIDS.

Accurately weigh 10 g . of the oil into an Erlenmeyer flask, add 50 cc of 95% alcohol which has been neutralized with weak caustic soda, and heat to the boiling point. Agitate the flask thoroughly in order to dissolve the free fatty acids as completely as possible. Titrate while hot with aqueous tenth-normal alkali, free from carbonate, using phenolphthalein, alkali blue or turmeric as an indicator, agitating thoroughly after each addition of alkali.

To express results as percentage of oleic acid, usc the following equation:

One cc of tenth-normal alkali $=.0282$ gram of oleic acicl. Alkilli, lec of which is equivalent to 0.5% of oleic acid, may be used. (A. S. T. M. Method, 1918 Standards, page 620.)

20B. COMBINED FATTY ACIDS OR FATTY OILS.

Weigh 10 grams of oil into a 350 cc Erlenmeyer flask. Add from a pipet 50 cc of the alcoholic potassium hydroxide solution followed by 25 cc of the purified benzene ($\mathrm{C}_{r} \mathrm{H}_{c}$). Connect with a reversed condenser. Boil on steam bath or electric hot plate for 90 minutes, shaking occasionally. Remove and add 25cc of neutral gasoline, and titrate with the half-normal hydrochloric acid solution after adding two or three drops of the phenolphthalein indicator solution until the pink color is destroyed. The absence of the pink color may be determined after the titration has begun, by allowing the solution to stand at rest, approximately a minute, ard noting the color of the lower zone. Run two blanks with the same mixture of alcoholic potassium hydroxide solution and purified benzene. From the difference between the number of cubic centimeters of half-normal acid required for the blanks and for the determination, the percentage of fatty oil may be calculated as follows:
$\frac{\text { No. of ce N/2 acid used } \times .02805 \times 100}{.195 \times \text { weight of oil taken }}=$ per cent of fatty oil

Solutions:

(a) Approximately half-normal alcoholic potassium hydroxide. Dissolve 30 grams of potassium hydroxide sticks (or an equivalent amount of sodium hydroxide sticks) in 1000cc of purified $92-95 \%$ ethyl alcohol. Allow to settle and filter.
(b) Purified benzene. This may be prepared as follows: To 1000 cc of " 90% benzol" add a stick of sodium hydroxide, boil for an hour, using a condenser loop inside the neck of the flask. Transfer to a large separatory funnel and add sufficient water to cause the liquid to separate into two zones. Draw off the lower zone and discard. Wash the benzene with water once. Transfer the washed benzene to an Engler distillation flask and distill up to $82^{\circ} \mathrm{C}$, discarding the residue.
(c) Standard solution of half-normal hydrochloric acid.
(d) Phenolphthalein Indicator. Dissolve one gram of phenolphthalein in 100 ce of 95% ethyl alcohol.
(e) Neutral gasoline.
(See also method 11C.)

21. FLOC TEST.

Take a hemispherical iron dish and place a small layer of sand in the bottom. Take a 500 cc Flotence or Erlenmeyer flask and into it put 300 ce of the oil (after filtering if it contains suspended matter). Suspend a thermometer in the oil by means of a cork slotted on the side. Place flask containing the oil in the sand bath and heat bath so that the oil has reached a temperature of $240^{\circ} \mathrm{F}$ at the end of one hour. Hold oil at temperature of not less than $240^{\circ} \mathrm{F}$ nor more than $250^{\circ} \mathrm{F}$ for six hours. The oil may become discolored but there should be no suspended matter formed in the oil. The flask should be given a slight rotary motion and if there is a trace of floc, it can be seen to rise from the center of the bottom.

22. CORROSION AND GUMMING TEST OF GASOLINE AND NAPHTHA.

The gasoline when subjected to the corrosion test shall show no black corrosion and no weighable amount of gum.

Directions for making test:
The apparatus used in this test consists of a freshly polished hemispherical dish of spun copper, approximately $31 / 2$ inches in diameter.

Fill this dish within three-eighths inch of the top with the gasoline to be examined and place the dish upon a steam bath. Leave the dish on the steam bath until all volatile portions have disappeared.

If the gasoline contains any dissolved elementary sulphur the bottom of the dish will be blackened.

If the gasoline contains undesirable gum-forming constituents there will be a weighable amount of gum deposited on the dish. Acid residues will show as gum in this test.

23. PENETRATION OF PETROLEUM ASPHALTS AND OTHER bituminous materials.

Fig. 142-N.Y.T.L. Penetrometer.

The apparatus used for this test is that shown in Figs. 142, 143 or 144.

The penetration is the consistency of a bituminous material expressed as the distance that a standard needle vertically penetrates a sample of the material under known conditions of loading, time and temperature. When the conditions of test are not specifically mentioned the load, time and temperature are understood to be 100 grams, 5 seconds, $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ respectively and the units of penetration indicate hundredths of a centimeter. The container for holding the material to be tested should be a flat bottomed cylindrical dish $2{ }_{1}^{3}$ in inches in diameter and $11 / 8$ inches deep or the American Can Co. Gill style ointment box, deep pattern, three ounce capacity.

The needle is a cylindrical steel rod two inches long and with a diameter of 0.04 inch and turned on one end to a sharp point having a taper of onequarter inch. The bath for the sample and the penetrometer should hold at least ten liters of water. The sample should be melted at the lowest possible temperature and stirred until it is homogenents: and free from air bubbles. It is then poured into the sample container to a depth of ahout three-quarters of an inch and is allowed to cool for one hour in the air. It is now placed in the water bath maintained within $0.1^{\circ} \mathrm{C}$ of the temperature of penetration for one hour.

In making the test, the sample is immersed in water and the needle loaded with the specified weight is adjusted to make contact
with the surface of the sample. This may be accomplished by making contact of the actual needle point with its image reflected by the surface of the sample or contact may be meted by slightly turning the container so that a faint scratch on the surface of the bitumen is observed. The needle is then released for the specified time and the distance measured by the means provided with the machine. At least three tests shall be made at different points on the surface of the sample and after each test the needle shall be wiped clean of all bituminous matter. The reported penetration is the average of at least three tests whose values do not differ more than four points between the maximum and minimum. Other conditions for penetrations particularly for oil asphalt filler and roofing material shall be the following:

At $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right) 200$ grams weight 60 seconds. At $46.1^{\circ} \mathrm{C}\left(115^{\circ} \mathrm{F}\right) 50$ gram weight 5 seconds.

Fig. 143 -Dow Penetrometer.

Fig. 144 - Humboldt Penetrometer.

24. DUCTILITY OF BITUMINOUS MATERIALS.

The ductility of an asphalt cement or semi-solid bitumen is the distance which it will elongate before breaking when a briquet of the material is pulled at a specified rate of speed and at a specified temperature. The temperature is to be $77^{\circ} \mathrm{F}$ and the rate of pulling is five centimeters per minute unless otherwise required.

The bituminous material is melted preferably in an oven at $325^{\circ} \mathrm{F}$ until it is uniformly and thoroughly fluid. The mold herein described is assembled on a plate so as to prevent the material from sticking to it, the surface of the plate and the inside surfaces of the mold being thoroughly amalgamated.

In filling, the bitumen is poured in a thin stream back and forth from end to end of the mold until it is more than level full. It is left to cool for at least 30 minutes when the excess of bitumen is cut off with a hot spatula so that the mold is just level full.

The briquet with the mold and plate is now placed in the water bath and kept at a temperature of $77^{\circ} \mathrm{F}$ for at least $11 / 2$ hours, when the briquet is removed from the plate and the side pieces detached. The briquet is now fastened in the ductility machine by means of the pins and ring and pulled at the uniform rate of five centimeters per minute. The water shall completely cover the briquet. The tem-

Fig. 145-Ductility Mold perature shall be within $.2^{\circ} \mathrm{F}$ of $77^{\circ} \mathrm{F}$ at all times. The average of three tests shall be taken. The ductility machine shall provide for three briquets being pulled at one time. The variation from five centimeters per minute in speed shall not be more than 5%.

The dimensions of the mold are as follows:

al length (internal)	7. $7.45-7.55 \mathrm{~cm}$.
Distance between clips.	2.97-3.06 cm.
Width of clips at mouth	1.98-2.02 cml
Width of briquet at minimum cross-section (half way between clips)	0.99-1.01 cm.
Thickness of briquet throughout	0.99-1.01 cm.

Fig: 146 -Ductility -pparalus.

25. LOSS ON HEATING OF OIL AND ASPHALTIC COMPOUNDS.

The loss in weight by oil and asphaltic compounds when they are heated in an oven at a temperature of $163^{\circ} \mathrm{C}\left(325^{\circ} \mathrm{F}\right)$ is determined on 50 grams of the water free substance contained in a flat bottomed dish, the inside dimensions of which are approximately $2 \frac{3}{16}$ inches in diameter and $13 / 8$ inches deep (this is the 3 ounce Gill style ointment box, deep pattern).

The oven in which the substance is to be heated is brought to temperature before the sample is introduced and the temperature of the sample under test shall be regarded as that of a similar quantity of the same material immediately adjoining it in the oven in which the bulb of a standardized thermometer is immersed. The oven may be any well constructed type either circular or rectangular and the source of heat may be either gas or electricity. The samples under test rest in the same relative position in a single row upon a perforated shelf 9.75 inches in diameter as shown in Fig. 147. A good type of oven is also shown in Fig. 148. The shelf is suspended by a vertical shaft midway in the oven which is revolved by mechanical means at the rate of from 5 to 6 R . P. M.

This method of test is well adapted for the determination of the carbonization value of internal combustion engine lubricating oils 25 grams of the oil are heated as above at $500^{\circ} \mathrm{F}$ to constant weight. 'lhe carbonization value is the percentage of carbonized residue.
(See page 277, line 13.)

Fig. 147-Heat Loss Shelf.

26. ASPHALT IN OIL AND ASPHALTIC COMPOUNDS.

Fifty grams of the crude oil, fuel oil, lubricating oil, road oil or other material are weighed into a three ounce Gill style ointment box, deep pattern, and placed in an oven heated either by electricity or gas and with good circulation to a temperature of approximately $500^{\circ} \mathrm{F}$. Heat is maintained until the consistency of the residue is such that at a temperature of $77^{\circ} \mathrm{F}$ it has a penetration of 100 . The amount of asphalt is reported in terms of the 100° penetration material.

At least two tests should be made on each sample both as checks and to facilitate obtaining results on the basis of 100° penetration. When one sample is softer and one harder than 100° penetration the percentage of asphalt may be obtained by interpolation.

Fig. 148-Oven for Asphalt Determination.

27A. SOLUBILITY IN PETROLEUM ETHER-PRECIPITATION NUMBER OF LUBRICATING OILS. (A. S. T. M.)

This method is commonly used for steam cylinder stocks and black oils and may be used for other lubricating oils.

Exactly 10.0 cc . of the oil to be tested is measured in each of two clean and dry centrifuge tubes at room temperature. Each tube shall be filled to the 100 cc . mark with U. S. P. petroleum benzine and closed tightly with a softened cork (not a rubber stopper). Each tube is then inverted at least 20 times, allowing the liquid to drain thoroughly from the tapered tip of the tube each time. The tubes are then placed in a water bath at 90° to $95^{\circ} \mathrm{F}$ for five minutes. The corks are momentarily removed to relicve any pressure and each tube shall aqain be inverted at least 20 times exactly as before. The success of this method depends to a large degree upon having a thoroughly homogeneous mixture which will drain quickly and completely from the tapered tip when the tube is inverted.

The two centrifuge tubes are then placed in the centrifuge on opposite sides and are whirled at a rate of 1,400 to $1,500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or equivalent for 10 minutes. The volume of sediment at the bottom of each tube is read and recorded, estimating to 0.05 cc , if possible. The tubes are then replaced in the centrifuge, again whirled for 10 minutes as before, and removed for reading the volume of the sediment as before. This operation is repeated until the volume of sediment in each tube remains constant for three consecutive readings. In general, not more than four whirlings are required.

The volume of the solid sediment at the bottom of each centrifuge tube is read, estimated to 0.1 cc . or closer if possible. If the two readings differ by not more than 0.1cc., the mean of the two shall be reported as the "Precipitation Number." If the two readings differ by more than 0.1 cc ., two more de-
Fig. 149—Solubility Apparatus. terminations shall be made and the average of the four determinations shall be reported. See figures - and - for apparatus.

The centrifuge should be capable of whirling at least two 100 cc . centrifuge tubes filled with water at the required speed.

Preferred forms of centrifuge shall have a diameter of swing (tip to tip of whirling tubes) of 15 to 17 in . and a speed of at least $1,500 \mathrm{r}$. p. m. or equivalent. The proper speed may be calculated from the following formula in which D represents the diameter of swing (tip to tip of whirling tubes) of the centrifuge used:

$$
\underline{16} \quad \text { r. p. m. }=1,500
$$

27A-2. SOLUBILITY IN PETROLEUM ETHER AND TAR IN CYLINDER STOCK, FLUX AND ASPHALTS.

The apparatus is shown in figure 149.
Weigh out ten grams of the cylinder stock into a 200 cc . Erlenmeyer flask (use 1 gram of asphalt).

Add 100 ce . of U. S. P. Petroleum Benzin $\left(84-86^{\circ} \mathrm{Be}^{\prime}\right.$ Petroleum Ether).

Stopper and shake until the oil is completely dissolved.
Allow the flask to stand at least one hour, tightly corked.
Prepare a filter cone obtainable from any laboratory supply house, as alundum filter cone R A 232 Porous.

Boil in distilled water, wash thoroughly, dry, and ignite. Cool and weigh.

Attach the apparatus shown to the filter pump and pour the solution of cylinder stoek into the porous alundum filter cone.

Press the cone down if necessary so that the rubber band around the top of the cone perfectly seals it.

Drain the Erlenmeyer flask as thoroughly as possible and wash it out using altogether 50 ce. additional of the U. S. P. Petroleum Benzin pouring about 10 cc . through the filter each time.

Care must be taken to wash thoroughly the top part of the alundum cone and to so distribute the washing that the petroleum benzin comes through perfectly colorless at the last.

Draw air through the residue in the cone until apparently dry, then place in the drying oven at $105^{\circ} \mathrm{C}$ for one-half hour or until it ceases to lose weight.

Cool in a desiccator and weigh.
The increase in weight is the total insoluble matter.
The cone is now placed back in the funnel and chloroform is poured over it until the chloroform passes through into the filter bottle coloriess.

The cone is again dried at $105^{\circ} \mathrm{C}$ for fifteen minutes.
This loss in weight is tar.
The residue in the cone is ignited in an oxidizing flame or preferably in a muffle for fifteen minutes.

The loss is non-tarry organic matter.
Instead of using the alundum cone a gooch crueible may be used.

27B. SOLUBILITY IN CARBON BISULPIIIDE. (TOTAL BITUMEN.)

This test is performed in the same way for asphaltenes or solubility in petroleum naphtha exeept that a 5 -gram sample is preferahly used. The same apparatus is used.

27C. SOLUBILITY IN CARBON TETRACHI。ORIDE.
This test is performed in the same way as for asphaltemes exeept that the flask containing the carbon letrachloride must be kept in a dark place. The difference between the solubility in carbon bisulphide and carbon tetrachloride represents the carhenes.

28. RESISTANCE OF ASPHALTIC CEMENT TO OXIDATION.

After being subjected to the following tests the film of asphalt should be brilliant and lustrous, should not be scaly and fragile, should adhere firmly to the metal and should not be dull and cheesy in texture.

A strip of thin sheet iron 2 inches wide and 6 inches long is covered on its lower 4 inches with the melted asphaltic cement. This strip is placed in an oven at $275^{\circ} \mathrm{F}$ for 15 minutes and allowed to thoroughly drain.

It is removed from the oven and allowed to cool, then placed in an electrically heated oven at a temperature of $450^{\circ} \mathrm{F}$ for one hour. At the end of the hour, the door of the oven is opened and the heat is turned off, the specimen being allowed to remain in the oven.

The oven shall be one having an outside diameter of $12 \times 12 \times 12$ inches with an opening in the top 1 cm . in diameter, the heating elements being in the bottom of the oven. The resistance shall be so distributed that the heat is uniform throughout the oven. The lower end of the strip shall be suspended so that it is at least 3 cm . from the bottom of the oven.

The resistance is preferably so arranged that three different heats can be maintained with a snap switch such that the lowest heat is $325^{\circ} \mathrm{F}$, the medium heat is $400^{\circ} \mathrm{F}$ and the highest heat is $450^{\circ} \mathrm{F}$.

Fig. 150-Paraffin Scale Apparatus for Distillation.

29. PARAFFIN WAX OR SCALE IN PETROLEUM AND BITUMINOUS PRODUCTS.

The apparatus used is shown in Figs. 150 and 151.
Instead of the metal retort, a glass distilling flask with a glass air condenser may be used if desired. One hundred grams of the oil, bitumen or material under examination are weighed into the retort and distilled as rapidly as possible to dry coke. The distillate is caught in a 150 cc . Erlenmeyer flask, the weight of which has been previously ascertained. During the early stages of distillation a cold, damp towel wrapped around the stem of the retort will serve to condense the distillate. After high temperatures have been reached, this towel may be removed. When the distillation is completed, the distillate is allowed to cool to room temperature and is then weighed in the flask. This weight minus that of the flask gives the weight of the total distillate.

Five grams of the well mixed distilate is then weighed into a 100 cc . Erlenmeyer flask and mixed with 25 cc . of Squibb's ether. Twen-ty-five ce. of Squibb's absolute alcohol is then added, after which the flask is packed closely in a freezing mixture of finely crushed ice and salt maintained at $-18^{\circ} \mathrm{C}$ in a quart tin cup. After remaining 30 minutes in this mixture, the solution is quickly filtered through a No. 575 C. S. \& S. 9 cm . hardened filter paper placed in a glass funnel which is packed in a freezing mixture as shown in figure. Vacuum should be employed to hasten filtration. The freezing-mixture reservoir shown in the figure may be made by cutting in half a round glass bottle measuring approximately 120 millimeters in diameter and us-

Fig. 151-Paraffin Scale Filter. ing the upper half in an inverted position. Any precipitate remaining on the paper should be washed until free from oil with about 50 cc . of a 1 to 1 mixture of Squibb's ether and absolute alcohol cooled to $-18^{\circ} \mathrm{C}$.

After the paper has been sucked dry, it should be removed from the funnel and the adhering paraffin scale should be scraped off into a weighed crystallizing dish and dried on a steam bath. The dish and contents should then be cooled in a desiccator and weighed.

The weight of the paraffin scale so obtained, divided by the weight of the distillate taken and multiplied by the percentage of the total distillate obstained from the original sample. equals the pereentage of the paraffin scale.

30A. BITUMEN AND GRADING OF ASPHALT SURFACE MIXTURE.

Fig. 152—Surface Mixture Muffle Furnace.
'The asphaltic surface is soflened by warming and is thoroughly mixed. 100.0 grems are weighed into a thin porcelain dish. This is placed in a gas or electric muffle, as shown in fig. 152, and heated with a good aeration at a temperature not exceeding $700^{\circ} \mathrm{C}$, preferably about $500^{\circ} \mathrm{C}$, or at a barely perceptible red heat.

It is well to use a pyrometer in the muffle. Usually about two hours is required for the complete combustion of the carbonaceous material. The dish and contents are now removed from the muffle, allowed to cool and weighed. The loss in weight is the percentage of bitumen. The mineral matter is now screened through a nest of screens containing the $1,2,4,10,20,40,80,200$ meshes to the lineal inch. The amount passing each screen and retained on the next is recorded. The exact description of the sizes is as follows:
Mesh
1
2
4
10
20
40
80
200

Opening i Inches
1.050
0.525
0.1850
0.0650
0.0340
0.0150
0.0068
0.0029

Opening in Millimeters	Diameter of Wire, Inch
26.67	0.149
13.33	0.105
4.699	0.65
1.651	0.035
0.864	0.016
0.381	0.010
0.173	0.00575
0.074	0.0021

30B. BITUMEN AND GRADING OF ASPHALTIC SURFACE MIXTURE BY EXTRACTION.

Fig. 155-K. C. T. L. Surface Mixture Extraction Apparatus.

The apparatus used for this analysis is that shown in Fig. 155. It consists of a large metallic soxhlet extractor of about 500 cubic centimeter capacity, a 1,000 cubic centimeter pyrex extraction flask, a brass ball reflux condenser and a very coarse and porous alundum extraction thimble, capable of holding at least 250 grams of the surface mixture, and a means of heating, preferably a 200 watt electric hot plate, although an alcohol lamp or Bunsen burner are suitable.

At least $1,000 \mathrm{grams}$ of the Asphaltic Surface Mixture are placed on a large pie pan under a hot plate, in an oven or over a radiator so that the mixture completely softens. The mixture is now thoroughly stirred and exactly 250 grams are weighed out to the nearest 0.1 gram and are packed into the alundum extraction thimble. The extraction thimble has previously been heated for at least one hour at $105^{\circ} \mathrm{C}$. The thimble and the mixture are now weighed and placed in the soxhlet tube of the extractor. Five hundred cubic centimeters of benzol or carbon tetrachloride are added to the soxhlet tube cither through the condenser or directly. The apparatus is tightly connected, the stoppers being of cork treating with is solution of pyroxylene in acetone. The flask containing the solvent is now heated

Fig. $15 t$-Screens and Machine for Sieving Surface Mixtures.
for three hours so that the solvent refluxes at least ten times. If a general supply of cold water is not available, ice water may be used for cooling as shown in the figure. At the end of three hours and immediately after the solvent has refluxed the thimble containing the extraction mixture is taken out of the soxhlet tube and dried for one hour at a temperature of $105^{\circ} \mathrm{C}$. The loss in weight multiplied by 0.4 is the percentage of bitumen.

The extracted mineral aggregate is examined for the presence of carbonaceous matter, which would be evidence of the overheating of the surface mixture in its manufacture. The mineral is now graded through screens in accordance with the method set forth in paragraph 30-A.

31. TENSILE STRENGTH OF BITUMINOUS SURFACE MIXTURE.

The surface mixture to be tested is heated to over $240^{\circ} \mathrm{F}$ to soften it and is thoroughly compressed into a standard cement testing briquet mold. The mold is then packed in ice for at least two hours. It is now quickly put in the tensile strength machine used for testing portland cement and pulled until it fails. Good bituminous surface mixture will give a tensile strength of as high as 600 lbs. per sq. in. Poorly cemented materia usually lower than 200 lbs. per sq. in.

Fig. 153 - Mineral Aggregate Grading Balance.
will give a tensile strength

32. SPECIFIC GRAVITY OF GASES BY VISCOSITY OR EFFUSION METHOD.

The apparatus is shown in Fig. 156.
The apparatus is first filled with distilled water through the reservoir, while the reservoir is in position on its support, and while the three-way cock is set to connect the gas chamber with the surrounding atmosphere. Enough water should be introduced to fill the apparatus to the mark on the glass tube a few centimeters below the stop cock. The water jacket should be filled with water and the whole apparatus allowed to come to room temperature before starting

Fig. 156-Apparatus for Specific Gravity of Gases by Effusion Method. a test. Care should be taken that the apparatus is kept at a constant temperature during any test and no water should be lost from, or added to the reservoir during a test. For each test the temperature of the water in the jacket surrounding the gas chamber should be observed in order to permit correction of the observed specific gravity to the specific gravity of dry gas.

The orifice tube should be screwed in position on the three-way cock and tightened with a small wrench. It is very imsportant that the orifice tube fit gas tight, since if there is a small leak at the base the results will be incorrect. When not in use the orifice tube should be protected from dust and moisture by attaching its cover. It should never be left on the apparatus unless the cock is turned to shut off connection with the gas chamber. This is to prevent the condensation of water vapor in the orifice. The orifice tube should be kept on the screw plug, in the base of the apparatus, which is intended to serve as a holder.

To make a test the gas chamber is filled with a stmple of air drawn im through the side connection of the three-way cock by lowering the reservoir. The cock is then closed, the rescrvoir placed on its support and the air allowed to stand within the gas chamber to become saturated with water vapor and to ensure that it is at the temperature of the apparatus. Sufficient air should be drawn in so that when the sample is compressed by raising the reservoir, the water level will remain below the lower mark. To ensure that the water will drain from the imer surface of the gas chamber to the same extent in each test, the same period of time should be allowed after each filling before beginning the test. At the end of this period, the cock is turned to comnect the gas chamber with the orifice and the time of effusion of the air obscrved by means of a stop watch. The time to be observed is that elapsing between the pussage of the water meniscus from the mark below to the mark just above the gas chamber. In timing care should be taken to have the eye on a level with the mark. Several determinations should be made of the time required for the effusion of this volume of air. If the times check within two-fifths second the agreement may he considered satisfactory. It should be noted that an error of 0.5 per cont
in timing makes a difference of about one per cent in the apparent specific gravity.

After the air time has been determined, the apparatus should be filled with the gas, whose specific gravity is to be determined. The gas chamber is filled by lowering the reservoir as was done with the air and then allowing the gas to flow out through the orifice. This rinsing of the gas chamber should be done three times to ensure a sample uncontaminated with air. The time for the effusion of the gas is then determined in exactly the same manner as with air.

If the time of effusion with either gas or air is irregular from test to test, this may be the result of moisture condensing in the orifice. This moisture can be removed by blowing dry air through the orifice. Care must be taken at all times to keep the orifice free from dust or water. Especial care should be taken to keep water from getting into the stop cock because it may be blown into the orifice and cause serious trouble. To prevent this, never raise the reservoir from its holder while the cock is open from the gas chamber to the inlet or outlet.

The specific gravity of a gas may be defined as the ratio of the weight of a given volume of gas to the weight of an equal volume of air measured at the same temperature and pressure. The specific gravity of a dry gas referred to dry air is, for all practical purposes, the same for any temperature. But the specific gravity of dry gas compared with dry air is always different from the specific gravity of saturated gas referred to saturated air. Moreover the latter value is different at different temperatures and pressures.

The specific gravity of the gas under the conditions of the test is the ratio of the square of the time for gas effusion to the square of the time for air effusion, i. e.,

$$
\mathrm{Ss}=\left\{\frac{\mathrm{Tg}}{\mathrm{Ta}}\right\}^{2}
$$

The following equations show the relation between the specific gravities of saturated gas compared with saturated air and the specific gravity of dry gas referred to dry air.

$$
\begin{gathered}
S s=\frac{(S+k)}{(1+k)} \\
S=S s(1+k)-k
\end{gathered}
$$

$S=$ Specific gravity of dry gas referred to dry air.
Ss = Specific gravity of saturated gas referred to saturated air.
The values of k for gas at 760 mm . pressure and at various temperatures are as follows:

Temperature Degrees C.	k
0	0.004
0	.005
10	.008
15	.011
20	.015
25	.020
30	

The following is an example of the use of these formulas. The specific gravity (S) of pure dry hydrogen is 0.0695 . The specific gravity of saturated hydrogen (Ss) at $20^{\circ} \mathrm{C}$ is

$$
\mathrm{Ss}=\frac{0.0695+0.015}{1+0.015}=0.0833
$$

This is the value which the effusion apparatus would give at $20^{\circ} \mathrm{C}$ with purc hydrogen.

Where a large number of tests are being run on gases having a limited range of specific gravities it is convenient to prepare a table giving the specific gravity of saturated gas at different temperatures and the corresponding values of the specific gravity of the dry gas, for the range of specific gravity and temperature which will be met with. The derivation of these formulas is discussed in Technologic Paper No. 94, of Bureau of Standards, where further information regarding them may be obtained.

33A. ABSORPTION METHOD FOR TESTING NATURAL AND CASINGHEAD GAS.

Fill the two-armed pipet commonly known as the Hofman apparatus with distilled water. The glass stop cock at the top of the closed graduated arm is a two-way cock, so that the tube above the stop cock can be completely cleared of air. The end of the stop cock through which the outside discharge takes place is closed with a rubber tube and pinch cock. A funnel is set on top of the tube, water is introduced and the tube is washed out with distilled water. The pinch cock is closed, the funnel is removed and the gas is introduced in the usual manner by displacement with water until about 50 cc are in the graduated arm. The level of the water is made the same in the two arms and the reading of the quantity of gas is made after it has adjusted itself to the room temperature.

Twenty-five ce of Claroline oil or straw oil are introduced into the open arm. The open arm is now stoppered or held with the thumb so that no air can gain access and the oil is shaken over into the other arm so that it overlies the water. The water is now withdrawn through the stop cock at the lower end of the U. The arm is now filled and kept filled with Claroline or straw oil shaking until the gas ceases to be absorbed. The absorption is calculated in percentage.

The amount of gasoline that may be obtained by absorption from the gas may be approximately calculated from the following table:

Casinghead Gas Yield.

Abstract

Yield of Gasoline Gallons per 1000 Cu . Ft. of Gas

Absorption Percentage $$
25
$$50 30 75 35 1.50 40 2.00 50 2.50 60 3.50 80 5.00

One gallon of gasoline obtained from 1000 cu . ft. of gas reduces the volume about 25 to 30 cu . ft. and reduces the heating value about 75 to 100 B. T. U. per cu. ft. or $71 / 2$ to 10%. One gallon of gasoline at 20 c a gallon would then extract 6 c from the value of gas at 20 c per $1000 \mathrm{cu} . \mathrm{ft}$. About one-half of the natural gas of the United States contains gasoline in commercially obtainable quantity. Some casinghead gas such as at Sisterville, West Va., gives 13 gallons of gasoline per $1000 \mathrm{cu} . \mathrm{ft}$. and has a heating value of 2500 B . T. U. per cu. ft . Shellac is the best thread dressing material for gasoline and oil joints since it is not soluble in gasoline nor water.

33B. FREEZING METHOD FOR TESTING NATURAL GAS FOR GASOLINE CONTENT.

This method is from Technical Paper 104, Bureau of Mines, page 26. The sample of natural gas or casinghead gas is introduced in the usual manner into the apparatus shown.

In this apparatus (a) is a three-way stop cock, (c) is a tube filled with glass wool and phosphorus pentoxide for the purpose of drying, (b) is a portion of tube which is introduced into liquid air, (d) is a manometer tube containing mercury and is closed at the further end.
In filling the manometer, the apparatus must be completely exhausted of its air. Sufficient mercury is introduced so that its level rests at the zero point of the scale when under a vacuum. The three-way stop cock at (a) connects to the vacuum pump and to the gas sample container. The sample of gas is drawn in at ordinary atmospheric pressure and the stop cock (a) is closed and the bulb (b) is introduced into the cooling medium. The temperature below $100^{\circ} \mathrm{C}$ is taken. At this temperature all of the gasoline constituents are completely liqueficd. While maintained at this low temperature, the vapor above the liquefied gasoline is exhausted with the vacuum pump thus removing the non-condensible gas. The bulb is now taken out of the refrigerant and allowed to warm up to the temperature at the beginning of the test. The mercury level in the manometer is read, the pressure indicated being the partial pressure of the gasoline in the sample before the dry gas had been removed. The percentage by volume of gasoline vapor is $\frac{100}{b}$ a, a being the partial pressure of the gasoline vapor after the test,
b being the original atmospheric pressure of the sample. The percentage of gasoline vapor gives the number of pints of gasoline that may be expected in the manufacture of gasoline from the gas under test by the absorption process.

34. COMPLETE ANALYSIS OF GAS.

This apparatus is that described in the Journal of Industrial \& Engineering Chemistry by G. A. Burrell and G. G. Oberfell, Vol. 8, page 229.
lt is designed for the analysis of a gas mixture containing carbon dioxide, unsaturated hydrocarbons, principally ethylene, oxygen, carbon monoxide, methane, ethane, hydrogen and nitrogen.

In the analysis the capillary train and U tube are swept free of gases by drawing a sample of air into the buret and passing it into the aikaline pyrogallate pipet G to remove oxygen. The residual nitrogen is then passed into all the pipets and through the CuO tube to sweep out other gases that may have been contained therein. The electric current is now turned on the electric heating oven, the temperature having been established by previous experiments. About a 100 watt furnace is required. The temperature desired is between 275 and $300^{\circ} \mathrm{C}$. Some of the gas mixture is now drawn into the buret, measured and passed into the pipets E, F and G for the removal respectively of carbon dioxide, illuminants, and oxygen. After these constituents have been removed the stop cocks H, I and J are turned so that communication is made between the buret and the pipet corresponding to J and through the CuO tube. The gas mixture is passed back and forth through the tube furnace until no further diminution in volume is noted by reading the gas volume in the buret. Fifteen minutes is usually required, the carbon monoxide being converted to carbon dioxide and the hydrogen to $\mathrm{H}_{2} \mathrm{O}$. The CO burns more rapidly if any hydrogen is present. When the gas is cooled and no further contraction takes place the remaining volume is read in the buret. The carbon dioxide is now removed by placing the gas mixture into the KOH pipet E . After the hydrogen and carbon monoxide have been determined the residual gas is placed in the KOH pipet for storage and the stop cock is closed. Enough oxygen to burn the paraffin hydrocarbons is then drawn into the buret, measured and passed into the slow combustion pipet J and the platinum spiral is heated to almost white heat. The residual gas is now withdrawn from the pipet E into the buret and from there slowly passed at the rate of not more than 10 cc per minute into the pipet J. While operating it is well to cover the slow combustion pipet with gauze as occasionally if the gas is passed in too rapidly an explosion takes place. After combustion is complete, the contraction and the carbon dioxide are measured and the gas again passed into the slow combustion pipet and burned again. A small amount of further contraction may take place but may be ignored unless excessive.

For calculation of results the following example and formulae are useful:

A-Sample intake
8-3-way stop cock as in standard Orsat apparatus
C-2-may stop cock as in Burrell and Oberfell apparalus for opening the measuring burette, ether to the absorption pipettes or the compensotor

Fig. 158-Orsat-Burrell Apparatus for Analy sis of Gas.

Analysis of Gas From Pressure Stills.

a. Volume of sample taken
b. Volume after KOH absorption
c. Carbon Dioxide - CO_{2}
d. Volume after Br : or Oleum absorption
e. Olefins or illuminants
f. Volume after alkaline pyrogallate absorption
g. Oxygen, O_{2}
h. Volume after burning in CuO
i. Hydrogen, H_{2}
j. Volume after absorption in KOH
k. Carbon Monoxide CO

1. Volume taken for slow combustion
m. Oxygen added
n. Total volume
o. Volume after burning
p. Contraction from burning
q. Volume after KOH absorption
r. Contraction from CO_{2}
s. Methane in sample
t. Ethane in sample
u. Nitrogen in sample
44.1cc
44.0cc
$0.1 \mathrm{cc}=0.22 \%$
39.4ce
$4.6 \mathrm{cc}-10.43 \%$

$$
39.3 \mathrm{cc}
$$

$0.1 \mathrm{cc}-0.22 \%$
35.2cc
$4.1 \mathrm{cc}=9.30 \%$
35.0 cc
$0.2 \mathrm{cc}=0.45 \%$
17.5 cc
75.6cc
93.1ce
61.5cc
32.6cc
45.0cc
16.5 cc
$16.0 \mathrm{cc}=72.56 \%$
$0.3 \mathrm{cc}=1.36 \%$
$1.2 \mathrm{cc}=5.46 \%$

To calculate amount of methane in the sample from the contraction from burning, "p," and the absorption with KOH , "r," use the following formulae:

$$
\begin{aligned}
& \text { Methane (s) }=\frac{4 p-5 r}{3} \\
& \text { Ethane (t) }=\frac{4 r-2 p}{3}
\end{aligned}
$$

or to obtain \% in original gas

$$
\begin{aligned}
\% \text { Methane } & =\frac{100 j s}{a l} \\
\% \text { Ethane } & =\frac{100 j t}{a l} \\
\% \text { Nitrogen } & =\frac{100 j u}{a l}
\end{aligned}
$$

35A. HEATING VALUE OF NATURAL GAS By COMbustion.

The usual method of determining the heating value of natural gas by combustion is by the continuous method.

The gas is burned and the water is collected when a certain definite amount of gas has been burned, for example, one-tenth of a foot. With each one-tenth of a foot, the water is collected in a separate receptacle and weighed.

The temperature of the incoming water is recorded and the temperature of the outgoing water, the gases of combustion having been brought to the temperature of the outgoing water. The water condensed from the combustion of the hydrogen in the gas is also collected. From this information, the heating value in B. T. U. is calculated as follows:
$\mathrm{t}_{1}=$ temperature of incoming water
$\mathrm{t}_{\mathrm{e}}=$ temperature of outgoing water
w = pounds of water passed through
$\mathrm{c}=$ pounds of water condensed (average for each $0.1 \mathrm{cu} . \mathrm{ft}$.).
From which B. T. U. per cubic foot $=10(w+e+0.02)\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)-$ 9704c

Example:
$\mathrm{t}_{1}=63.0^{\circ} \mathrm{F}$.
$\mathrm{t}_{2}=111.0^{\circ} \mathrm{F}$.
$\mathrm{w}=1.7531 \mathrm{lbs}$.
$\mathrm{c}=0.0091 \mathrm{lbs}$.
$10 \quad(1.7531+0.0091+0.02)(111.0-63.0)-(9704) \quad(.0091)=855.3-$
$88.3=767$ B. T. U. per cubic foot.
This type of instrument is represented by the Junker and the Sargent calorimeters. Correction of course must be made for the temperature and pressure on the gas in the meter. This type of calorimeter is shown in Fig. 159.

A very clever type of combustion calorimeter for gas is the Union calorimeter offered for sale only in Europe at this time. It depends upon the combustion of a very small quantity of gas resulting in the rise of temperature and expansion of the fluid jacket. The heat of combustion is proportional to the expansion as indicated by a capillary column.

Fig. 159-Gas Calorimeter.
35B. HEATING VALUE OF NATURAL GAS FROM OXYGEN CONSUMED IN BURNING.

The natural gas is burned with an excess of oxygen in a regular combustion pipe J as shown in the apparatus in Fig. 158.
\qquad
B. T. U. per cu. ft. is equal to $504 \frac{\mathrm{~V}}{\mathrm{Vn}}$ where Vo $=$ volume of oxygen consumed in burning Vn volumes Vn of natural gas.
35C. B. T. U. OF GAS BY CALCULATION FROM ANALYSIS.
The heating value of natural gas or any other gas may be calculated as follows:
$\begin{array}{ll}\text { Percentage of illuminants } & \times 20.00= \\ \text { Percentage of } \mathrm{CO} & \times 3.41= \\ \text { Percentage of } \mathrm{CH}_{4} & \times 10.65= \\ \text { Percentage of } \mathrm{H}_{2} & \times 3.45=\end{array}$
The sum of these is the B.T. U. per cubic foot.

REAGENTS USED IN GAS ANALYSIS.

(1) Potassium Hydroxide.

(a) For carbon dioxide determination.

500 grams of commercial potassium hydroxide are dissolved in 1 liter of distilled water. 1ce. of this solution absorbs 40 ec . of CO_{2}.
(b) For the preparation of potassium pyrogallate for oxygen testing.

120 grams of potassium hydrate are dissolved in 100 ce . of water. Five grams of crystalline pyrogallic acid are used with 100 cc . of this solution.

(2) Potassium Pyrogallate.

This solution is prepared when used except for charging absorption pipet. Five grams mixed with 100ce. of potassium hydrate (b) gives a solution in which 1ce. absorbs 2ce. of oxygen,

(3) Sodium Hydroxide.

One hundred grams are dissolver in 300 grams of water and may be used instead of potassium hydrate where given above.

(4) Cuprous Chloride.

Method of preparation is to place a layer of copper oxide about $3 / 8$ inch deep in the bottom of a two-liter acid bottle. Add an excess of long pieces of heavy copper wire reaching from the top to the bottom of the bottle and fill the bottle with hydrochloric acid of about 1.10 specific gravity. The absorption capacity of this reagent is 4 ce . of carbon monoxide CO for each 1ec. of reagent. Metallic copper must always be maintained with the reagent to keep it in good condition.
(5) Ammoniacal Cuprous Chloride.

The acid cuprous chloride as prepared above is treated with ammonia until a faint odor of ammonia is perceptible. Likewise an excess of copper wire is maintained. The absorption eapacity is 1 cc . of CO to 1 cc . of reagent.
(6) Sodium Hypobromite.

This is made of two solutions, one containing 100 grams of caustic soda with 250 cc . of distilled water, making 284 cc . of solution. The other, 25 grams of liquid bromine, 25 grains of potassium bromine and 200 ce . of water. The two solutions are not mixed until ready to use when equal parts are mixed. This rearent is very good for the determination of illuminants.
(7) Fuming Sulphuric Acid.

Ordinary coneentrated sulphurie acid is mixed with and equal weight of sulphuric anhydride. One ce. of this reagent ahsorhs rece. of olefins or illuminants.
(8) Palladium Chloride.

Five grams of palladium wire are dissolved in a solution of 30 cc . of hydrochlorie acid and 2ec. of nitric acid.

The solution is evaporated to dryness on is water hath, frece of hydroehloric acid are added and 25 cc . of water ind complete solution is made. The solution is diluted to 750 ce . It contains ome per cent palladous chloride and 1 ce. alisorbs two-thirds of 1 ce. of hy drogen.

Comparison of Temperatures by the Fahrenheit and Centigrade Scales.

Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fabr.
-273*	-459.4	$\begin{array}{lllllll}-5.6 & +22.0 & 15.6 & 60.0 & 36.1 & 97.0\end{array}$					
Absolu	Zero						
-300°	-328.0						
Temper	are of	-5.0	+23.0	16.0	60.0 60.8	$\begin{aligned} & 35.1 \\ & 36.7 \end{aligned}$	
Liquid Air		-4.4	$+24.0$	16.1	61.0	37.0	98.0
-130°	-202.0	- 4.0	$+24.8$	16.7	62.0	37.2	99.0
Pura Gra	Alcohol	-3.9	$+25.0$	17.0	62.6	37.8	100.0
Freezes		-3.3	+26.0	17.2	63.0	38.3	$\begin{aligned} & 100.4 \\ & 101.0 \end{aligned}$
-70°	-94.0	-3.0	+26.6	17.8	64.0		
Ammoni	Freezes	$\begin{aligned} & -2.8 \\ & -2.2 \end{aligned}$	$+27.0$	18.0	64.4	38.9	102.0
- (7			$+28.0$	18.3	65.0	39.0	102.2
-40°	-40.		+28.4	18.9	66.0	$39.4 \quad 103.0$	
Mercury	reezes		$\begin{array}{ll} -1.7 & +29.0 \end{array}$	19.0	66.2	40.0	104.0
$(-3$	C)	$-1.1+30.0$		19.4	67.0	$40.6 \quad 105.0$	
-30°	-22	$-1.0+30.2$		20.0	68.0	$41.0 \quad 105.8$	
	iquefies	-0.6	$+31.0$	20.6	69.0	$\begin{aligned} & 41.1 \\ & 41.7 \end{aligned}$	$\begin{aligned} & 106.0 \\ & 107.0 \end{aligned}$
at -	$7^{\circ} \mathrm{O}$	0.	+32.0	21.0	69.8		
-28	-18.4	$+0.6$	33.8	$\begin{aligned} & 21.1 \\ & 21.7 \end{aligned}$	70.0	$\begin{aligned} & 41.7 \\ & 42.0 \end{aligned}$	$\begin{aligned} & 107.0 \\ & 107.6 \end{aligned}$
-26	-14.8 -11.2	1.0	34.0		71.0		108.0
-24	-11.2	1.1		$\begin{aligned} & 22.2 \\ & 22.8 \end{aligned}$	71.0 72.0	$\begin{aligned} & 42.0 \\ & 43.0 \\ & 43.3 \end{aligned}$	109.0
-20	-4.0	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	35.6		73.0		$\begin{aligned} & 109.4 \\ & 110.0 \end{aligned}$
-19	- 2.2		36.0	$\begin{aligned} & 22.8 \\ & 23.0 \end{aligned}$	73.4	$\begin{aligned} & 43.3 \\ & 43.9 \end{aligned}$	111.0
-18	-0.4	$\begin{aligned} & 2.8 \\ & 3.0 \end{aligned}$	37.0		74.0	44.0	$\begin{aligned} & 111.2 \\ & 112.0 \end{aligned}$
-17.8	-0.0		37.4		75.0	44.4	
-17.2	$+1.0$. 3.3	38.0	$\begin{aligned} & 23.9 \\ & 24.0 \end{aligned}$	75.2		113.0
-17.0	+1.4	3.9	39.0	$\begin{aligned} & 24.4 \\ & 25.0 \end{aligned}$	76.0	45.6	
-16.7	$+2.0$	4.0	39.2		77.0	46.0	114.8
-16.1	+ 3.0	4.4	40.0	$\begin{aligned} & 25.0 \\ & 25.6 \end{aligned}$	78.0	46.1	$\begin{aligned} & 115.0 \\ & 116.0 \end{aligned}$
-16.0	+3.2 +4.0	5.0	41.0	26.0	$79.0$$80.0$	46.7	$\begin{aligned} & 116.6 \\ & 117.0 \end{aligned}$
-15.0	+ 5.0	$\begin{aligned} & 6.0 \\ & 6.1 \end{aligned}$	42.8	$\begin{aligned} & 26.1 \\ & 26.7 \end{aligned}$		47.2	
-14.4	+ 6.0		43.0	$\begin{aligned} & 27.0 \\ & 27.2 \end{aligned}$	80.6	$\begin{aligned} & 47.8 \\ & 48.0 \end{aligned}$	118.0
-14.0	+ 6.8	6.7	44.0		81.0		$\begin{aligned} & 118.4 \\ & 119.0 \end{aligned}$
-13.9	+ 7.0	7.0	44.6	27.828.0	82.0	48.3	
-13.3	+8.0	7.2	46.0		82.483.0	48.9	120.0
-13.0	+8.6	7.8		28.3		49.0	$\begin{aligned} & 120.2 \\ & 121.0 \end{aligned}$
-12.8 -12.2	+ 9.0 +10.0	8.0	46.4	$\begin{aligned} & 28.9 \\ & 29.0 \end{aligned}$	84.0		
-12.2	+10.0 +10.4	8.3 8.9	$\begin{aligned} & 47.0 \\ & 48.0 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 29.4 \end{aligned}$	84.2 85.0	50.0 50.6	122.0
-11.7	+1.4 +11.0	9.0	48.2	$\begin{aligned} & 30.0 \\ & 30.6 \end{aligned}$	86.087.0	51.0	123.8
-11.1	+12.0	9.4	$\begin{aligned} & 49.0 \\ & 50.0 \end{aligned}$			51.1	124.0
-11.0	+12.2	10.0		31.0	87.8	51.7	125.0
-10.6	+13.0	10.6	51.0	31.1	88.0	53.0	125.6
-10.0	+14.0	11.0	51.8	31.7	89.0	52.2	126.0
- 9.4	+15.0	11.1	52.0	32.0	89.6	53.8	127.0
-9.0	+15.8	11.7	53.0	32.2 32.8	90.0 91.0	53.0 53.3	127.4
-8.9 -8.3	+16.0 +17.0	12.0	53.6 54.0	32.8 33.0	91.0 91.4	53.3 53.9	128.0
-8.3	+17.6	12.8	55.0	33.3	92.0	54.0	129.2
-7.8	+18.0	13.0	55.4	33.9	93.0	54.4	130.0
- 7.2	+19.0	13.3	56.0	34.0	93.2	55.0	131.0
- 7.0	+19.4	13.9	57.0	34.4	94.0	55.6	132.0
-6.7	+20.0	14.0	57.2	35.0	95.0	56.0	132.8
-6.1	$+21.0$	14.4	58.0	35.6	96.0	56.1	133.0
-6.0	$+21.2$	15.0	59.0	36.0	96.8	56.7	134.0

Temperature Conversion Tables．

Cent．	Fahr．	Cent．	Fahr．	Cent．	Fahr．	Cent．	Fuhr．
57.0	134.6	77.8	172.0	98.3	209.0	119.0	246.2
57.2	135.0	78.0	172.4	95.9	210.0	119.4	$\bigcirc+7.0$
57.8	136.0	78.3	173.0	99.0	210.2	120.0	249.0
58.0	136.4	78.9	174.0	99.4	211.0	120.6	$\because 4.4 .9$
58.3	137.0	79.0	174.2	100.0	212.0	121.0	249.8
58.9	138.0	79.4	175.0	100.6	213.0	121.1	$2{ }^{2} 1,0$
59.0	1 13．2	S0．0	176.0	101.0	213.8	121.7	251.0
59.4	139.0	80.6	177.0	101.1	214.0	12.2 .0	251.6
60.0	1410.0	81.0	177.8	101.7	215.0	129.2	252.0
60.6	141.0	81.1	178.0	102.0	215.6	122.8	$\stackrel{5}{253.4}$
61.0	141.8	81.7	179.0	102.2	216.6 21.0	123.0 123.3	$\underline{253.4}$
64.1	142.0	89．0	179.6	103.8	$21 \% .0$ 217.1	123.3	20．0
61.7	143.0	8.2	180.0	103.3	$\underline{215.0}$	124.0	25\％ 2
63.0	143.6	S2．8	181.0	103.9	$\underline{2} 19.1$	124.4	2－xi，
62.2	144.0	83.0	181.1	103.9	219.2	125.0	$255.1)$
62.5	14.5 .0	83.3	182.0	104．0	220.0	125．6	250
63.0	145.4	83.9	183.0	105.0	＜－1．0	126.0	258．5
63.0	146.0	S1．0	183.2	105.6	220.0	126.1	2511.0
63.9	147.0	81.4	184.0	19.6 .0	222．is	120.7	$2+0.0$
64.0	147.2	85． 6	155.0	100.1	229.0	127.0	\％til 6
64.4	148.0	85.6	186.0 186.8	100.7	$\because 4.0$	127.2	29.0
65.0	149.0	86.0	187.0	107.0	221.6	12.8	$\cdots 62.0$
65.6	150.0	86.1 80.7	187.0	107.2	？ 2.0	1＊8．0	2 2， 4
66.0	150.8	86.7 87.0	188.6	107.8	－98．0	125.3	313.11
66.1	151.0	87.0	188.6	108.0	296.4	128.9	2430
66.7	152.0	57． 2	181.0	108.3	23.6	129	214.2
67.0	$15 \% .6$	87.8	190.0	108.9	？ 28.0	1×1	246.0
67.2	153.0	88.0	190.4	109.0	208.2	1：0．0	为大， 11
67.8	154.0	88.8	191.0	109.4	299.0	1：0．6	217.0
68.0	154.4	88.9	192.0	110.0	230．0	131.0	26.9
68.3	155.0	89.0	192.2	110.6	231.0	131.1	3tin 0
68.9	156.0	87.4	193.0	111.0	231.8	131.7	963， 11
69.0	156.2	90.0	194.0	111.1	232.0	1：32．0	24．0．6
69.4	157.0	90.6	15.0	111.7	233.0	1：3．3	20，0
70.0	158.0	01.0	195.8	112.0	2．3．6	132．8	$\because 1.0$
70.6	159.0	01.1	196.0	112.2	231.0	1：35．11	\％1．
71.0	159.8	91.7	197.0	112.9	25.51	133.3	\％－\％．0
71.1	100.0	92.0	197.6	113.0	20\％ 1	133.0 131.0	2\％3．＂
71.7	161.0	92.8	190.0	113.3	935.0	1：191	2710
72.2	102.0	93.0	19.4	114.0	$2: 7.2$	125．0	$25^{-10} 0$
72.8	163.0	93.3	200.0	114.4	$2 ? 9.0$	12%	－110
73.0	163.4	93.9	201.0	115.0	239．7	1：20，	，－̇－
73.3	164.0	94.0	202.0	115.6	210.0	12：	CH11
73.9	163.0	95.0	203.0	116.0	21：	$1: \%$	－N， 6
74.0 74.4	166.0	95.6	201.0	116.7	212.1	133.2	$2{ }^{2} 90$
75.0	17.0	\％ 6.0	204.8	117.0	： 1 ？${ }^{\text {a }}$	1：37．8	2011
75.6	168.0	96	206．0	117.2	21.3 .0	$1: 810$	（x）
76.0	168.8	97.0	20 （fic	117.8	2111	1＊3	
76.1	169.0	97.2	207.0	118.0	$\because 11.1$	$1: 59$	－4．：
76.7 77.0	170.0	97.8	208.1	114.3		1．ひ1	19， 1
77.2	171.6	98.0	218.4	115			

TEMPERATURE CONVERSION TABLES-Continued.

Cent.	Fabr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fabr.
140.0	234.0	215.0	419.0	590.0	1034.0	1300.0	2480.0
140.6	285.0	220.0	428.0	600.0	1112.0	1380.0	2516.0
141.0	285.8	225.0	437.0	610.0	1130.0	1400.0	2552.0
141.1	280.0	230.0	4.16 .0	620.0	1148.0	1420.0	2588.0
141.7	287.0	235.0	455.0	630.0	1166.0	1440.0	2624.0
142.0	297.6	240.0	464.0	640.0	1184.0	1460.0	2600.0
142.2	255.0	245.0	473.0	650.0	1202.0	1480.0	2605.0
142.8	289.0	250.0	482.0	600.0	1220.0	1500.0	2732.0
143.0	289.4	254.0	489.2	670.0	1238.0	1520.0	$2,68.0$
143.3	290.0	25.0	491.0	680.0	1256.0	1540.0	2804.0
143.9	291.0	261.0	500.0	600.0	1274.0	1560.0	2840.0
144.0	291.2	265.0	509.0	700.0	1292.0	1580.0	2876.0
144.4	292.0	270.0	518.0	710.0	1310.0	1600.0	2912.0
145.0	293.0	275.0	527.0	720.0	1398.0	1620.0	2918.0
145.0	294.0	280.0	$5 \% 3.0$	730.0	1345.0	1640.0	2984.0
146.0	294.8	283.0	541.4	740.0	1364.0	1660.0	3020.0
146.1	295.0	285.0	545.0	750.0	1352.0	1680.0	3056.0
149.7	255.0	2350	550.4	760.0	1400.0	1700.0	3792.0
147.0	296.6	290.0	5.51 .0	770.0	1418.0	1720.0	3128.0
147.2	297.0	205.0	563.0	780.0	1430.0	1740.0	3164.0
147.8	298.0	300.0	572.0	700.0	1454.0	1760.0	3200.0
148.0	2984	305.0	581.0	8×0.0	14 'T2. 0	1780.0	3235.0
148.3	299.0	310.0	59.0	810.0	1490.0	1500.0	3272.0
148.9	300.0	315.0	599.0	830.0	1508.0	1895.0	3317.0
149.0	310.2	320.0	608.0	820.0	1526.0	1850.0	3352.0
149.4	301.0	375.0	617.0	840.0	1544.0	1875.0	3407.0
150.0	302.0	330.0	620.0	850.0	1562.0	1900.0	3452.0
152.0	205.6	335.0	635.0	830.0	15800	1925.0	3497.0
154.0	309.2	310.0	64.0	870.0	1598.0	1050.0	3542.0
153.0	312.8	345.0	63.3 .0	$\varepsilon ¢ 0.0$	1616.0	1975.0	3557.0
153.0	316.4	350.0	68.0	8*). 0	1534.0	2000.0	3032.0
1600	320.0	310.0	680.0	200.0	1652.0	2400.0	3812.0
162.0	323.6	3700	695.0	930.0	1683.0	2500.0	4532.0
164.0	327.2	38.0	76.0	940.0	1724.0	3500.0	5432.0
165.0	3330.8	390.0	734.0	900.0	1160.0	3500.0	6332.0
168.0	334.4	400.0	75.0	930.0	1796.0	4000.0	7232.0
170.0	338.0	410.9	770.0	1 (\%). 0	1832.0	5000.0	8032.0
172.0	341.6	4200	788.0	1020.0	1865.0	6000.0	10832.0
174.0	345.2	40.0	806.0	1040.0	1004.0		
176.0	343.8	440.0 450.0	824.0 84.0	1030.0	1940.0		
178.0	35.4	450.0	842.0	1080.0	1976.0		
180.0	3560	460.0	88.0	1100.0	2012.0		
182.0	359.6	470.0	878.0	11200	2043.0		
184.0	333.2	450.0	896.0	1140.0	2084.0		
186.0	30.8	490.0	911.0	1170.0	2 k 0.0		
188.0	370.4	500.0	932.0	1180.0	2156.0		
180.0	374.0	510.0	950.0	1200.0	2192.0		
192.0	377.6	520.0	9580	1220.0	2228.0		
1940	331.2	530.0	986.0	1210.0	2264.0		
196.0	334.8	540.0	1004.0	1260.0	\$300.0		
193.0	358.4	550.0	10 ± 2.0	1280.0	2336.0		
200.0	332.0	570.0	1040.0	1300.0	$23 \% 2.0$		
205.0	401.0	570.0	1058.0	1320.0	240 S .0		
210.0	410.0	5800	1076.0	1340.0	2444.0		

TEMPERATURE READING CONVERSION FACTORS.
Temp. Centigrade $=5 / 9(\mathrm{~F} .-32)=5 / 4 \mathrm{R}$.
Temp. Fahrenbeit $=9 / 5 \mathrm{C} .+32=9 / 4 \mathrm{R} .+32$.
「етр. Rea:imur $=4 / 50=4 / 3$ (F-Z2).

BAUME', SPECIFIC GRAVITY AND POUNDS PER GALLON. (U. S. BUREAU OF STANDARDS.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 8 \\
\hline 10 \& 10000 \& . 9903 \& . 9986 \& 9379 \& 9972 \& . 9064 \& . 9057 \& . \(2 \times 50\) \& .994\% \& .9033 \\
\hline \& S.328 \& 8.322 \& 8.317 \& 8311 \& 8.35 \& 3.299 \& S. 293 \& 8.287 \& 8.281 \& 8.255 \\
\hline \multirow[t]{2}{*}{11} \& .9929 \& . 9922 \& . 9215 \& .9r08 \& . 9001 \& \(0 \times 94\) \& . 2887 \& . 2.50 \& . 8873 \& . 9664 \\
\hline \& 8.269 \& 8.263 \& 8.258 \& 8.25? \& 8.26 \& 8.24) \& 8.234 \& 8.228 \& S. 223 \& 8.217 \\
\hline \multirow[t]{2}{*}{12} \& . 9859 \& .985 \& .984j \& . 9838 \& . 9831 \& 98.5 \& . 9818 \& . 9811 \& CSO4 \& .9797 \\
\hline \& 8211 \& 8.205 \& 8.194 \& 8.194 \& 8.188 \& 8. 83 \& 8.176 \& 8.111 \& S. 105 \& S. 159 \\
\hline \multirow[t]{2}{*}{13} \& . 9790 \& . 9183 \& . 9774 \& . 9770 \& . 9763 \& . 9756 \& . 9749 \& . 9743 \& .9:3E \& . 9723 \\
\hline \& 8.153 \& 8.148 \& 8.142 \& 8.137 \& 8.131 \& 8.125 \& 8.119 \& 8.114 \& 8.108 \& 8.102 \\
\hline \multirow[t]{2}{*}{14} \& . 9722 \& . 9715 \& . 9109 \& .9:02 \& . 9605 \& . 9688 \& . 93 \& . 9675 \& .9 60 \& \\
\hline \& 8.096 \& 8.091 \& 8.086 \& S 050 \& 8.074 \& 8059 \& 8.033 \& \(\varepsilon .058\) \& S.052 \& 5.017 \\
\hline \multirow[t]{2}{*}{15} \& . 9055 \& . 9349 \& . 9642 \& . 9635 \& . 90329 \& . 96.2 \& .9315 \& 0609 \& . 9.02 \& . 050 \\
\hline \& 8.041 \& 8.035 \& S.030 \& 8.024 \& 8.019 \& 8.013 \& 8.007 \& 8.002 \& 7.987 \& 7.981 \\
\hline \multirow[t]{2}{*}{16} \& . 9599 \& . 9582 \& . 9582 \& . 9509 \& . 9563 \& ¢55 \& . 9550 \& \(\therefore 543\) \& . 9373 \& 20\% \\
\hline \& 7.986 \& 7.980 \& 7.975 \& 7.989 \& 7.64 \& 7.959 \& 7.673 \& 7.048 \& 7.942 \& 7937 \\
\hline \multirow[t]{2}{*}{17} \& . 85 '4 \& . 9517 \& . 9511 \& . 9504 \& . 0495 \& \(\bigcirc 42\) \& .9453 \& . 0479 \& .34) \& 9403 \\
\hline \& 7.931 \& 7.926 \& 7.921 \& 7.815 \& 7.910 \& - CH 4 \& 7.899 \& 7. 8 (41 \& 7. 898 \& 7.583 \\
\hline \multirow[t]{2}{*}{15} \& 0459 \& . 9153 \& . 9447 \& H:C \& - 9434 \& . 94.28 \& .8421
-8.6 \& . 2415 \& - 835 \& 7.83) \\
\hline \& \begin{tabular}{c}
7.87 \\
\hline 8.895
\end{tabular} \& 7.872
.9390 \& 7.867

9383 \& 7.861
.9377 \& 7.853
.0371 \& 7.851 \& 7.816
.0358 \& 7.841

.0352 \& $$
\begin{gathered}
7.835 \\
.0316
\end{gathered}
$$ \& \[

$$
\begin{gathered}
7.833 \\
.9340
\end{gathered}
$$
\]

\hline 19 \& 7.825 \& 7.820 \& $\bigcirc .814$ \& 7.909 \& 7.804 \& 7.799 \& 7.793 \& T.788 \& 7.783 \& T.OS

\hline \multirow[t]{2}{*}{20} \& . 9333 \& . 9327 \& . 9321 \& . 9315 \& . 9309 \& 93 ra \& .9293 \& . 9390 \& .9381 \& 027

\hline \& 7.772 \& -. 767 \& 7.762 \& 7.757 \& 7.752 \& 7.547 \& 7.742 \& 7.736 \& $$
7.731
$$ \& \[

7.726
\]

\hline 21 \& . 9272 \& .9265 \& . 9259 \& -9.53 \& $\bigcirc .9297$ \& -.924 \& \%.690 \& 7.685 \& 7.880 \& 7.695

\hline \& 7.121
.9211 \& 7.716
.9204 \& 7.111 \& -. 9192 \& 7.701
.9186 \& 7.0780 \& . 8174 \& .9, CS \& . 915 \& . 9150

\hline 22 \& 7×0 \& 7.605 \& 7.660 \& 7.65. \& 7.650 \& 7.645 \& 7.f40 \& 7.583 \& 760 \& 7.65

\hline \multirow[t]{2}{*}{23} \& . 9150 \& . 9144 \& . 2138 \& . 9132 \& . 9126 \& . 2121 \& . 8115 \& . 0103 \& \bigcirc \&

\hline \& 7.680 \& 7.615 \& 7.610 \& 7.005 \& 7.600 \& 7.505 \& 7.50 \& -. 05 \& 8.204 \& 2413

\hline 24 \& . 9091 \& . 9085 \& - 6079 \& \bigcirc \& 7.9051 \& 3.504 \& 7.541 \& 7536 \& \%.531 \& 7.536

\hline \multirow[t]{2}{*}{25} \& 7.5.01
. 9032 \& 7.565
.90025 \& 7.551
.9021 \& 1.006
.8015 \& 7.551
.8009 \& (rk) 3 \& . 899 - \& Cm: \& . Sisi \& \cdots

\hline \& 7.522 \& 7.517 \& 7.512 \& 7507 \& 7.502 \& -. 497 \& 7.493 \& 7.485 \& 7.483 \& $$
7475
$$

\hline 26 \& . 8974 \& . 89×9 \& . 8363 \& . 8.957 \& . 8951 \& .546
7.419 \& 7.44 .5 \& 7.440 \& 7.437 \& 7.4

\hline \& 7.473 \& 7.469 \& ${ }^{7.464} 890$ \& 7.459 \& 7.454
.8595 \& -1.4893 \& .8¢8.3 \& . 8578 \& 5872 \& 4vi3

\hline 27 \& . 8917 \& -. 2912 \& 7.416 \& 7.411 \& 7.407 \& 7402 \& -397 \& 7.393 \& 7.339 \& T...3?

\hline \multirow[t]{2}{*}{25} \& . 8.961 \& . 7.885 \& . 8850 \& . S¢44 \& .8538 \& 8533 \& S.97 \& .8922 \& . \& ‥ns

\hline \& 7.378 \& 7.374 \& 7.359 \& 7.35 \& 7.3% \& 735% \& 7.351 \& 7.340 \& 7.311 \& -

\hline \multirow[t]{2}{*}{29} \& . 3505 \& . 5.99 \& . 8794 \& . 8188 \& . 578.3 \& - 217 \& 7305 \& 7 ¢\%) \& \& 7-2.11

\hline \& 7.332 \& 7.328 \& 7.323 \& 7.31 .8 \& 7.314 \& -30.93 \& $\begin{array}{r}7.30 \\ \hline 17\end{array}$ \& 8.812 \& Stı \& x.01

\hline \multirow[t]{2}{*}{30} \& . 8750 \& . 8745 \& . 8739 \& . 8734 \& . 8728 \& -81.3 \& - \& 7.254 \& $7.24 ?$ \& -2.5

\hline \& 7.256 \& 7.282 \& 7.277 \& 7.273 \& \& $$
8.64
$$ \& 8. S_{3} \& S6, \& . $\operatorname{sh} \mathrm{H} 3$ \& - 41

\hline \multirow[t]{2}{*}{31} \& . 8696 \& . 8690 \& . 6885 \& - ${ }^{\text {S }}$ \& \& -218 \& 7214 \& 7.270 \& 7.35 \& 7 \% 1

\hline \& 7211 \& 7.233 \& 7.232 \& 7.2\% \& $$
\begin{gathered}
7.2 .3 \\
8021
\end{gathered}
$$ \& 8 8:15 \& -rimo \& 880.5 \& - \% 10 \& (8)?

\hline \multirow[t]{2}{*}{32} \& . 8642 \& 8637 \& . 8631 \& \& \& \& 7.19 \& 7.15% \& 7.141 \& 71%

\hline \& 7.196 \& 7.192 \& 7.187 \& 7.183 \& $$
.11808
$$ \& \[

\approx \sqrt{3}
\] \& . 5357 \& . 530 \& . 818 \& K7.

\hline 33 \& . 8589 \& 8.34 \& \& 7.137 \& 7.134 \& T.13 \& 7.125 \& 7121 \& 7.11% \& 113

\hline \& 7.152 \& 7.141
8.731 \& . .158 \& .85?1 \& . 236 \& Kill \& - 505 \& Am(\%) \& Hi \&

\hline 34 \& 7.108 \& 7.104 \& 7.100 \& 7.095 \& 7.001 \& $$
7 \text { (4) } 7
$$ \& \[

8

\] \& \[

$$
\begin{array}{r}
718 \\
\text { 21! }
\end{array}
$$
\] \& -111 \& G1,

\hline \multirow[t]{2}{*}{35} \& . 8185 \& . 8480 \& . 8175 \& 819 \& \& 7.4t1 \& 700% \& 7.035 \& 70:1 \&

\hline \& 7.065 \& 7.061 \& 7.057 \& 7. \& $$
8113
$$ \& -1188 \& \&-11)3 \& 8 Sta \& (2) 3 \& -

\hline \multirow[t]{2}{*}{35} \& .8434 \& .84:9 \& . 8124 \& \& \& 70% \& 6.097 \& 6.803 \& 6 6! $0^{\text {a }}$ \& (0)

\hline \& 7.022 \& 7.018 \& 7.014 \& \& $$
\begin{gathered}
7.006 \\
.8363
\end{gathered}
$$ \& - 0^{2} \& 8.3i3 \& S312 \& 4318 \& ¢ 3

\hline \multirow[t]{3}{*}{3} \& . 8383 \& . 8378 \& .8573 \& \& 6.9.4 \& 6.0\%n \& 63.855 \& 0.051 \& $0 \mathrm{n}+17$ \&

\hline \& 6.980 \& 6.976 \& 6.972 \& 6305 8378 \& $$
8314
$$ \& . S3m \& xnt \& sin \& ciny \&

\hline \& . 8333 \& . 8328 \& 6.83 \& 9.80% \& $6!? 90$ \& rin 018 \& 0.914 \& 6.811 \& fimus \& 回:

\hline
\end{tabular}

BAUME, SPECIFIC GRAVITY AND POUNDS PER GALLON-Con. U. S. BUREAU OF STANDARDS-Con.

	0	1	2	3	4	5	6	7	8	9
3	. 8284	. 8279	8274	. 8269	. 8.64	. 8260	8255	. 8250	. 8245	. 8240
	6.808	6.894	6.850	6.885	6.881	6.877	6.8 .3	6.869	6.805	6.851
40	. 8235	. 8230	. 82.26	.8221	. 8216	. 8211	. 8206	. 8202	. 8197	. 8192
	6.857	6.853	6.819	6.845	6.841	6837	6.833	6.829	6.825	6.821
$4]$. 8187	. 8182	. 8178	. 8173	. 8108	. 8163	. 8159	. 8154	. 8149	. 8144
	6.817	6.813	6.809	6.805	6.801	6.797	6.793	6.789	6.785	6.781
42	. 8140	. 8135	. 8130	. 8125	. 8121	. 8116	. 8111	. 8107	. 8102	. 8097
	6.777	6.773	6.769	6.763	6.761	6.758	6.754	6.750	6.746	6.742
43	. 8092	. 8088	. 8083	. 5078	. 8074	. 80.9	. 8085	. 8050	. 8050	. 8051
	6.738	6.734	6.730	6.726	6.722	6.718	6.715	6.711	6.707	6.703
44	. 8046	. 8041	. 8037	. 8033	. 8028	. 00.3	. 8018	. 8014	. 8009	. 8005
	6.689	6.695	6.091	6.688	6.684	6680	6.676	6.672	6.668	6.665
45	. 8000	. 7995	. 7991	. 7985	.7982	. 7977	. 7973	.79\%8	. 7964	. 7959
	6.661	6.657	6.653	6.649	6.646	$6.64 ?$	6.638	6.634	6.630	6.627
46	. 7955	. 7950	. 7946	. 7941	. 7937	. 7932	. 7928	. 7923	. 7919	. 7914
	6.623	6.619	6.616	6.612	6.608	6.604	6.600	6.597	6.593	6.599
47	. 7910	. 7905	. 7901	. 7899	. 7892	. 7887	. 7883	. 7878	. 7874	7870
	6586	6.582	6.578	6.574	6.571	6.567	6.563	6.550	6.556	6.552
48	.7865 6.548	6.7845	.7856 6.541	6.7837	6.534	6. 5830	.7839 6.526	${ }^{6.523}$. 7830 6.519	6.515
49	. 78.21	. 7817	. 7812	. 7808	. 7804	. 7799	. 7795	. 7791	. 7786	.7782
	6.511	6.508	6.504	6.501	6.497	3. 494	6.490	6.486	6.483	6.479
50	. 77.8	. 7773	. 7769	. 7765	. 7761	. 7756	.775?	. 7748	. 7743	. 7739
	6.476	6.472	6.468	6.465	6.461	6.458	6.454	6.450	6.447	6.443
51	. 7735	. 7731	.7726	. 7722	. 7717	. 7713	. 7^{-09}	. 7705	. 7701	. 7677
	6.440	6.436	6.432	6.429	6.425	6.421	6.418	6.415	6.411	6.408
52	.7693	. 7688	. 7684	. 7680	. 7675	. 7671	. 7607	. 7653	. 7659	. 7654
	6.404	6.401	6.397	6.394	6.390	6357	6.383	6.350	6.376	6.373
53	. 7650	. 7646	. 7642	. 7638	. 7634	. 7629	. 7625	. 7621	. 7617	. 7613
	6.369	6.336	6.362	6.359	6.355	6.351	6.348	6.345	6.341	6.338
54	. $7 \mathrm{f00}$. 7805	. 7000	. 7596	. 7592	. 7588	. 7514	. 7530	${ }^{.7516}$. 7572
	6.334	6.331	6.327	6.324	6.321	6.317	6.314	6.311	6.307	6.304
55	. 5568	. 7563	. 7559	. 7555	. 7551	. 7547	. 7543	. 7539	. 7535	. 7531
	6300	6.293	6.293	6.290	6.287	6. 283	6.280	6.776	6.273	6.270
56	. 7527	. 75.23	.7519 6.950	. 7515	. 7511	.7507 5.79	-. 7503	6. 7199	. 7495	. 7491
57	6.2618 .7487	6.263 .7483	6.250 .7479	6.256 .7475	6.253 .7471	5.249 .7457	6.246 .7463	6. 243 .7459	6.240 .7455	6.236 .7451
	6.233	6.229	6.226	6.293	6.219	6.216	6.213	6.209	6.206	6.203
58	. 7447	.7443	. 7439	. 7435	. 7431	. 7427	. 7423	. 7419	. 7415	. 7411
	6.199	6.193	6.193	6.190	6.186	6.183	6.180	6.176	6.173	6.170
59	7407	. 7403	. 7400	. 7396	. 7392	. 398	. 7381	. 7380	. 7376	. 7372
	6.156	6.163	6.160	6.157	6.154	6.150	6.147	6.144	6.141	6.137
60	. 7308	. 7355	. 7361	. 7357	. 7353	. 7349	7345	7341	. 7338	. 3334
	6.134	6.131	6.128	6.124	6.121	6118	6.115	6.112	6.108	6.105
61	. 7330	. 7326	.7329	. 7318	.7315	. 7311	. 7307	. 7303	. 7299	. 7295
	6.102	6.039	6.036	6.093	6090	6.083	6.983	6.080	6.077	6.073
62	. 7292	. 7288	. 7284	.7280	. 7277	7273	. 720	. 7265	. 7261	. 7258
	6.070	6.067	6.064	6.060	6.057	6.054	6.051	6.948	6.045	6.042
63	. 7254	. 7250	. 7246	. 7243	. 7239	6. 7235	. 7231	. 7228	. 6224	. 7220
	6.038	6.035	6.039	6.029	6.026	6.023	6.020	6.017	6014	6.010
64	. 7216	. 7213	. 7209	. 7205	. 7202	. 7138	. 7194	. 7191	. 7187	. 7183
	6007	6.004	6.001	5.998	5.995	5992	5.989	5.986	5.983	5.950
65	. 779	. 7176	. 7172	. 7168	. 7165	. 7161	5. 757	. 7154	. 7150	. 7147
	5.976	5.973	5.970	5.967	5.904	5.931	5.558	5.955	5.952	5.949
66	. 7143	. 7139	. 7136	. 7132	. 7128	. 7125	. 7121	. 7117	. 7114	. 7110
	5.946	5.943	5.940	5.937	5.934	5.931	5.928	5.925	5.922	5.919
	. 7107	. 7703	. 7099	. 7096	. 7092	. 7089	. 7085	7081	. 7078	. 7074
	5916	5.313	5910	5.907	5.904	5001	5 Rng	5895	5802	5.859

BAUME', SPECIFIC GRAVITY AND POUNDS PER GALLON-Con. U. S. BUREAU OF STANDARDS-Con.

	0	1	2	3	4	5	6	7	8	9
68	. 707	.7067	. 7064	. 7060	70	. 7053	. 7049	. 7046	. 7042	. 7039
	5.886	5.883	5.880	5.87	5.874	5.8.1	5.808	5.835	5.552	5.850
69	. 7035	. 7032	. 7028	. 7025	. 7021	7018	. 8011	. 7011	. 700%	. 7004
	5.856	5.853	5.850	5.848	5.845	5.842	5.839	5.836	5.833	5.830
70	. 7000	. 6997	. 6993	. 6990	. 68	. 6983	. 6979	. 6976	. 6972	. 6608
	5.827	5.824	5.821	5.818	5.815	5.812	5.810	5.807	5.804	5.801
71	. 6035	.6902	. 6958	. 6955	6051	. $69: 8$. 6044	. 6941	. 6938	. 6034
	5.793	5.795	5.792	5.789	5.786	5.754	5.781	5.575	5.775	5.712
72	. 6931	. 6927	. 6934	. 6920	. 6917	. 6914	. 6910	. 6007	. 6903	. 6200
	5.769	5.760	5.763	5.760	5.758	3.755	5.752	5.749	5.746	5.744
73	. 6597	. 6893	. 6890	. 6556	. 6883	. 6880	. 5876	. 6873	. 6893	. 6866
	5.741	5.738	5.735	5.732	5.729	5.727	5.724	5.721	5.718	5.715
74	. 6863	.6859	. 685	. 6853	. 6849	. 6816	. 6843	. 6839	. 6836	. 6833
	5.712	5.710	5.707	5.704	5.701	5. 691	5.606	5.693	5.600	5.657
75	. 6829	.6826	. 6823	. 6819	. 6816	. 681	. 6819	. 68	. 6803	. 675
	5.685	5.683	5.679	5.676	5.673	5.671	5.665	5.665	5.602	5.660
76	. 6796	. 6703	. 6790	. 6783	. 6783	. 6780	. 6.676	-.6733	${ }^{.6710}$. 676
	5.657	5.604	5.652	5.649	5.643	5.043	5.640	5.638	5.635	5.633
77	. 6763	. 6760	. 6757	. 6753	. 6750	. 674	. 6144	. 6.670	5.6737	5.8734
	5.629	5.627	5.624	5.621	5.618 .6718	5.616	$\begin{gathered} 5.613 \\ .6711 \end{gathered}$	$\begin{aligned} & 5.610 \\ & .6708 \end{aligned}$	5.608 .6 .05	. 6.615
78	5.602	5.600	5.097	5.594	5.592	5.55%	5.586	5.584	5.581	5.578
79	. 6699	. 6095	. 6692	. 6683	. 6680	.543	. 65.9	. 6576	. 66.3	. 66.0
	5.576	5.573	5.570	5.568	5.563	5.562	5.560	5.5057	5.554	5.55
80	. 5667	. 6063	. 6600	.6857	.6654	6351	-6t 48	. 66.5	.6f41	. 60.08
	5.549	5.546	5.543	5.541	5.538	5.536	$\begin{gathered} 5.533 \\ .6616 \end{gathered}$	$\begin{aligned} & 5.531 \\ & .6613 \end{aligned}$	$\begin{gathered} 5.528 \\ .6510 \end{gathered}$	$\begin{aligned} & 5.525 \\ & .0907 \end{aligned}$
S1	5.522	5.520	5.517	5.515	5.512	5.510	5.507	5.504	5.502	5.400
82	. 6004	. 6601	. 6598	. 6594	. 6231	. 6788	. 6585	(58)	. 6579	. 657 76
	5.497	5.494	5.491	5.459	5.496	5.44	3.451	5.478 6501	$\begin{aligned} & 5.476 \\ & .6548 \end{aligned}$	$\begin{aligned} & \text { 5. } 473 \\ & 6.545 \end{aligned}$
83	. 6573	. 65.0	. 6.657	5. 6564	.6500 5.40	. 6.458	5.450	5.453	5.450	5.418
	5.471 .6542	5.468 .6539	$\begin{aligned} & 5.456 \\ & .6536 \end{aligned}$	$\begin{gathered} 5.463 \\ .6533 \end{gathered}$	$\begin{gathered} 5.40 \\ .6530 \end{gathered}$	${ }^{9} 6527$	5.5594	. 6.21	. 6518	.6.315
84	5.445	5.443	5.440	5.437	5.435	5.432	5.430	5.42	5.425	5.422
85	. 6512	. 6509	. 6506	. 6.503	. 6500	. 2407	. 6494	(1)490	6467	
	5.420	5.417	5.415	5.412	5.410	5.407	$\begin{aligned} & 5.455 \\ & .6464 \end{aligned}$	5.402 . 6151	$\begin{gathered} 5.4(0) \\ .6078 \end{gathered}$	0.31
86	5. 395	. 6.392	5. 3947	5. 6157	5.385	5.38?	5.380	5.27	5.3 .5	5.372
87	. 6452	. 6449	. 6146	. 6443	. 6440	. 6437	. 6134	. 4.431		. $6.34{ }^{\circ}$
	5.370	5.367	5.365	5.362	5.300	7.35\%	5.355	5.352	$\begin{aligned} & 5.35 x \\ & 503 \end{aligned}$	5.347
88	5.6422	. 6.419	5. 6416	- 6.6413	5.6310	5.3	5.337	5.3 ± 3	5.325	5.328
89	5.345 .6393	5.343 .6390	5.340 .6357	5.338	5.3391	. 5.3378	5. 6375	.637:	. 63×7	. 6231
	-. 320	5.318	5.316	5.313	5.311	$5.3 \cap 1$	5.306	5.304	5.311	5. $2 n$
90	. 6364	. 6361	.6378	. 6350	. 6352	- 53.13	5.251	5.27?	5.71	5.2%
	5.296	5.294	5.291	5.289	5.285 .6323	$\begin{gathered} 5.284 \\ .6321 \end{gathered}$	$\begin{array}{r} 0.251 \\ .6318 \end{array}$. 63315	(T312	, ${ }^{\text {a }}$ y
91	5.272	5.270	5.267	5.265	5.263	5.261	5.32	5.356	5.2	505
92	. 6306	. 6303	. 6301	. 6308	.6:295				5.2	5.2
	5.248	5.246	5.214	5.241	5.237	$\frac{5.237}{6.64}$	5.234	6-8	ก250	Nour
93	. 6278	. 6275	5.6272	-. 6210			5.210	5.206	5.2 \%	5.314
	5.225	5.222	5.220	5.215	$\begin{gathered} 5.216 \\ .6239 \end{gathered}$. 2.26	. 6233	.6.31	nix	925
94	5.20		5.196	5.194	5.192	5.1(\%)	5.187	5.18	5.183	
95	. 6222	. 6219	. 6217	. 6214	. 6211	- 008	5in		18	515%
	5.178	5.176	5.174	5.171	5.163	$5 .)$	5.164	. 6176	. 6173	. 6170
96	. 6195	. 6192	. 6189	. 6186			5.142	5.140	5.1.31	5. $1 \times$
	5.155	5.153	5.150 6760	5.148	5.146 $.675 \%$	61.4	. 1175	. 614.8	. 61116	5114.9
97	5.13 ?	5.130	5.128	5.126	5.124	5.121	5.119	5.116	511	5112
38	. 6140	. 6738	. 6135	.6132	. 6130	127			5.192	$5 .(0.8)$
	5.110	5.108	5.106	5.103	5.101	5.0 fil(5.008	(1)6	nors	(18)
. 9	. 6114	. 6111	. 6108	. 6108	5.6103		5.084	5.072	$5.0 \% 0$	5.088
	5.088	5.085	5.063	5.081	5.079	-. 1 (\%				
	. 6087									
	5.066									

BAUME' GRAVITY BY PETROLEUM ASSOCIATION FORMULA EQUIVALENTS OF SPECIFIC GRAVITY AND WEIGHT IN POUNDS PER U. S. GALLON FOR OILS OR FLUIDS LIGHTER THAN WATER. (With Extension of Table for Oils Heavier Than Water.)
 (MODULUS 141.5 TAGLIABUE.)

Baume'	. 0	.1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
4	1.044	1.043	1.042	1.041	1.041	1.040	1.039	1.039	1.038	1.037
	8.70	8.69	8.68	8.67	8.67	8.66	8.66	8.65	8.65	8.64 Pd
5	1.037	1.036	1.035	1.034	1.034	1.033	1.032	1.032	1.031	1.030
	8.64	8.63	8.62	8.61	8.61	8.61	8.60	8.60	8.59	8.58 Pd
6	1.029	1.028	1.027	1.026	1.026	1.025	1.024	1.024	1.023	1.022
	8.57	8.56	8.56	8.55	8.55	8.54	8.53	8.53	8.52	8.51 Pd
7	1.022	1.021	1.020	1.019	1.019	1.018	1.017	1.017	1.016	1.015
	8.51	8.51	8.50	8.49	8.49	8.48	8.47	8.47	8.46	8.46 P
8	1.014	1.013	1.012	1.011	1.011	1.010	1.009	1.009	1.008	1.007
	8.45	8.49	8.43	8.42	8.42	8.41	8.41	8.41	8.40	8.39 Pds
9	1.007	1.006	1.005	1.004	1.00.1	1.003	1.002	1.002	1.001	1.000
	8.39	8.38	8.37	8.26	8.36	8.36	8.35	8.35	8.34	8.33 Pds
10	1.000	. 9993	. 9986	. 9979	. 9972	. 9965	. 9958	. 9951	. 9944	. 9937
	8.331	8.325	8.319	8.314	8.308	8.302	8.296	8.290	8.284	8.279
11	. 99.85	. 99.93	. 9916	. 9.9909	. 9902	. 98895	. 9.9888	. 9881	. 9874	. 9.9868
	8.273	8.267	8.261	8.255	8.249	8.24 .4	8.238	8.232	8.226	8.221
12	. 9861	. 9854	. 9847	. 9840	. 9833	. $98: 26$. 9820	. 9813	. 9806	. 9799
	8.215	8.209	8.204	8.198	8.192	8.186	8.181	8.175	8.169	8.164
13	. 9792	. 9786	. 9779	. 9772	. 9765	. 9759	. 9752	. 9745	. 9738	. 9732
	8.158	8.153	8.147	8.141	8.135	8.130	8.124	8.119	8.113	8.108
14	. 9725	. 9718	. 9712	. 9705	. 9698	. 9692	. 9685	. 9679	. 9672	. 9665
	8.102	8.096	8.091	8.085	8.079	8.074	8.069	8.064	8.058	8.052
15	. 9659	. 9652	. 9646	. 9639	. 9632	. 9626	. 9619	. 9613	. 9606	. 9600
	8.047	8.041	8.036	8.030	8.024	8.019	8.014	8.009	8.003	7.998
16	. 9593	. 9587	. 9580	. 9574	. 9567	. 9.9561	. 9554	. 9548	. 95.42	. 9535
	. 7992	7.987	7.981	7.976	7.970	7.965	7.959	7.954	7.949	7.944
17	. 9529	. 9522	. 9515	. 9509	. 9503	. 9497	. 9490	. 9484	. 9478	. 9471
	7.939	7.933	7.928	7.922	7.917	7.912	7.906	7.901	7.896	7.890
18	. 9465	. 9459	. 9452	. 9446	. 9440	. 9.433	. 9427	. 9421	. 9415	. 9408
	7.885	7.880	7.874	7.869	7.864	7.859	7.854	7.849	7.844	7.838
19	-. 9402	-. 9396	. 9390	. 9383	. 9377	. 9871	. 9365	. 93.59	. 9352	. 9346
	7.833	7.828	7.823	7.817	7.812	7.807	7.802	7.797	7.791	7.786
20	-. 9340	. 9334	. 9823	. 9322	. 9315	- 9309	-. 9303	. 9297	. 9291	. 9285
	7.781	7.776	7.771 .9267	7.766 .9260	7.760	7.755 .9248	7.759 .9242	7.745 .9236	7.740 .9230	7.735
21	7.730	7.725	7.9267	7.715 7.9260	.9254 7.710	7.705	.92 .42 7.700	7.9235	.9230 7.690	$.9224$
22	. 9218	. 92212	. 9206	. 9200	. 9194	. 9188	. 9182	. 9176	. 9170	. 9165
	7.680	7.675	7.670	7.665	7.660	7.655	7.650	7.645	7.640	7.635
23	. 9159	. 9153	. 9147	. 9141	. 9135	. 9129	. 9123	. 9117	. 9111	. 9106
	7.630	7.625	7.620	7.615	7.610	7.605	7.600	7.595	7.590	7.586
24	. 9100	. 9094	. 9088	. 9982	. 9076	. 9071	. 9065	. 9059	. 9053	. 9047
	7.581	7.576	7.571	7.566	7.561	7.557	7.552	7.547	7.542	7.537
25	. 9042	. 9036	. 9030	. 9024	. 9018	. 9013	. 9007	. 9001	. 8996	. 8990
	7.533	7.528	7.523	7.518	7.513	7.509	7.504	7.499	7.495	7.490
26	. 8884	. 8978	. 8973	. 8967	. 8961	. 8956	. 8950	. 8944	. 8939	. 8933
	7.485	7.480	7.475	7.471	7.465	7.461	7.456	7.451	7.447	7.442
27	. 8927	. 8922	. 8916	. 8911	. 8905	. 8899	. 88894	- 8888	. 8883	. 8877
	7.4.7	7.433	7.428	7.424	7.419	7.414	7.410	7.405	7.400	7.395
28	. 8871	. 8866	. 8860	. 8855	. 8849	. 8844	. 8838	. 8833	. 8827	. 8822
	7.390	7.386	7.381	7.377	7.372	7.378	7.363	7.359	7.535	7.350
29	. 8816	. 8811	. 8805	. 8800	. 8794	. 8789	. 8783	. 8778	. 8772	. 8767
	7.345	7.340	7.335	7.331	7.325	7.322	7.318	7.313	7.308	7.304
30	. 8762	. 8755	. 8751	. 8745	. 8740	. 8735	. 8729	. 8721	. 8718	. 8713
	7.300	7.295	7.290	7.285	7.281	7.277	7.272	7.268	7.263	7.259
31	. 8708	. 87.02	. 8697	. 8692	. 8686	. $8 \in 81$. 8676	. 8670	. 8665	. 8660
	7.255	7.250	7.245	7.241	7.236	7.232	7.228	7.223	7.219	7.215
32	. 8654	8649	. 8644	. 8639	. 8633	. 8628	. 8623	. 8618	. 8612	. 8607
	7.210	7.205	7.201	7.197	7.192	7.188	7.184	7.180	7.175	7.170
33	. 8602	. 8.897	. 8591	. 8588	. 8.1881	. 8.8576	. 8571	. 85565	. 8560	-. 8555
	7.166	7.162	7.157	7.153	7.149	7.145	7.141	7.136	7.131	7.127
34	. 8550	. 8.8545	. 8.8510	. 8.8534	. 8.8529	. 8.8524	. 8.8519	. 8.8514	-. 8509	. 8504
	7.123	7.119	7.115	7.110	7.106	7.101	7.097	7.093	7.089	7.085

BAUME', SPECIFIC GRAVITY AND POUNDS PER GALLON-Con. (MODULUS 141.5.)

Baume ${ }^{\text {d }}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
35	. 8498	. 8493	. 8488	. 8483	. 8478	. 8.473	. 8.468	. 8163	. 8.158	. 8453
	7.080	7.076	7.071	7.067	7.063	7.059	7.055	7.051	7.046	7.042
36	. 8448	. 84.13	. 8438	. 8133	. 8128	. 8423	. 8118	. 8413	. 9408	. 8103
	7.038	7.034	7.030	7.026	7.021	7.017	7.013	7.009	7.005	7.001
37	. 8398	. 8393	. 8388	. 8383	. 8378	. 83773	. 83868	$!.8363$	${ }_{6} .8355$	-8353
	6.996	6.992	6.988	6.984	6.980	6.976	6.971	6.967	6.963	6.959
38	. 8348	. 8343	. 8338	. 8333	. 8328	. 8324	. 8319	. 8314	. 8309	. 8304
	6.955	6.951	6.946	6.942	6.938	6.935	6.931	6.926	6.922	6.918
39	. 8299	. 8294	. 8289	. 8285	. 8280	. 8275	. 8270	. 8265	. 8260	. 8256
	6.914	6.910	6.906	6.902	6.898	6.894	6.890	6.886	6.881	6.878
40	. 8251	. 8246	. 8241	. 8236	. 8232	. 82227	. 8232	. 8217	. 5212	. 8208
	6.874 !	6.870	6.866	6.861	6.858	6.851	6.850	6.846	6.811	6.838
41	. 8203	${ }_{6} .8198$. 8193	. 8189	. 8.8184	. 68179	. 8174	. 818170	6.8165	6. 8160
	6.834	6.830	6.826	6.822 .8142	6.818 .8137	6.814 .8132	6.810 .8128	6.806 .8123	. .8111 S	6.798 .811
42	.8156 6.795	. 8151 6.791	.8146 6.786	6. 8142	6.8137 6.779	.8132 6.775	6.771	. 8123 6.767	6.811S 6.763	6.760
43	. 8109	. 8104	. 8100	. 8095	. 8090	. 8086	. 8081	. 8076	. 8072	. 8067
	6.755	6.751	6.718	6.744	6.740	6.736	6.732	6.728	6.725	6.721
44	. 8063	. 8058	. 8053	. 8049	. 80.14	. 80.40	. 8035	. 8031	. 8026	. 8029
	6.717	6.713	6.709	6.706	6.701	6.698	6.694	6.691	6.868	6.683
45	. 8017	. 8012	. 8008	. 8003	. 7999	6.7994	. 7990	. 7985	. 6.698	. 6.6976
46	6.679	6.675 .7967	6.671	6.667 .795	6.6964 .7954	6.660 .7949	6.656 .7945	6.652 .7941	6.689 .7936	-.7932
	6.641	6.637 6	. 7963 6.634	6.630	6.626	6.623	6.619	6.616	6.611	6.608
47	. 7927	. 7923	. 7918	. 7914	. 7909	. 7905	. 7901	. 7896	. 7892	.7887
	6.601	6.601	6.596	6.593	6.589	6.586	6.582	6.578	6.575	(6.571
48	. 7883	. 7879	. 7874	${ }_{6}^{.7870}$	6.7865	. 7861		6. 6.512	6.538	6.535
	6.567 .7839	6.564 .7835	6.560 .7831	6.556 .7826	6.552	6.549 .7818	6. .7813 .7513	-. 7809	. 7805	.7800
49	6.531	6.527	6.52 .1	6.520	6.517	6.513	6.500	6.506	6.502 $.77 \mathrm{li2}$	6.198
50	${ }^{6 .} .7796$.7792 6.492	.7788 6.488	.7783 6.484	.7779 6.481	.7775 6.177	.7770 6.473	.7766 6.870	.7762 6.177	6. 1763
	6.495 .7753	6.492 .7749	6.488 .7715	6.484 .7741	6.481 .7736	.777 .7732	¢. 7728	-7721	6. 7720	8.7115
51	6.459	6.456	6.452	6.449	6.415	6.442	6.438	6. 1385	6.133^{3}	6i. 127
52	. 7711	. 7707	. 7703	. 7699	6. 76910	.7690 6.407	.7686 6.103	6.100	6.1397	(1.:19\%
	6.42 .4 .7669	6.421 .7665	6.417	6.111 .7657	6.410 .7653	6.407 .7649	6. 76315	. 76.10	-Tfil6	.7tis
53	6.389	6.386	6.382	6.379	6.376	6.372	6.369	6.365	6.36\%	6.354
54	. 7628	. 7624	6.882	. 7616	. 7612	. 76.7308	.7603 6.3311	${ }^{-.8599}$	6.127	6.323
55	6.355	6.352	6.348	6.345	6.342	6.3388 .7567	6.73.1	6.855!	. 7555	- 5.551
	. 7587	6.7583	. 7579 6.314	${ }^{.1575}$	6.307	6.301	6.301	6.297	(6.24)	15.23911
56	6.321 .7547	6.317 .7543	6.314 .7539	6.311 .7535	6.307	6. 7527	. 75.32	. 7519	-5.515	-7511
	6.287	6.281	6.281	6.277	6.274	6.271	6.267 7.183	6.96.	6.. .175	. 117
57	. 7507	. 7503	. 7499	. 74.95	. 6.7418	6.237	6.234	6.231	16,2\%7	(i.).24
58	6.254	6.251	6.247	6.214 .7455	6.241 .7451	6. 7447	. 71.113	. 7110	. 713 i	(1.7131
	6. 7221	.7463 6.217	6.214	6.211	6.207	6.201	6.201	6.198	6.195	(1.) 191
59	. 7428	. 7424	. 7420	. 7416	. 7.112	. 71.108	6. 7.169	(6. 7160	(i.) 16	(1.) 51
	6.188	6.185	6.182	6.178	6.175	6.172	6.169 .7366		- 63 \%	. 6.151
60	. 7389	. 7385	. 7381	6.7377	6. 6.1374	6.140	6.137	6.13:3	1.1.130	6.127
	6.156	6.152	6.149	6.146 .7339	6.143 .7335	-.13:32	. $73 \% 8$. 73321	.7330	C. 5116
61	6.124	. 7347 .121	.7343 6.117	6.114	6.111	6. 108	6.105	6.102	(6.01! 014	C.045
62	6.124 .7313	6.121 .7390	6.7305	6.7301	6. 7298	. 729.1	. 7290	$\frac{.7286}{(6.170)}$	(8,0)2i	6.041
	6.092	6.089	6.086	6.082	6.080	6.077 .72 .56	6.0.7 .7253	.12319	.7215	. 212
63	. 7275	. 7271	. 6.7268	6.726.1 6.052	6.7260	6.085	6.012	6.10) 3 ?	6,013i	6, 01.18
64	6.061 .7238	6.057 .7234	6.055 .7230	6.052 .7227	6.048 .7223	8.7219	(7316	- 9313	¢.00\% 80.8	
	6.030	6.027	6.023	6.021	6.017	6.01 .4 .7183	$\begin{aligned} & 6.012 \\ & .7179 \end{aligned}$	$\begin{array}{r} 6.015 \\ .7175 \end{array}$. 1173	-7114
65	. 7201	5.7197	. 71994	. 7190 5.990	5.987	5.981	5.9331	5.977	5.97.	
	5.999	5.996	5.99:3	5.930 .7151	5.987 .7150	-.71.11;	. 71113	. 71313	$.711 i$	
66	. 7165	. 7161	5.952	5.960	5.957	5.95 .3	5.951	5.918	5.710	$5 \text { 712 }$
67	5.969 .7128	5.966 .7125	5.952 .7121	5.7118	. 7111	. 7111	. 7102	5.91148	¢.915	6.けに
	5.938	5.936	5.933	5.938	5.927	5.	\%.2al			

BAUME', SPECIFIC GRAVITY AND POUNDS PER GALLON-Con.
(MODULUS 141.5.)

	0	1	3	3	*	5	6	7	8	\bigcirc
0	. 7093	. 7089	. 7086	. 7082	. 7078	. 7075	. 7071	58	54	61
	5.609	$5.90{ }^{\text {d }}$	5.903	5.900	5.898 .7043	5.8040	5.8891	5.888	5.855	5.883
	. 7057	5.8054	5.873	5.871	5.868	$5.86{ }^{\circ}$	5.862	5.859	5.856	5.853
70	$\begin{gathered} 5.878 \\ .70 \times 22 \end{gathered}$	$\begin{gathered} 5.877 \\ .7019 \end{gathered}$	$\begin{gathered} 5.873 \\ .7015 \end{gathered}$. 7012	. 7008	. 7005	. 7001	. 6098	. 6095	. 6081
	5.850	5.818	5.844	5.842	5.838	5.836	5.833	5.830	5.828	5.82
7	. 608	. 6884	. 0081	. 6977	. 6897	. 6970	. 6967	. 6964	. 6900	. 6057
72	5.822	5.818	5.816	5.813 .6943	5.810 .6940	5.807	${ }^{5.804}$	5.802	$\begin{aligned} & 5.798 \\ & .6930 \end{aligned}$	$\begin{aligned} & 5.726 \\ & .6089 \end{aligned}$
	5.793	5. 790	5.787	5.784	5.782	5.778	5.776	5.773	5.770	5.768
73	. 6318	. 6916	. 6012	. 6009		. 6952	. 6893	. 0896	. 6892	. 6889
	5.764	5.762	5.758	5.756	5.753	5.750	5.748	6.745	5.742	5.738
	5.737	5.733	5.731	5.728	5.725	5.723	5.720	5.717	5.74	5.712
75	. 6852	. 6849	. 6846	. 6842	. 6839	. 6836	. 6832	. 69599	. 6836	. 6823
	5.708	5.706	5.703	5.700 .6309	5.698 $.6806$	5.005	5.602 .6800	5.689	5.657	$\begin{gathered} 5.684 \\ .6790 \end{gathered}$
76	5.651	5.678	5.676	5.673	5.670	5.663	5.665	5.608	5.659	5.657
77	. 6787	. 6783	. 6780	. 6777	. 6774	. 6770	. 6767	. 6764	. 6761	.675
	$5.6 \overline{4}$	5.651	5.648	5.646	5.643	5.640	5.638	5.635	5.633	5.629
8	. 6754	. 6751	5.622	5.619	5.616	5.613	5.611	5.608	5.605	5.603
79	5.627	5.624	5.622	5.6713	5.6709	5.6706	. 6703	. 6700	.6697	. 6593
	5.600	5.597	5.595	5.593	5.589	5.587	5.584	5.552	5.579	5.576
80	5.573	. 6.571	5.568	5.560	$5.50{ }^{\text {b }}$	5.561	5.558	5.55	5.553	5.550
81	. 6659	. $66 \overline{0} 6$. 6653	. 6649	. 6646	.6043	. 6840	. 6331	.6634	6631
	5.548	5.545	5.543	5.540	5.537	5.534	5.532	5.529	5.527	5.524
82	. 6608	. 6625	6621	. 6618	. 6815	6512	. 6009	. 5006	. 6.503	. 60
83	5.5257	5.519	${ }^{5} .55161$	5.513	5.511	5.508	5.6578	.6575	. 6.572	. 6579
	5.496	5.493	5.491	5.488	5.485	5.483	5.480	5.478	5.475	5.473
84	. 656	. 6.463	. 6000	${ }^{5} .6007$	5.460	5.458	$5.45 \overline{5}$	5.453	5.450	5.418
85	$\begin{gathered} \overline{5} .400 \\ .6535 \end{gathered}$	5.468 .6533	$\begin{aligned} & 5.465 \\ & .6530 \end{aligned}$	- .6527	5. 65.24	. 6521	. 6518	. 6515	6512	. 6500
	5.445	5.413	5.440	5.438	5.435	5.433	5.430	5.428	5.425	5.423
86	. 6500	. 6503	. 6.500	. 6497	5.6494	. 6491	158	185	. 68	. 6479
	5. 430	5.418	5.415 .6470	5.419	${ }^{\text {5 }} .64164$	5.408	${ }^{5.405}$	${ }^{\text {5 }} .4045$	5.400	5.338
87	5.395	5.393	5:300	5.388	5.385	5.353	5.380	5.378	5.375	5.373
88	. 6446	. 6444	. 6441	6438	. 6435	. 6432	. 6429	. 6426	. 6.643	6420
	5.370	5.368	5.366	5.363	5.361	5.358	5.356 . 6400	5.353	5.351	5. 6299
89	5.346	5.314	5.341	5.339	5.237	5.334	5.332	5.329	5.327	5.324
90	. 6388	. 6385	. 6382	. 6380	. 6377	. 6374	. 6371	. 6368	6363	6362
	5.323	5.319	5.317	5.315	5.313	5.310	5.308	5.305	5.303	
	6360	.6357	. 63.34	. 6.351	. 6345	. 6345	. 6342	. 6330	${ }_{5} .6337$. 2.31
	5.299	5.296	5.234	5.291	5.289	5.280	5.284	5.282	5.279	5.237
92	5.674	. 5.2328	5. 6.2325	. 5.2383	5.265	. 5.2631	5. 2600	5.238	5.256	5.254
23	. 6303	. 6300	. 6297	. 6294	. 6292	. 6389	. 6886	. 6283	. 6281	. 6278
	5.251	5.248	5.246	5.244	5.242	5.230	5.237	5.234	5.233	5.230
	. 6275	. 6272	. 6309	. 6365	. 6264	6361	. 6258	. 6256	. 235	. 2250
	5.228	5.225	5.223	5.221	5.219	5.216	5.214	5.212	5.2098	5.207
95	. 6247	. 6.204	. 63.42	. 6238	5.1936	. 6.103	5.191	5.182	5. 188	8. 184
96	5. 6220	5.202				5.193	6. 6203	. 6201	. 6188	. 6105
	5.182	6.179	5.177	5.175	5.173	5.170	5.168	5.166	5.164	8.161
88	. 6123	. 6190	. 6187	. 6184	. 6182	. 6179	. 6176	. 6174	. 617	. 6188
	б. 159	5.157	5.154	5.152	5.150	5.148	5.145	5.144	5.141	$5.13{ }^{\text {\% }}$
	6166	. 6163	. 61.100	. 6158	. 51.155	. 6155	. 61.50	. 6147	. 6119	6. 6116
	5.137	5.134	5.132	5.130	5.128	5.125	5.124		5.118	
	. 6138	. 6138	. 6134	6131	. 6128	. 6126	. 6123	. 6120	. 6118	. 6110
	5.114	5.112	5.110	5.108	5.105	5.104	5.101	5.098	5.097	5.094

REDUCTION OF BAUME' GRAVITY READINGS TO 60 F .

(Thls table shows the degrees Baume' at $60^{\circ} \mathrm{F}$ of oils having, at the designated temperatures, the observed degrees Baume' indicated. For example, if the observed degrees Baume' is 20.0 at $78^{\circ} \mathrm{F}$, the true degrees Bame' at $60^{\circ} \mathrm{F}$ wll be 19.0. Intermediate values not giren in the table may be conveniently interpolated. For example, if the observed degrees Baume' is 20.4 at is ${ }^{\circ}$ F. the true degrees Baume" at $60^{\circ} \mathrm{F}$ will be 19.4. The headings "Observed Degrees Baume" and "Observed Temperature" signify the true indication of the hydrometer and the true temperature of the oil-that is, the observed readings corrected, if necessary, for instrumental errors.)

Observed Temperature in ${ }^{\circ} \mathrm{F}$.	Observed Degrees Baume'									
	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	
	Corresponding Degrees Baume at $60^{\circ} \mathrm{F}$.									
60	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	
62	7.9	8.9	9.9	10.9	11.9	12.9	13.9	1.4 .9	15.9	
64	7.8	8.0	9.8	10.8	11.8	12.8	13.8	14.8	158	
66	7.7	8.7	9.7	10.7	11.7	12.7	13.7	14.7	15.7	
68.	7.6	8.6	9.6	10.6	11.6	12.6	13.6	14.7	15.7	
70	7.5	8.5	9.5	10.5	11.5	12.5	13.6	14.6	15.6	
72	7.4	8.4	9.4	10.5	11.5	12.5	12.5	14.5	15.5	
74	7.3	8.3	9.3	10.4	11.4	12.4	13.4	14.5	15.5	
76	7.2	8.2	9.2	10.3	11.3	12.3	13.3	14.4	15.4	
78	7.1	8.1	9.1	10.2	11.2	12.2	13.3	14.3	15.3	
80.	7.1	8.1	9.1	10.1	11.1	12.2	13.2	14.3	15.3	
82	6.9	7.9	9.0	10.1	11.1	12.1	13.1	14.2	15.2	
84	6.8	7.8	8.9	10.0	11.0	12.0	13.0	14.1	15.1	
86	6.7	7.7	8.8	9.9	10.9	11.9	13.9	14.1	15.0	
88	6.7	7.6	8.8	9.8	10.8	11.8	12.9	14.0	15.0	
90	6.6	7.6	8.7	9.8	10.8	11.8	12.8			
92	6.5	7.5	8.6	9.7	10.7	11.7	12.7	138	11.8	
94	6.4	7.4	8.5	9.6	10.6	11.6	12.7	137	11.7	
96	6.3	8.3	8.4	9.5	, 10.5	11.5	12.6	13.7	11.7	
98	6.3	7.3	8.3	9.4	-10.5	11.1	12.5	13.6		
100	6.2	7.2	8.3	9.4	10.4	11.4				
102	6.1	7.1	8.2	9.3	10.3	11.3	12.3	135	1.31	
104	6.0	7.0	8.1	9.2	10.2	11.2	12.3	13.3	1.1 .8	
106	5.9	6.9	8. 0	9.1	10.1	11.1	12.1	13.2	$11:$	
108.	5.8	6.8	8.0	9.0	10.0	11.0				
110.	5.7	6.7	7.9	9.0	9.9	10.9			1.1	
112.	5.6	6.6	7.8	8.9	9.9	10.9 10.8	12.0		1.41 1.10	
114	5.5	6.5	7.7	8.8	9.8	10.8	111.8	129	1.38	
116.	5.4	6.4	7.6	8.7 8.6	9.7	10.6	11.7	12.8	13 ?	
118	5.4	6.4	7.5	8.6	9.6	10.6				
120	5.3	6.3	7.4	8.5	9.6	10.5	11.7			
122.	5.2	6.2	7.3	8.4	9.4	10.5	11.6	12	1137	
124	5.1	6.1	7.2	8.3	9.3	10.4	11.1	125	13	
126	5.0	6.0 5.9	7.1	8.2	9.2	10.2	11.8	12	$1: 3$	
128.	4.9	5.9	7.0	8.1	9.1	10.2	$11 .$.			
130.	4.8	5.8	6.9	8.0	9.1		11.8	12.	$1: 3$ $1: 3$ 18	
132	4.7	5.7	6.8	7.9	9.0		111	12:		
134	4.6	5.6	6.7	7.8	8.3 8.8	10 \square $!$	110	121	1:3	
136	4.5	5.5	6.6	7.7	8.8 8.8	9.8		120	1111	
138.	4.4	5.4	6.5	7.6	8.8	9.8				
140	4.3	5.4	6.5	7.6	8.7	9.8		113	$\begin{array}{ll}1: 1 \\ 13 & 1 \\ 18\end{array}$	
142	4.2	5.3	6.4	7.5	8.6 8.5	96			$1 \because!$	
144	4.1	52.	6.3	7.4	8.6	9.5	10 if	11 \%	12 8	
146	4.0	5.1	6.2	7.2		9.1	10%	11 i	127	
148	3.9 3.8	5.0 4.9	6.1	7.1	8.2	93	111	11	120	

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed Temperature in - F .	Observed Degrees Baume'									
	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0
	Corresponding Degrees Baume ${ }^{\prime}$ at $60^{\circ} \mathrm{F}$.									
30	18.6	19.7	20.7	21.7	22.7	23.7	24.8	25.8	26.9	27.9
32	18.6	19.6	20.6	21.6	22.6	23.6	24.7	25.7	26.8	27.8
34	18.5	19.5	20.5	21.5	22.5	23.5	24.6	25.6	26.7	27.7
36	18.3	19.4	20.4	21.4	22.4	23.4	24.5	25.5	26.5	27.5
38	18.2	19.3	20.3	21.3	22.3	23.3	24.4	25.4	26.4	27.4
40	18.1	19.1	20.1	21.2	22.2	23.2	24.2	25.2	26.2	27.2
42	18.0	19.0	20.0	21.1	22.1	23.1	24.1	25.1	26.1	27.1
44	17.9	18.9	19.9	20.9	21.9	22.9	23.9	24.9	26.0	27.0
46	17.8	18.8	19.8	20.8	21.8	22.8	23.8	24.8	25.9	26.9
48	17.6	18.7	19.7	20.7	21.7	22.7	23.7	24.7	25.8	26.8
50	17.5	18.6	19.6	20.6	21.6	22.6	23.6	24.6	25.6	26.6
52	17.4	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5
54	17.3	18.3	19.3	20.3	21.3	22.3	23.3	24.3	25.4	26.4
56	17.2	18.2	19.2	20.2	21.2	22.2	23.2	24.2	25.3	26.3
58	17.1	18.1	19.1	20.1	21.1	22.1	23.1	24.1	25.1	26.1
60	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0
62	16.9	17.9	18.9	19.9	20.9	21.9	22.9	23.9	24.9	25.9
64	16.8	17.8	18.8	19.8	20.8	21.8	22.8	23.8	24.7	25.7
66	16.7	17.7	18.7	19.7	20.7	21.7	22.7	23.7	24.6	25.6
68	16.6	17.6	18.6	19.5	20.5	21.5	22.5	23.5	24.5	25.5
70	16.5	17.5	18.5	19.4	20.4	21.4	22.4	23.4	24.4	25.4
72	16.4	17.4	18.4	19.3	20.3	21.3	22.3	23.3	24.3	25.3
74	16.3	17.3	18.2	19.2	20.2	21.2	22.2	23.2	24.1	25.1
76	16.2	17.2	18.1	19.1	20.1	21.1	22.1	23.1	24.0	25.0
78	16.1	17.1	18.0	19.0	19.9	20.9	21.9	22.9	23.9	24.9
80	16.0	17.0	17.9	18.9	19.8	20.8	21.8	22.8	23.8	24.8
82	15.9	16.9	17.8	18.8	19.7	20.7	21.7	22.7	23.7	24.7
84	15.8	16.8	17.7	18.7	19.6	20.6	21.6	22.6	23.5	24.5
86	15.7	17.6	17.6	18.6	19.5	20.5	21.5	22.5	23.4	24.4
88	15.5	16.5	17.5	18.4	19.4	20.4	21.3	22.3	23.3	24.3
90	15.4	16.4	17.3	18.3	19.3	20.3	21.2	22.2	23.2	24.2
92	15.3	16.3	17.2	18.2	19.2	20.2	21.1	22.1	23.1	24.1
94	15.2	16.2	17.1	18.1	19.1	20.1	21.0	22.0	23.0	24.0
96	15.1	16.1	17.0	18.0	19.0	20.0	20.9	21.9	22.8	23.8
98	15.0	16.0	16.9	17.9	18.8	19.8	20.8	21.8	22.7	23.7
100	14.9	15.9	16.8	17.8	18.7	19.7	-20.7	21.7	22.6	23.6
102	14.8	15.8	16.7	17.7	18.6	19.6	-20.5	21.5	22.5	23.5
104	14.7	15.7	16.6	17.6	18.5	19.5	:20.4	21.4	22.4	23.4
106	14.5	15.5	16.4	17.5	18.4	19.4	-20.3	21.3	22.3	23.3
108	14.4	15.4	16.3	17.3	18.2	19.2	$\bigcirc 20.2$	21.2	22.2	23.1
110	:14.3	15.3	16.2	17.2	18.1	19.1	20.1	21.1	22.0	23.0
112	\%14 2	15.2	16.1	17.1	18.0	19.0	20.0	21.0	21.9	22.9
114	14.1	15.1	16.0	17.0	\%17.9	18.9	19.9	20.9	21.8	22.8
116	14.0	15.0	15.9	16.9	ใ17.8	18.8	19.8	20.8	21.7	22.7
118.	13.9	14.9	15.8	16.8	17.7	18.7	19.6	20.6	21.5	22.5
120.	13.8	14.8	15.7	16.7	17.6	18.6	19.5	20.5	21.4	22.4

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed Temperature in ${ }^{\circ} \mathrm{F}$	Observed Degrees Baume'									
	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	25.0	36.0
	Corresponding Degrees Baume' at $\mathrm{C} 0^{\circ} \mathrm{F}$									
30	29.0	30.0	31.0	32.0	33.1	$3+1$	35.2	36.2	37.3	38.3
32	28.8	29.8	30.9	31.9	33.0	34.0	35.0	36.0	371	38.1
34	28.7	29.7	30.8	31.8	32.8	33.8	34.8	35.8	36.9	38.0
36	28.5	29.5	30.6	31.6	32.7	33.7	34.7	35.1	36.8	37.8
38	28.4	29.4	30.5	31.5	32.5	33.5	34.5	35.5	36.6	377
40	28.3	29.3	30.4	31.4	32.4	33.4	34.4	35.4	36.5	375
42	28.2	29.2	30.2	31.2	32.2	33.2	34.3	35.3	36.3	37.3
44	28.1	29.1	30.1	31.1	32.1	33.1	34.2	35.2	36.2	372
46	27.9	28.9	29.9	30.9	31.9	32.9	34.0	35.0	36.1	371
48	27.8	28.8	29.8	30.8	31.8	32.8	33.9	34.9	35.9	369
50	27.6	38.6	29.7	30.7	31.7	32.7	33.7	34.7	35.7	36.7
52	27.5	28.5	29.6	30.6	31.6	32.6	33.6	34.6	35.6	366
54	27.4	28.4	29.4	30.4	31.4	32.4	$33 . \frac{1}{4}$	34.4	35 \%	36.1
56	27.3	28.3	29.3	30.3	31.3	32.3	33.3	3.13	35.3	363
58	27.1	28.1	29.1	30.1	31.1	321	33.1	34.1	351	361
60	27.0	28.0	29.0	30.0	31.0	32.0	330			360
62	26.9	27.9	28.9	29.9	30.9	31.9	32.9	33 3 3	349	$35-$
64	26.7	27.7	28.7	29.7	30.7	31.7	32.7	33 33 3	3.4 34 3	$\begin{array}{ll}35 & 1 \\ 35 & 6\end{array}$
66	26.6	27.6	28.6	29.6	30.6	31.6	32.6	33 33 1	3.4 3.14 3	356 381
68	26.5	27.5	28.4	29.4	30.4	31.4	32.4	3331	3.14	25.1
- 70	26.4	27.4	28.3	29.3	30.3	31.3		3382	312	35%
72	26.3	27.3	28.2	29.2	30.2	31.2	$\begin{array}{lll}32 & 1 \\ 34 & 1\end{array}$	3311	$\begin{array}{lll}3 & 3 & 1 \\ 3 & 1 \\ 3 & 1\end{array}$	351
74	26.1	27.1	28.1	29.1	30.1	31.1	320	330	338	
76	26.0	27.0	27.9	28.9	29 29	$\begin{array}{ll}\because 0 & 9 \\ 30 & 8\end{array}$	31.8 31	328	33 33 3	
78	25.8	26.8	27.8	28.8	29.8	308	31.8	32.	13, 0	
80	25.7	26.7	27.7	28.7	297	30.7	316			
82	25.6	26.6	27.6	28.6	29.5	305	811.5	125	$\begin{array}{ll}3: 1 & 1 \\ 3: 3 & 1\end{array}$	$\begin{array}{lll}31 \\ 34 & 1 \\ 3\end{array}$
84	25.5	26.5	27.5	28.5	29.4	30.4 30.2	31 312 31		831	311
86	25.4	26.4	27.3	28.3		30.2	312 310	320	$3: 31$	3130
88	25.2	26.2	27.2	23.2	29.1	301	31.	3-0		
90	25.1	26.1	27.0	28.0	29.0	30.0			$3: 3$	
92	25.0	26.0	26.9	27.9	28.9	29.9	308		208	
94	24.9	25.9	26.8	27.8	28.8	$\begin{array}{r}298 \\ 29 \\ \hline\end{array}$	30 30 30	$\begin{array}{ll}31 & 18 \\ 311 & 5\end{array}$	32	3:3 5
96	24.7	25.7	26.7	27.7 27	28.6 28.5	29.9 29.5	:30 1	31	:32	:3: 1
98.	24.6	25.6	26.6	27.6	28.5					
100	24.5	25.5	26.4	27.4	28.3				3:	33 33 3 11
102	24.4	25.4	26.3	273	28.2	29.2			815	312
104	24.3	25.3	26.2	27.1	28.1	29 29 29	30	30)	31 :	32 \%
106	24.2	25.2	26.1		278	288	297	307	311	32 i
108.	24.0	25.0	25.9	26.9						
	23.9	24.9	25.8	26.8	27 7			3111	315	\%
110	23.8	248	25.7	26.7	276	20 6		30		32
114	23.7	24.7	256	26.6	27.5		29!	30	31	S
116	23.6	24.6	25.5	26.4	$\begin{array}{lll}27 & \\ 27 \\ 27\end{array}$	\%	$2!1$	3101	311	321
118	23.4	24.4	25.3							
120	23.3	24.3	25.2		271	281				

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed Temperature in ${ }^{\circ} \mathrm{F}$	Observed Degrees Baume'									
	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0
	Corresponding Degrees Baume' at $60^{\circ} \mathrm{F}$									
30	39.3	40.3	41.4	42.4	43.5	44.5	45.6	46.6	47.7	48.7
32	39.2	40.2	41.3	42.3	43.4	44.3	45.4	46.4	47.5	48.5
34	39.0	40.0	41.1	42.1	43.2	44.2	45.3	46.3	47.3	48.3
36	38.9	39.9	41.0	42.0	43.1	44.0	45.1	46.1	47.2	48.2
38	38.7	39.7	40.8	41.8	42.9	43.9	45.0	46.0	47.0	48.0
40	38.5	39.5	40.6	41.6	42.7	43.7	44.8	45.8	46.8	47.8
42	38.4	39.4	40.5	41.5	42.5	43.5	44.6	45.6	46.6	47.6
44	38.2	39.2	40.3	41.3	42.4	43.4	44.4	45.4	45.4	47.4
46	38.1	39.1	40.1	41.1	42.2	43.2	44.2	45.2	46.2	47.2
48	37.9	38.9	39.9	40.9	42.0	43.0	44.1	45.1	46.1	47.1
50	37.8	38.8	39.8	40.8	41.8	42.8	43.9	44.9	45.9	46.9
52	37.6	38.6	39.6	40.7	41.7	42.6	43.7	44.7	45.7	46.7
54	37.4	38.4	39.5	40.5	41.5	42.5	43.5	44.5	45.5	46.5
56	37.3	38.3	39.3	40.3	41.3	42.2	43.3	44.3	45.3	46.3
58	37.1	38.1	39.1	40.1	41.1	42.1	43.1	44.1	45.2	46.2
60	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0
62	36.9	37:9	38.9	39.9	40.9	41.9	42.9	43.9	44.9	45.9
64	36.7	37.7	38.7	39.7	40.7	41.7	42.7	43.7	44.7	45.7
66	36.6	37.6	38.6	39.5	40.5	41.5	42.5	43.5	44.5	45.5
68	36.4	37.4	38.4	39.4	40.4	41.4	42.4	43.3	44.3	45.3
70	36.2	37.2	38.2	39.2	40.2	41.2	42.2	43.1	44.1	45.1
72	36.1	37.1	38.1	39.1	40.0	41.0	42.0	43.0	44.0	45.0
74	35.9	36.9	37.9	38.9	39.8	40.8	41.8	42.8	43.8	44.8
76	35.8	36.8	37.8	38.7	39.7	40.7	41.7	42.7	43.6	44.6
78	35.6	36.6	37.6	38.6	39.5	40.5	41.5	42.5	43.4	44.4
80	35.5	36.5	37.5	38.5	39.4	40.4	41.3	42.3	43.2	44.2
82	35.3	36.3	37.3	38.3	39.2	40.2	41.2	42.2	43.1	44.1
84	35.2	36.2	37.2	38.2	39.1	40.1	41.0	42.0	42.9	43.9
86	35.1	36.1	37.0	38.0	38.9	39.9	40.9	41.9	42.8	43.8
88	34.9	35.9	36.9	37.9	38.8	39.8	40.7	41.7	42.6	43.6
90	34.8	35.8	36.7	37.7	38.6	39.6	40.5	41.5	42.5	43.5
92	34.6	35.6	36.6	37.6	38.5	39.5	40.4	41.4	42.3	43.3
94	34.5	35.5	36.4	37.4	38.3	39.3	40.2	41.2	42.2	43.2
96	34.4	35.4	36.3	37.3	38.2	39.2	40.1	41.1	42.0	43.0
98	34.2	35.2	36.1	37.1	38.0	39.0	39.9	40.9	41.8	42.8
100	34.1	35.1	36.0	37.0	37.9	38.9	39.8	40.7	41.6	42.6
102	33.9	34.9	35.8	36.8	37.7	38.7	39.6	40.6	41.5	42.5
104	33.8	34.8	35.7	36.7	37.6	38.6	39.5	40.4	41.3	42.3
106	33.6	34.6	35.5	36.5	37.4	38.4	39.3	40.3	41.2	42.2
108	33.5	34.5	35.4	36.4	37.3	38.3	39.2	40.1	41.0	42.0
110	33.4	34.4	35.3	36.3	37.2	38.1	39.0	40.0	40.9	41.8
112	33.2	34.2	35.1	36.1	37.0	38.0	38.9	39.8	40.7	41.6
114	33.1	34.1	35.0	36.0	36.9	37.8	38.7	39.7	40.6	41.5
116	33.0	34.0	34.9	35.9	36.8	37.7	38.6	39.5	40.4	41.4
118	32.9	33.9	34.8	35.7	36.6	37.5	38.4	39.4	40.3	41.2
120	32.8	33.7	34.6	35.6	36.5	37.4	38.3	39.2	40.1	41.0

REDUCTION OF BAUME GRAVITY READINGS TO 60 F-Con.

Observed Temperature in ${ }^{\circ} \mathrm{F}$.	Observed Degrees Baume'									
	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0
	Corresponding Degrees Baume' at $60^{\circ} \mathrm{F}$.									
30	49.8	50.8	51.9	53.0	54.1	55.1	56.2	57.3	58.4	59.4
32	49.6	50.6	51.7	52.8	53.9	54.9	56.0	57.1	58.2	59.2
34	49.4	50.4	51.5	52.6	53.7	54.7	55.8	56.8	57.9	58.9
36	49.3	50.3	51.4	52.4	53.5	54.5	55.6	56.6	57.7	587
38	49.1	50.1	51.2	52.2	53.3	54.3	55.4	56.4	57.5	58.5
40	48.9	49.9	51.0	52.0	53.0	54.1	55.2	56.2	57.2	58.2
42	48.7	49.7	50.8	51.8	52.8	53.8	54.9	56.0	57.0	58.0
44	48.5	49.5	50.6	51.6	52.6	53.6	54.7	55.7	56.8	578
46	48.3	49.3	50.4	51.4	52.4	53.4	54.5	55.5	56.5	57.5
48	48.1	49.1	50.2	51.2	52.2	53.2	54.2	55.2	56.3	57. 3
50	47.9	48.9	50.0	51.0	52.0	53.0	54.0	55.0	561	
52	47.7	48.7	49.8	50.8	51.8	52.8	53.8	548	55.9	56.9
54	47.6	48.6	49.6	50.6	51.6	52.6	53.6	5.4 .6	55.6	566
56	47.4	48.4	49.4	40.4	51.4	52.4	53.4	54.4	55.4	56 56 56
58.	47.2	48.2	49.2	50.2	51.2	52.2	53.2	54.2		
60	47.0	48.0	49.0	50.0	51.0	52.0	53 52 5	54.0	550	560
62	46.9	47.9	48.8	49.8	50.8	51.8	52.8 52.6	53.8 53.6	5.1 54.8 54	55 55 50
64	46.7	47.7	48.6	49.6	50.6	51.6	52.6	53.6	54.6 54.4	55
66	46.5	47.5	48.4	49.4	50.4	51.4 51.3	52.2	53.2	5	55
68.	46.3	47.3	48.3	49.3	50.3	51.3	52.2	53.2	51.2	53 -
70	46.1	47.1	48.1	49.1	50.1	51.1	52.0	53.0		
72	46.0	47.0	47.9	48.9	49.9	50.9	51.8	52.8		
74	45.8	46.8	47.7	48.7	49.7	50.7	51.6 51.4		53 $5: 3$ 5	ail aid
76	45.6	46.6	47.5	48.5	49.5 49.3	50.5 50.3	51.4	52.8	$5: 1$	5.11
78	45.4	464	47.3	48.3	49.3	50.3	51.2			
80	45.2	46.2	47.2	48.2	4.9 .1	50.1	51.0	520		
32	45.1	46.1	47.0	48.0	48.9	49.9			5	$\begin{array}{lll}53 & 7 \\ 5.3 & 5\end{array}$
B1	44.9	45.9	46.8	47.8	48.7 48.5	49.7 49.5	50.8 50.4	$\begin{array}{ll}51 & 1 \\ 51\end{array}$	52	$6: 3$
66	44.7	45.7	46.6	47.6 47	48.5 48.3	49.3	50.2	519	521	$5: 1$
88.	44.5	45.5	46.4	47.4	48.3	49.3	50.2			
90.	44.4	45.4	46.3	47.3	48.2 48.0	49 .9 19	50.1 $4!9$	$\begin{array}{lll}51 & 0 \\ 50 \\ 50\end{array}$	11 51 1	5
92	44.2	45.2	46.1	47.1 46.9	48.0 47.8	19 48 8	49.9	$50 \div$	51%	近
94	44.1	45.1	46.0	46.9 46.7	47.8 476	48	495	50.5	51	$5 \% 3$
96.	43.9	44.9	45.8	46.7 46.6	47.8 47.5	48.1	4	50 :	$51 \because$	521
98.	43.7	44.7	45.6	46.6	41.5	18.4				
100	43.5	44.5	45.4	46.4	17.3	48.3	190 .90 18	$\begin{array}{ll}50 \\ 19 & 1 \\ 4\end{array}$	$\begin{array}{ll}51 & 0 \\ 60 & 8\end{array}$	11 51
102	43.4	44.3	45.2	46.2	17.1 46.9	181 17	488			615
104.	43.2	44.1	45.0	46.0	46.9	177	186	195		81 \%
106	43.1	44.0	4.9	45.8	16.6	17.5	.18 .1	119.1	50	012
108.	42.9	43.9	44.8	45.7	16.6					
110	42.7	43.7	44.6	45.6	16.5	17.1 47.1	18 18 18 18			
112	42.5	43.5	44.4	45.4	46.1 46	47.2	180	is x		808
114.	42.4	43.4	44.3		460	169	178	IS 6	198	80
116	42.3	43.3	44.2 44.0	45.1	458	16) 7	178	184	49 il	80
118.	42.1	43.1	44.0	4.4		165				81) 1
120	41.9	42.9	43.8							

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed temperature in - F	Observed degrees Baume									
	57.0	58.0	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0
	Corresponding degrees Baumé at $60^{\circ} \mathrm{F}$									
30.	60.5	61.6	62.7	63.7	64.8	65.8	66.9	67.9	69.0	70.0
32.	60.3	61.3	62.4	63.4	64.5	65.5	60.6	67.7	68.8	69.8
34	60.0	61.0	62.1	63.1	64.2	65.2	66.3	67.4	68.5	69.5
36	59.8	60.8	61.9	62.9	64.0	65.0	66.1	67.1	68.2	69.2
38.	59.5	60.5	61.6	62.6	63.7	64.7	65.8	66.8	67.9	68.9
40.	59.3	60.3	61.4	62.4	63.5	64.5	65.5	66.5	67.6	68.6
42	59.1	60.1	61.2	62.2	63.3	64.3	65.3	66.3	67.4	68.4
44.	58.9	59.9	61.0	62.0	63.0	64.0	65.0	66.0	67.1	68.1
46	58.6	59.6	60.7	61.7	62.7	63.7	64.8	65.8	66.8	67.8
48.	58.4	59.4	60.4	61.4	62.5	65.5	64.5	65.5	65.5	67.5
50.	58.1	59.1	60.2	61.2	62.2	63.2	64.2	65.2	66.2	67.2
52.	57.9	58.9	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0
54	57.7	58.7	59.8	60.8	61.8	62.8	63.8	64.8	65.8	66.8
56.	57.5	58.5	59.5	60.5	61.5	62.5	63.6	64.6	65.6	66.6
	57.3	58.3	59.3	60.3	61.3	62.3	63.3	64.3	65.3	66.3
60.	57.0	58.0	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0
62	56.8	57.8	58.8	59.8	60.8	61.8	62.7	63.7	64.7	65.7
64	56.6	57.6	58.6	59.6	60.5	61.5	62.5	63.5	64.5	65.5
66.	56.4	57.4	58.3	59.3	60.3	61.3	62.3	63.3	64.2	65.2
	56.1	57.1	58.1	59.1	60.1	61.1	62.1	63.1	64.0	65.0
70.	55.9	56.9	57.9	58.9	59.8	60.8	61.8	62.8	63.8	64.8
72.	55.7	56.7	57.7	58.7	59.6	60.6	61.6	62.6	63.5	64.5
74.	55.5	56.5	57.4	58.4	59.3	60.3	61.3	62.3	63.2	64.2
76.	55.3	56.3	57.2	58.2	59.1	60.1	61.0	62.0	63.0	64.0
78.	55.0	36.0	57.0	58.0	58.9	59.9	64.8	61.8	62.8	63.8
80.	54.8	55.8	56.8	57.8	58.7	59.7	60.6	61.6	62.6	63.6
82.	54.6	55.6	56.5	57.5	58.4	59.4	60.4	61.4	62.3	63.3
84	54.4	55.4	56.3	57.3	58.2	59.2	60.1	61.1	62.0	63.0
86.	54.2	55.2	56.1	57.1	58.0	59.0	59.9	60.9	61.8	62.8
	54.0	\$5.0	55.9	56.9	57.8	58.8	59.7	60.6	61.5	62.5
90.	53.8	54.8	55.7	56.7	57.6	58.6	59.5	60.4	61.3	62.3
92.	53.6	54.6	55.5	56.5	57.4	58.4	59.3	60.2	61.1	62.1
94.	53.4	54.3	55.2	56.2	57.1	58.1	59.0	59.9	60.8	61.8
96.	53.2	54.1	55.0	56.0	56.9	57.9	58.8	59.7	60.6	61.6
98.	53.0	53.9	54.8	55.8	56.7	57.6	58.5	59.5	60.4	61.3
100.	52.8	53.7	54.6	55.6	56.5	57.4	58.3	59.3	60.2	61.1
102.	52.6	53.5	54.4	55.4	56.3	57.2	58.1	59.0	59.9	60.9
104.	52.4	53.3	54.2	55.2	56.1	57.0	57.9	58.8	59.7	60.7
108.	52.2	53.1	54.0	55.0	55.9	56.8	57.7	58.6	59.5	60.4
108.	52.1	53.0	53.9	54.8	55.7	56.6	57.5	58.4	59.3	60.2
110.	51.9	52.8	53.7	54.6	55.5	56.4	57.3	58.2	59.1	60.0
112.	51.7	52.6	53.5	54.4	55.2	56.2	57.1	58.0	58.9	59.8
114.	51.5	52.4	53.3	54.2	55.1	56.0	56.9	57.8	58.7	59.6
116.	51.3	52.2	53.1	54.0	54.9	55.8	56.7	57.6	58.4	59.3
118.	51.1	52.0	52.9	53.8	54.7	55.6	56.5	57.4	58.2	59.1
120.	30.9	51.8	52.7	53.6	54.5	55.4	56.3	57.2	58.0	58.9

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed Temperature in ${ }^{\circ} \mathrm{F}$.	Observed Degrees Baume'.									
	67.0	68.0	69.0	70.0	71.0	72.0	73.0	74.0	75.0	76.0
	Corresponding Degrees Baume ${ }^{\prime}$ at $60^{\circ} \mathrm{F}$.									
30	71.1	72.1	73.2	74.3	75.4	76.4	77.5	78.5	79.6	80.7
32	70.9	71.9	73.0	74.0	75.1	761	77.2	78.2	79.3	80.4
34	70.6	71.6	72.7	73.7	74.8	75.8	76.9	77.9	79.0	80.1
36	70.3	71.3	72.4	73.4	74.5	75.5	76.6	77.6	78.7	79.7
38	70.0	71.0	72.1	73.1	74.2	75.2	763	773	78.4	79.4
40	69.7	70.7	71.8	72.8	73.9	74.9	76.9	77.0	78.1	79.1
42	69.4	70.4	71.5	72.5	73.6	74.6	75.7	76.7	77.8	78.8
44	69.1	70.1	71.2	72.2	73.3	74.3	75.4	76.4	77.5	78.5
46	68.8	69.8	70.9	71.9	73.0	74.0	75.1	76.1	77.1	78.1
48	68.6	69.6	70.6	71.6	72.7	73.7	74.8	75.8	768	788
50	68.3	69.3	70.4	71.4	72.5	73.5	745	75.5	76.5	775
52	68.0	69.0	70.1	71.1	72.2	73.2	74.2	75.2	76.2	77.3
54	67.8	68.8	69.9	70.9	71.9	72.9	73.9	7.1 .9	759	369
56	67.6	68.6	69.6	70.6	71.6	72.6	73.6	74.6	75.6	766
58	67.3	68.3	69.3	70.3	71.3	72.3	73.3	74.3	75 3	
60	67.0	68.0	69.0	70.0	71.0	72.0	73.0	71.0	75.0	76.0
62	66.7	67.7	68.7	69.7	70.7	71.7	72.7	73.7	7.4	
64	66.4	67.4	68.4	69.4	70.4	71.1	72.4	73.1	14.4 781	$7{ }^{61} 4$
66	66.2	67.2 67.0	68.2 67.9	69.2	69.8	70.8	71.8	72.8	738	7.4 .8
68	66.0	67.0	67.9	65.3	63.8					
70	65.7	66.7	67.6	68.6	69.5	70.5	71.5	72.5		$\begin{array}{lll}71 & 5 \\ 71 & 3\end{array}$
72	65.4	66.4	67.4	68.4	69.3	70.3	71.2 71.0	72	73.2 72.9	11:
74	65.2	66.2	67.2 66.9	68.2 67.9	69.1	69.8	70.8	71.8	72.7	73 ¢
76	64.9	65.9	66.9 66.6	67.9	68.8 68.5	69.8 69.5	70.5	71.5	$7 \% .1$	73.1
78	64.7	65.6	66.6	67.6	68.5	69.5	70.	\%		
80	64.5	65.4	66.4	67.4	68.3	69.3	70.2	$71 \sim$	7: 2.1	731
82	64.2	65.2	66.1	67.1	68.0	69.0	69.9	70 70 70	7	72
84	63.9	64.9	65.9 65.8	66.8	67.7	68.4	693	70 \%	71 :	$7{ }^{72} 3$
86	63.7	64.7	65.8 65.3	66.6 66.3	67.2	68.2	69) 1	70 I	710	72!
88	63.4									
90.	63.2	64.2	65.1	65.8	67.0	68.7	68. 6	69) is	70 ?	11 -1
92	63.0	64.0	61.9 64.6	65.6	66.5	67.1	(i8 : 3	69	70	711
94	62.7	63.7	64.6 64.4	65.4	66.3	67.2	(i8) 1	690	69	it)
96 98	62.5 62.2	63.5 63.2	64.1	65.1	66.0	(i6).!	678	is 8	1.97	70
								68 5	19, 1	T1 1
100	62.0	63.0	639	64.9	655	176	678	(ix :	$1: 1$	711
102	61.8	62.8	63 63 6.3	64.6 64.3	65	(fik. 1	070	$67!$		(i)
104	61.6	62.5 62.3		64.1	(i5) 0	65 \%	iti. 8	6	is	lin 10 10
106	61.3	62.3	6.3 68.9	63.8	(6.4.8	(65). 7	6, 6 , is	1.76	1.88	6i? 3
108	61.1	62.0	กั.						(i, $)^{\text {a }}$	$0!10$
110	60.9	61.8	62.7	636 63.3	6.15 6.4 1	6	fif i	liis	1.7	1,4,
112	60.7	61.6	62.5	6.3 6.3 68	610	(i) 9	(i5) \%	6 il ?	dit	1.8 .8
114	605	61.4	62.3 62.0	62 !	(i) 8	6.17	(if) is	ditis	177	$\begin{array}{lll} 1,8 & 3 \\ \text { fin } & 11 \end{array}$
116	60.2 60.0	61.1	62.0 61.8	62.7	6.46	6.15	65.4	lif: 1		
118	60.0 59.8	60.7	61.6	62.5	Ci3: 3	(i1. 2		(i) 0		

REDUCTION OF BAUME GRAVITY READINGS TO 60 F -Con.

Observed lemperature tn	Observed degrees Baums									
	77.0	78.0	79.0	80.0	81.0	82.0	83.0	84.0	85.0	86.0
	Corresponding degrees Baume at $60^{\circ} \mathrm{F}$									
30.	81.8	82.9	84.0	85.0	86.1	87.1	88.2	89.3	90.4	91.5
32.	81.5	82.6	83.7	84.7	85.8	86.8	87.9	89.0	90.1	91.1
34.	81.2	82.2	83.3	84.3	85.4	86.4	87.5	88.6	89.7	90.7
36.	80.4	81.9	83.0	84.0	85.1	86.1	87.2	88.2	89.3	90.3
	80.5	81.5	82.6	83.6	84.7	85.7	86.8	87.8	88.9	89.9
40.	80.1	81.1	82.2	83.2	84.3	85.3	86.4	87.4	88.5	89.5
42	79.8	80.8	81.9	82.9	84.0	85.0	86.1	87.1	88.2	89.2
4	79.5	80.5	81.6	82.6	83.7	84.7	85.8	85.8	87.8	88.8
46	79.2	80.2	81.3	82.3	83.4	84.4	85.4	86.5	87.5	88.5
	78.9	79.9	81.0	82.0	83.0	84.0	85.1	86.1	87.1	88.1
50.	78.6	79.6	80.6	81.6	82.6	83.6	84.7	85.7	86.7	87.7
52.	78.2	79.2	80.3	81.3	82.3	83.3	84.3	85.3	86.3	87.3
54.	77.9	78.9	79.9	81.0	82.0	83.0	84.0	85.0	86.0	87.0
56	77.6	78.6	79.6	80.6	81.6	82.6	83.7	84.7	85.7	86.7
58.	77.3	78.3	79.3	80.3	81.3	82.3	83.3	84.3	85.3	86.3
60.	77.0	78.0	79.0	80.0	81.0	82.0	83.0	84.0	85.0	86.0
62.	76.7	77.7	78.7	79.7	80.7	81.7	82.7	83.7	84.7	85.7
64.	76.4	77.4	78.4	79.4	80.4	81.4	82.3	83.4	84.3	85.3
66	76.1	77.1	78.1	79.1	80.0	81.0	82.0	83.0	84.0	85.0
	75.8	76.8	77.7	78.7	79.7	80.7	81.7	82.7	83.7	84.7
70.	75.5	76.5	77.4	78.4	79.4	80.4	81.4	82.4	83.3	84.3
72.	75.2	76.2	77.1	78.1	79.1	80.1	81.1	82.1	83.0	84.0
74.	74.9	75.9	76.8	77.8	78.8	79.8	80.7	81.7	82.7	83.7
76	74.6	75.6	76.5	77.5	78.4	79.4	80.4	81.4	82.4	83.4
	74.3	75.3	76.2	77.2	78.1	79.1	80.1	81.1	82.0	83.0
80.	74.0	75.0	75.9	76.9	77.8	78.8	79.8	80.8	81.7	82.7
82.	73.7	74.7	75.6	76.6	77.5	78.5	79.4	80.4	81.3	82.3
	73.4	74.5	75.3	76.3	77.2	78.2	79.1	80.1	81.0	82.0
86	73.2	74.1	75.0	76.0	76.9	77.9	78.8	79.8	80.7	81.7
	72.9	73.9	74.8	75.8	76.7	77.6	78.5	79.5	80.4	81.4
90.	72.6	73.6	74.5	75.5	76.4	77.3	78.2	79.2	80.1	81.1
92.	72.3	73.3	74.2	75.2	76.1	77.0	77.9	78.9	79.8	80.8
94.	72.0	73.0	73.9	74.9	75. 8	76.7	77.6	78.6	79.5	80.5
96	71.7	72.7	73.6	74.6	75. 5	.76.4	77.3	78.3	79.2	80.2
	71.5	72.4	73.3	74.3	75.2	76.1	77.0	78.0	78.9	79.8
100.	71.2	72.1	73.0	74.0	74.9	75.8	76.7	77.6	78.5	79.5
102.	71.0	71.9	72.8	73.7	74.6	75.5	76.4	77.3	78.2	79.2
104	70.7	71.6	72.5	73.4	74.3	75.2	76.1	77.0	77.9	78.8
106.	70.4	71.3	72.2	73.1	74.0	74.9	75.8	76.7	77.6	78.5
108.	70.1	71.0	71.9	72.8	73.7	74.6	75.5	76.4	77.3	78.2
110.	69.8	70.7	71.6	72.5	73.4	74.3	75.2	76.1	77.0	77.9
112.	69.6	70.5	71.4	72.3	73.2	74.1	74.9	75.8	76.7	77.6
114.	69.4	70.3	71.2	72.1	72.9	73.8	74.6	75.5	76.4	77.3
116.	69.1	70.0	70.9	71.8	72.6	73.5	74.3	75.2	76.1	77.0
118.	68.8	69.7	70.6	71.5	72.3	73.2	74.0	74.9	75.8	76.7
820.	68.5	69.4	70.3	71.2	72.0	72.9	73.7	74.6	75.5	76.4

BAUME', SPECIFIC GRAVITY AND POUNDS PER GALLON-Con.

Observed temperature in - F	Observed degrees Paume									
	87.0	88.0	89.0	90.0	91.0	92.0	93.0	\%. 0	95.0	920
	Corresponding degrees Baumb at $60^{\circ} \mathrm{F}$									
30.	92.6	93.6	94.7	95.7						
32.	92.2	93. 2	94.3	95.3						
34.	91.8	92.9	93.9 93	94.9 94.6	95. 9					
	91.4 91.0	92.5 92.1	93.6 93.2	94.6 94.2	95.6 95.2					
40.	90.6	91.7	92.8	93.8	94.9	95.9				
42.	90.3	91.3	92.4	93.4	94. 5	95.5				
44	89.9	90.9	92.0	93.0	94.1	95.1	96. 1			
46	89.6	90.6	91.7 91.3	92.7 92.3	93.7 93.3	94.7 94.3	95.7 95.3			
	89.2	90.2	91.3	92.3						
50.	88.8	89.8	90.9	91.9	92.9	93. 9	94.9	95. 9		
52	88.4	89.4	90.5	91.5	92.5	93.5	94. 5	95.5 95.1		
54	88.0	89.0	80.1	91.1	92.1 91.7	93.1 92.7	94.1	95.1	95.7	
56	87.7	88.7 88.3	89.7 89.4	90.7 90.4	91.4	92.4	93.4	94.4	95.4	
58.	87.3	88.3	89.4	90.4						
60.	87.0	88.0	89.0 88.6	50.0 89.6		92.0 91.6	93.0 93.6	94.0 93.6	95.0 94.6	90.0 99.6
62.	86.7 86.3	87.7 87.3	88.6 88.3	89.6 89.3	90.6 90.3	91.6 91.3	93.6 92.2	93.6 93.2	94.2	95.2
64	86.3	87.3 87.0	88.3 88.0	89.3 89.0	90.3 89.9	90.9	91.8	92.8	93.8	94.8
	86.0	87.0 86.6	88.0 87.6	89.0 88.6	89.5	90.5	91.4	92.4	93.4	94.4
70.	85.3	86.3	87.3	88.3	89.2	90.1	91.0	92.0	93.0	94.0
72.	85.0	86.0	86.9	87.9	88.8	89.8	90.7	91.7	92.7	93.7
74.	84.6	85.6	86.5	87.5	88.4	89.4	90.3	91.3	92.3	93.0
76	84.3	85.3	86.2	87.2	88.1	89.1	90.0 89.6	90.6	91.6	92.6
78.	84.0	85.0	85.9	86.9	87.8	88.7	89.6	90.6	91.6	92.6
80.	83.6	84.6	85.5	86.5	87.4	88.4	89.3	90.2 89.8	91.2 90.8	92.2
82.	83.2	84.2	85.1	86.1	87.0 86.6	88.0 87.6	88.9 88.5	89.8 89.4	90.8	91.4
84	82.9	83.8	84.7 84.4	85.7 85.4	86.6 86.3	87.6 87.3	88.2	89.1	90.0	91.0
86	82.6	83.5 83.2	88.4	85.4	86.0	87.0	87.9	88.8	89.7	90.7
88.	82.3	83.2	84.1	85.1	86.0					
	82.0	82.9	83.8	84.8	85.7	86.6	87.5	88.4 88	89.3 89.0	90.3 90.0
92.	81.7	82.6	83.5	84.4	85.3 850	86.2 85.9	87.1 86.8	87.7	88.6	89.6
94.	81.3	82.2	83.1	84.1	85.0 84.6	85.9 85.6	88.5	87.4	88.3	89.3
96.	81.0	81.9	82.8 82.5	83.7 83.4	84.6 84.3	85. 2	86.1	87.0	83. 0	89.0
98.	80.7	81.6	82.5	83.4	84.3					
100.	80.4	81.3	82.2	83.1	84.0	84.9	85.8 85	88.7 86.4	87.6 87.3	88.3
102.	80.1	81.0	81.9	82.8	83.7	84.6	85.5 85.2	86.1	87.0	87.9
104.	79.7	80.6	81.5	82.5	83.4	84.3 83.9	84.8	85.7	86.6	87.6
106	79.4	80.3	81.2	82.1 81.8	83.0 82.7	83.6	84.5	85.4	86.3	67.2
108.	79.1	80.0	80.9	81.8	82.7					
110.	78.8	79.7	80.6	81.5	82.4	83.3 83.0	84.2 83.8	85.1 34.7	85. 6	86.6
112.	78.5	79.4	80.3 80	81.2 80.9	82.1 81.7	82.6	83.5	84.4	85.3	86.2 85.9
114.	78.2	79.1	80.0 79.7	80.9	81.4	82.3	83.2	84.1	85.0	85.9
116.	77.9	78.8	79.7 79.3	ع0. 80.2	81.1	82.0	82.8	83.7	84.6	85.6
118.	77.5	78.4	79.0	79.9	80.8	81.7	82.5	83.4	84.3	65. 1
120.	77.2	78.1	79.0							

Reduction of Specific Gravity Readings to $60^{\circ} \mathrm{F}$.

This table shows the specific gravities at $60^{\circ} / 60^{\circ} \mathrm{H}$ of oils having, at the designated temperaturs, the obscried specific gravities indicated. For example, if the observed specific gravity is 0.614 at $90^{\circ} \mathrm{F}$, the true specific gravity at $60^{\circ} / 60^{\circ} \mathrm{F}$ is 0.621 (under 0.610) plus 0.004 or 0.625 . The headings "Observed specific gravity" and "Observed temperature" signify the true indication of the hydrometer and the true temperature of the oil; that is, the observed readings corrected, if necessiry, for instrumental irrors.

Observed Specific Gravity.

Observed Temperature, ${ }^{\circ} \mathrm{F}$.	0.600	0.610	0.620	0.630	0.640	0.650	0.660	0.670	0.680	0.690
30.	0.584	0.594	0.604	0.614	0.624	0.634	0.644	0.654	0.665	0.675
32.	. 585	. 595	. 606	. 616	. 625	. 635	. 645	. 655	. 666	. 676
34.	586	596	. 607	. 617	. 626	. 636	. 646	656	. 667	. 677
36.	587	. 597	. 608	. 618	. 627	. 637	647	657	668	. 678
38	. 588	. 598	. 609	. 619	628	. 638	648	. 659	. 669	. 679
40.	589	599	610	. 620	. 6295	. 6395	. 6495	660	. 670	. 680
42.	. 590	600	611	. 620	. 6305	. 6.105	. 6505	661	671	. 681
44	. 591	601	612	. 621	. 6315	. 6415	6515	662	672	. 682
46.	592	602	613	. 622	6325	. 6425	6525	663	673	683
48.	. 593	. 603	614	. 623	. 6335	. 6435	6535	664	674	. 684
50.	595	. 605	. 615	. 6245	. 6345	. 645	654	665	675	. 685
52.	596	606	. 616	. 626	. 636	. 646	656	666	676	686
54.	597	. 607	617	. 627	637	. 647	657	667	677	. 677
56.	598	. 608	618	. 628	638	. 648	658	. 668	678	. 688
58.	. 599	609	619	. 629	639	. 649	659	669	679	. 689
60.	. 600	610	. 620	. 630	640	. 650	. 660	670	680	690
62.	. 601	611	. 621	. 631	. 641	. 651	. 661	. 671	. 681	691
64.	. 602	612	622	. 632	. 642	. 652	. 662	. 672	. 682	692
66.	. 603	613	623	. 633	643	. 653	. 663	. 673	. 683	. 693
68.	. 604	614	6245	. 6345	. 644	. 654	. 664	. 674	684	. 694
70.	. 605	. 615	6255	. 6355	. 645	. 655	. 665	. 675	. 685	
72.	. 606	. 616	6265	. 6365	. 646	. 656	. 666	. 676	. 686	. 696
74.	. 607	. 617	. 6275	. 6375	. 647	. 657	. 667	. 677	687	. 6965
76.	. 608	618	6285	. 6385	. 648	. 658	. 668	. 678	. 6875	. 6975
78.	. 609	620	. 6295	. 6395	. 649	. 659	. 669	. 679	. 6885	6985
80.	. 611	. 621	630	. 640	. 650	. 660	. 670	680	. 689	699
82.	. 612	622	632	. 641	. 651	. 661	. 671	. 671	. 690	700
84.	. 613	623	633	642	. 652	. 662	. 672	. 682	. 691	701
86.	. 614	624	634	643	. 653	. 663	. 673	. 683	. 692	702
88.	. 615	625	635	644	. 654	. 664	674	. 683	693	. 703
90.	. 616	626	636	645	655	665	. 675	. 684	. 694	704
92.	. 617	627	637	. 646	. 656	. 666	. 676	. 685	. 695	. 705
94.	. 618	628	638	. 647	. 657	. 667	. 677	. 686	. 696	. 706
96	. 619	. 629	639	. 648	. 658	. 668	. 678	. 687	. 697	707
98.	. 620	630	640	. 649	. 653	. 669	. 679	. 688	698	. 708
100	621	631	641	. 650	660	. 670	. 680	. 689	. 699	. 709
102.	. 622	632	642	. 651	. 661	. 671	. 680	. 690	. 700	. 710
101.	. 623	. 633	643	. 652	. 662	. 672	. 681	. 691	. 701	. 711
106.	. 624	634	644	. 653	. 663	. 673	. 682	. 692	. 702	. 712
108.	. 625	635	. 645	. 654	. 664	. 674	. 683	. 693	. 703	. 712
110.	. 626	636	. 646	. 655	. 665	. 675	684	. 694	. 704	. 713
112.	. 627	. 637	. 6.17	. 656	. 666	. 676	. 685	695	. 704	. 714
114.	. 629	. 638	. 648	. 657	. 667	. 677	. 686	. 696	. 705	. 715
116.	. 630	639	. 649	. 658	. 668	. 678	. 687	. 697	. 706	. 716
118.....	. 631	. 640	. 650	. 659	669	679	. 688	698	. 707	. 717
120......	. 632	. 641	. 651	. 660	.670	680	689	699	708	. 718

REDUCTION OF SPECIFIC GRAVITY TO $60^{\circ} \mathrm{F}$－Continued．
Observed Specific Gravity．

Observed Tempera－ ture，${ }^{\circ} \mathrm{F}$ ．	0700	0.710	0.720	0.730	0.740	0.750	0.760	0.770	0.780	0790
30.	0.655	0.695	0.705	0.746	0726	0.736	0．i46	0.75%	0.765	0.371
32.	． 686	． 696	． 706	． 717	． 727	． 737	． 74	． 155	． 768	Tis
34	． 687	． 697	707	718	728	738	745	759	709	719
36.	． 688	． 698	． 708	719	729	． 739	749	760	770	－80
38.	． 689	． 699	． 709	720	730	740	750	661	711	781
40.	6905	7005	7105	7205	7310	7140	7515	－615	715	723）
42	． 6915	7015	7115	7215	7315	7420	7520	762.5	7125	－2．
44.	6925	7025	7125	722.5	7325	7430	7530	7630	735	Tx．35
46	． 6935	7035	7135	T235	7335	740	7540	7640	710	－4．5
48.	． 6940	7045	7145	． 7245	7345	745	7550	7650	7 C 0	－450
50	6950	705．3	7155	725	733゙\％	7455	7555	7660	7160	－451
52.	6960	7065	7165	72035	7365	7455	7565	7605	776	－80
54.	． 6970	． 7070	7170	7270	7377	74.5	7575	7675	713	7675
56.	． 6980	－080	7189	－290	7389	7490	7580	7685	7155	7ヶ45
58	． 6990	7090	7190	7290	7390	7490	1590	7690	7690	7 CaO
60.	7000	7100	7290	7300	7400	7590	7690	7700	－ 200	F）（0）
62	7010	7110	7210	． 7310	7410	7510	7610	T10	－540	7905
64	7020	7120	T200	－7320	7415	T515	7615	7715	7815	7915
66.	7030	7130	7225	7325	7425	7505	7625	8725	7－3	－193－8
68.	． 7040	． 7135	7235	7335	7435	73.35	7630	1730	－730	
70	7050	7145	7245	7345	745	354	7619	719	S810	5010
72	7055	7155	7255	7355	7450	7550	7550	105	74．51）．	7015
74.	706.9	7165	7265	7365	7460	7560	76	$\because 0.5$	－4．3）	80.5
76.	． 7075	7175	7275	7370	7470	350	766.5	3176	）	－965
78.	． 7085	.7185	7285	7380	7480	7580	7675	7775	7ヵ．．）	190
80.	709	719	729	739	748	758	765^{*}	IT8	－9	0
82.	710	． 720	730	740	719	909	769	789	54，	－
84.	711	721	731	741	750	760	71.1	780	\bigcirc	4i1
86.	712	722	732	． 741	751	761	371	¢0）	9	＊01
88.	． 713	． 23	733	．742	752	762	17	． 151	311	＊11
90	714	724	733	743	753	763	72	ご	519	412
92.	715	724	734	． 74	751	763	713	54.3	－ 913 -93	41.3
94.	716	． 725	735	745	755	764	111	St	－194	411
96.	716	726	． 736	$\bigcirc 7417$	755	765	815	\％ 7	9	ज1\％
98.	． 717	． 727	． 737	747	756	766	110	9.3	$1!$.	
100.	718	728	738	717	757	767	716	74n	－9110	कर
102.	719	729	739	748	758	768	171	ini	－リ゙	क110
104.	720	730	740	749	759	768	18	－ッ゙	？ 14	ज15
106.	721	731	2.11	750	760	769	3	Tい！	－	प14
108.	722	． 732	． 741	． 751	760	710	1.9	か．		
110	723	733	742	751	761	771	781）	7！		4111
112	724	734	7.43	753	762	72	7 Cl	－911	$4(1) 1$	411
114.	725	． 734	741	75.3	7 7i3	17	\bigcirc	5	412	411
116.	726	． 735	745	$15 \pm$	int	－1	741	7113	411	41
118.	． 726	． 736	746	750	Ti5	11	14	1		
120.	727	737	746	756	7 （1i3	77.5	74	T11	ail	，

REDUCTION OF SPECIFIC GRAVITY TO $60^{\circ} \mathrm{F}$-Continued.

Observed Specific Gravity.

Observed Temperature, ${ }^{\circ} \mathrm{F}$.	0.800	0.810	0.820	0.830	0.840	0.850	0.860	0.870	0.880	0.890
30.	0.788	0.798	0.808	0.818	0.828	0.839	0.849	0.859	0.869	0.879
32.	. 788	. 799	. 809	. 819	. 828	. 8839	. 849	. 860	. 870	. 880
34.	. 789	. 799	. 810	. 820	. 830	. 840	. 850	. 860	. 870	880
36.	. 790	. 800	. 811	. 821	. 831	841	. 851	. 861	. 871	. 881
38.	. 791	. 801	. 812	822	. 832	. 842	. 8.52	. 862	. 872	. 882
40.	. 7920	. 8020	8125	. 82225	. 8325	8425	. 8525	8625	. 8730	. 8830
42.	. 7930	. 8030	. 8130	. 8230	. 8335	. 8135	. 85.35	. 8635	. 8735	. 8840
44.	. 7935	. 8035	. 8140	. 8240	. 8340	. 8440	. 85.40	. 8640	. 8740	. 8840
46.	. 7945	. 8045	. 8145	. 8245	. 8315	. 8450	. 8550	. 8650	8750	. 8850
48.	. 7950	. 8050	. 8155	. 8255	. 8355	. 8155	. 8555	. 8655	8755	. 8855
50.	7960	. 8060	. 8160	. 8260	. 8365	8465	8565	. 8665	. 8765	. 8865
52.	7970	. 8070	8170	. 8270	. 8370	8470	8570	. 8670	. 8770	. 8870
54.	7975	. 8075	8175	. 8280	. 8380	. 8480	. 8580	. 8680	. 8780	. 8880
56.	7985	. 8085	8185	8285	. 8385	. 8485	. 8585	. 8685	. 8785	. 8885
58.	7995	. 8095	. 8195	8295	. 8395	. 8495	. 8595	. 8695	. 8795	. 8895
60.	8000	. 8100	8200	8300	8400	8500	. 8600	. 8700	. 8800	. 8900
62.	. 8005	. 8105	8205	8305	8405	. 8505	. 8605	. 8705	. 8805	8905
64.	. 8015	. 8115	8215	8315	8415	8515	. 8615	. 8715	. 8815	8915
66.....	. 8025	. 8125	8220	8320	8120	8520	. 8620	. 8720	. 8820	. 8920
68.....	. 8030	. 8130	. 8230	8330	8430	8530	. 8630	. 8730	. 8830	. 8930
70.	. 8040	. 8140	. 8240	8340	8440	. 8540	. 8635	. 8735	. 8835	. 8935
72.	. 8045	. 8145	. 8245	8345	8445	. 85.45	. 8645	. 8745	. 8845	. 8940
74.	. 8055	. 8155	. 8255	8355	8455	. 8550	. 8650	. 8750	. 8850	. 8950
76.	. 8065	. 8160	. 8260	8360	8460	. 8560	. 8660	. 8760	8860	. 8955
78.	. 8070	. 8170	. 8270	. 8370	8470	. 8565	8665	. 8765	. 8865	. 8965
80.	. 808	. 817	. 827	. 837	. 847	857	. 867	. 877	. 887	. 897
82.	. 808	. 818	. 828	. 838	. 818	. 858	. 868	. 878	. 888	. 898
84.	. 809	. 819	. 829	. 839	. 849	. 859	. 868	. 878	. 888	. 898
86	. 810	. 820	. 830	839	. 849	. 859	. 869	. 879	. 889	. 899
88.	. 811	. 820	. 830	. 840	. 850	. 860	. 870	. 880	. 890	. 900
90.	. 812	. 821	. 831	. 841	. 851	861	. 871	. 881	. 891	. 900
92	. 812	. 822	. 832	. 842	. 852	. 861	. 871	. 881	. 891	. 901
94.	. 813	. 823	. 832	. 812	. 852	. 862	. 872	. 882	. 892	. 902
96.	. 814	. 823	. 833	. 843	. 853	. 863	. 873	. 883	. 893	. 903
98.	. 815	. 824	. 834	. 814	. 854	. 864	. 873	. 883	. 893	. 903
100.	815	825	. 835	. 844	. 854	. 864	. 874	. 884	. 894	. 904
102.	. 816	. 826	. 835	. 845	. 855	. 865	. 875	. 885	. 895	. 905
104.	817	826	. 836	. 846	. 856	. 866	. 876	. 886	. 895	. 905
106.	817	. 827	. 837	. 847	. 857	. 866	. 876	. 886	. 896	. 906
108.	. 818	. 828	. 838	. 847	. 857	. 867	. 877	. 887	. 897	. 907
110.	. 819	S29	. 838	. 848	. 858	. 868	. 878	. 888	. 898	. 907
112.	. 820	. 829	. 839	. 849	. 859	. 869	. 878	. 888	. 898	. 908
114.	. 820	830	840	. 850	. 859	. 869	. 879	. 889	. 899	. 909
116.	. 821	831	. 840	850	. 860	. 870	. 880	. 890	. 900	. 909
118.	. 822	832	. 841	. 851	. 861	. 871	. 881	. 890	. 900	. 910
120.	. 823	. 832	. 842	. 852	. 862	. 872	. 881	. 891	. 901	. 911

REDUCTION OF SPECIFIC GRAYITY TO $60^{\circ} \mathrm{F}$-Continued.
Observed Specific Gravity.

Observed Temperature ${ }^{\circ} \mathrm{F}$.	0.900	0.910	0.920	0.930	0.940	0.950	0.960	0.970	0.980	0.990	1.000
60	0.900	0.910	0.920	0.930	0940	0.950	0.960	0.970	0.980	0.990	1000
62	. 901	. 911	. 921	. 931	. $9+1$. 951	961	971	. 981	. 991	1.001
64	. 901	911	. 921	931	941	. 951	961	. 971	981	. 991	1001
66	. 902	912	929	. 932	. 942	. 052	962	972	952	942	1002
68.	. 903	913	. 923	. 933	. 943	. 953	963	. 973	983	993	1003
70	. 904	914	924	934	. 944	. 954	. 964	. 974	984	94.4	1.004
72	. 904	. 914	. 924	934	. 944	. 954	. 964	. 974	. 98.	994	1.004
74	. 905	915	. 925	935	. 945	. 955	. 965	. 975	985	495	1.005
76	. 906	916	926	936	. 946	. 956	. 966	976	986	996	1.006
78	. 906	916	926	936	. 946	. 957	. 967	976	986	996	1.006
8	. 907	917	927	937	. 947	937	. 967	977	987	. 997	1007
82	. 907	. 917	927	937	. 947	. 958	. 968	978	. 988	.9193	1098
84	. 908	. 918	. 929	938	. 948	. 959	. 969	.979	. 989	. 995	1.009
86	. 909	919	929	939	949	. 959	. 969	.979	.959	. 999	10019
S8.	. 910	920	930	940	. 950	. 960	. 970	. 980	. 990	1.000	1010
90	910	920	930	940	. 951	. 961	. 971	981	.991	1.001	1011
92	. 911	921	931	941	. 952	. 962	.972	982	991	1001	1011
94	. 912	922	932	942	952	. 962	.922	953	492	1.002	1015
96	913	. 222	932	942	95.3	. 963	. 973	. 983	993	1003	1013
98	. 913	. 923	933	943	954	. 964	. 974	. 984	193	3	
100.	914	924	934	944	955	965	. 975	954	99.1	1. (0)4	
102.	. 915	925	935	944	955	965	- 975	955	945	1.005 1 1045	101.0 1015
104.	915	925	935	945	956	. 966	. 976	986	. 996	1.0005	1016
106	. 916	926	936	946	957	. 968	. 978	957	.997	$1.041{ }^{\circ}$	1017
108.	. 917	.927	937	. 947	958	968	. 978	95	. 18	1.0nt	(1)
110	917	927	937	947	958	968	. 978	988	998	1005	1018
112	918	928	938	948	. 959	. 969	.979	959 189	.998	$1{ }^{1} 1004$	1015 1 1169
114	919	. 929	. 939	949	. 960	970	. 930	089	1093	1 (1)10	$1{ }^{1} 1019$
116.	919	. 929	939	949	. 960	. 970	980	991	1001	1010	1130
118.	. 920	930	. 940	. 950	. 961	91	. 981	99			
120	921	931	941	951	962	.972	982	982	1001	$\begin{array}{lll}1 & 1111 \\ 1 & 111.4\end{array}$	
122	92.2	932	. 942	952	. 963	. 973	9×3	9192	1000	$\begin{array}{lll}1 \\ 1 & 112\end{array}$	10
124	923	. 933	. 943	953	. 963	. 973	988.	998	11003	11113	110.3
126	924	934	. 9.14	954	96.1	91 975	95.1	911	1 (10) 1	1111	$10 \leq 1$
128.	925	. 935	. 945	955	965	975	95.)			
130.	. 926	936	. 946	956	. 966	. 976	986	99.5		$\begin{array}{ll}1 & 01.5 \\ 1 & 11.5\end{array}$	$110: 1$
132.	. 927	. 937	947	957	996	. 976	986	997	1 (0)15)	11118	$10 \leq 11$
134.	. 927	937	947	957	967	1978	981	939	1 (10) ${ }^{-1}$	1111	1115
136.	. 923	. 933	. 948	. 958	${ }^{965}$	978	988	? 314	11150	1017	1112
138.	929	. 939	. 949	. 959	305	975					
		. 940	. 950	. 960	96.9	979	989	919	11104	114	
142	. 930	. 940	. 950	960	970	9 96	(190)	11 100)	${ }^{1110}$	1114	1110
144.	. 931	. 941	. 951	961	971	981	291	1 (1) ${ }^{1}$	1111	(1121	1118
146	. 932	. 942	. 952	916	97	. 981	912	- (x) ${ }^{\text {a }}$	11111	1112	1 け1
148.	933	. 943	953	96.3	に\%	. 182	92		(1)		
150	933	. 943	953	963	973	953	99.3	11112	1112	II..	10

REDUCTION OF SPECIFIC GRAVITY TO $60^{\circ} \mathrm{F}$-Continued. OBSERVED SPECIFIC GRAVITY.

$\begin{aligned} & \text { Observed } \\ & \text { Tempera- } \\ & \text { t ire, }{ }^{\circ} \mathrm{F} \text {. } \end{aligned}$	1.010	1.020	1.030	1.040	1.050	1.060	1.070	1.080	1.090	1.100
6	1.010	1.023	1.030	1.040	1.050	1060	1070	1.080	1.090	1.100
62	1.011	1021	1.031	1.041	1.051	1.061	1071	1.081	1.091	1.101
64.	1.011	1.021	1.031	1.041	1.051	1. 061	1071	1.081	1.091	1.101
66	1.012	1.022	1.032	1.042	1.052	1.062	1.072	1.082	. 1092	1.102
68	1.013	1.023	1.033	1.043	1.053	1.063	1.073	1.083	1.093	1.103
70	1.013	1.023	1.033	1.043	1.053	1.063	1.073	1.083	1.093	1.103
72	1.014	1.024	1.034	1.044	1.054	1.064	1.074	1.084	1.094	1.104
74	1.015	1.025	1.035	1.045	1.055	1.065	1.075	1.085	1.095	1.105
76	1.016	1.026	1. 035	1.045	1.055	1. 065	1.075	1.085	1.095	1.105
78	1.016	1.026	1.036	1.046	1.056	1. 066	1076	1.086	1.096	1.106
80	1.017	1.027	1.037	1.047	1.057	1.067	1.077	1.087	1.097	1.107
82	1.018	1.028	1.037	1.047	1.057	1. 067	1077	1.087	1.097	1.107
8	1018	1. 028	1.038	1.048	1.058	1.068	1078	1.088	1.098	1.108
8	1.019	1.029	1.039	1.049	1.059	1.069	1079	1.089	1.099	1.108
88	1.020	1.030	1.040	1.050	1.059	1.069	1.079	1.089	1.099	1.109
90.	1.020	1.030	1.040	1.050	1.060	1.070	1.080	1.090	1.100	1.110
92	1.021	1.031	1.041	1.051	1.061	1071	1.081	1.091	1.101	1.110
9	1.022	1.032	1.042	1.052	1.061	1.071	1.081	1.091	1.101	1.111
96.	1.022	1.032	1.042	1.052	1.062	1.072	1.082	1.092	1.102	1.112
98	1.023	1.033	1.043	1.053	1.063	1.073	1.083	1.093	1.103	1.112
100.	1024	1.034	1.044	1.054	1.063	1.073	1.083	1.093	1.103	1.113
102.	1.024	1.034	1.044	1.054	1. 064	1.074	1.084	1.094	1.104	1.114
104	1.025	1035	1.045	1.055	1.065	1.075	1. 085	1.095	1.105	1.114
106	1.026	1.036	1.046	1.056	1.065	1.075	1.085	1.095	1.105	1.115
108.	1.027	1.037	1.046	1.056	1.066	1.076	1.086	1.096	1.106	1.116
110	1.027	1.037	1.047	1.057	1.067	1.077	1.087	1. 097	1. 107	1.116
112	1.028	1. 038	1.048	1.058	1.067	1.077	1.087	1.097	1.107	1.117
114.	1.029	1.039	1.048	1.058	1.068	1.078	1.088	1.098	1.108	1.118
116	1.029	1.039	1.049	1.059	1.069	1. 079	1.088	1.098	1.108	1.118
118	1.030	1.040	1.053	1.060	1.069	1.079	1.089	1.099	1.109	1.119
120	1.031	1.041	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120
122	1.031	1.041	1.051	1.061	1. 071	1.081	1. 090	1.100	1.110	1. 120
124	1.032	1.042	1.052	1.062	1.071	1.081	1.091	1.101	1.111	1.121
126	1.033	1.043	1.052	1.062	1.072	1.082	1.092	1.102	1.112	1.121
128	1.033	1.043	1.053	1.063	1.073	1.083	1.092	1.102	1.112	1.122
130	1.034	1.044	1.054	1. 064	1.073	1.083	1.093	1.103	1.113	1.123
132	1.035	1.045	1.054	1.064	1. 074	1.084	1.094	1. 104	1.114	1.123
134	1.036	1.046	1.055	1.065	1.075	1.085	1. 094	1.104	1.114	1.124
136	1.036	1.046	1.056	1.066	1.075	1.085	1.095	1.105	1.115	1.125
138	1. 037	1.047	1.057	1.067	1.076	1.086	1.096	1.106	1.116	1.125
110	1.038	1.048	1.057	1.067	1.077	1.087	1.096	1.106	1.116	1.126
112	1.038	1.048	1.058	1. 068	1. 077	1.087	1.097	1.107	1.117	1.127
114	1.039	1.049	1.059	1.169	1. 078	1.088	1.098	1.108	1.118	1.127
146	1.040	1.050	1059	1. 069	1. 079	1. 089	1.098	1.108	1.118	1.129
148.	1.040	1.050	1. 060	1.070	1.079	1.089	1.099	1.109	1.119	1.128
150.	1.041	1.051	1. 061	1.071	1.080	1.090	1.100	1.110	1.120	1.129

Specific Gravity Tables.

Equivalent of Degrees Baume' (American Standard) and Specific Gravity at $60^{\circ} \mathrm{F}$.

145 FOR LIQUIDS HEAVIER THAN Sp. Gr. WATER.

Degrees Baume	Specific Gravity	Degrees Baume	Specific Gravity	Degrees Baume	Specific Grarity	Degrees Baumes	Specific Grarlts
0.0	1.0000	. 7	1.0252	. 4	1.0538	. 1	1.0529
. 1	1.0007	. 8	1.0269	. 5	1.0545	. 2	1.0631
. 2	1.0014	. 9	1.0276	. 6	1.0553	. 3	1.0845
. 3	1.0021	4.0	1.0284	. 7	1.0501	. 4	1.0553
. 4	1.0038	. 1	1.0291	. 8	1.0529	. 5	1.0651
. 5	1.0033	. 2	1.0298	. 9	1.0576	. 6	1.0570
. 6	1.0042	. 3	1.0306	8.0	1.0584	. 7	1.0978
. 7	1.0049	. 4	1.0313	. 1	1.0592	. 8	1.058
. 8	1.0055	. 5	1.0320	. 2	1.0599	. 9	1.0094
. 9	1.0062	. 6	1.0328	. 3	1.0007	12.0	1.000?
1.0	1.0069	. 7	1.0335	. 4	1.0615	. 1	1.0910
. 1	1.0076	. 8	1.0342	. 5	1.0533	. 2	1.0019
. 2	1.0083	. 9	1.0350	. 6	1.060	. 3	1022
. 3	1.0090	5.0	1.0357	. 7	1.0438	. 4	1.0085
. 4	1.0097	. 1	1.0365	. 8	1.0645	. 5	1.0543
. 5	1.0105	. 2	1.0372	. 9	1.0654	. 6	1.0059
. 6	1.0112	. 3	1.0379	9.0	1.0662	. 7	1.0000
. 7	1.0119	. 4	1.0357	. 1	1.0550	. 8	1.0058
. 8	1.0126	. 5	1.0394	.2-	1.0677	. 9	1.007
. 9	1.0133	. 6	1.0402	. 3	1.0085	13.0	$1.08 \sim 5$
2.0	1.0140	. 7	1.0409	. 4	1.0593	. 1	1.0083
. 1	1.0147	. 8	1.0417	. 5	1.0701	. 3	1.1002
. 2	1.0154	. 9	1.0424	. 6	1.0709	. 3	1.1010
. 3	1.0161	6.0	1.0432	. 7	1.0717	4	1.1018
. 4	1.0168	. 1	1.0433	. 8	1.0725	. 5	1.1027
. 5	1.0175	. 2	1.0447	. 9	1.0733	. 6	1.1035
. 6	1.0183	. 3	1.0154	10.0	1.0741	. 7	1.1043
. 7	1.0190	. 4	1.045	. 1	1.0649	¢	1.1052
. 8	1.0197	. 5	1.0469	.2	1.078	14.0	1.1000
. 9	1.0204	. 6	1.0477	. 3	1.0760 1.0773	14.0	1.10%
3.0	1.0271	. 8	1.0484	. 5	1.0773 1.0751	. 2	1.10 ¢1
. 1	1.0218 1.0226	. 8	1.0492	. 6	1.0780	. 3	1.1024
. 3	1.0226	7.0	1.0507	. 7	1.0797	4	1.1103
. 4	1.0240	. 1	1.0515	. 8	1.0005	5	11111
. 5	1.0247	.2	1.0503	. 9	1.0813	. 6	1.1120 1.1128
. 6	1.0255	. 3	1.0539	11.0	1.0821	.	1.11.

EQUIVALENT BAUME' DEGREES-Con.

Degrees Banme	Specific Gravity	Degrees Baume	Specific Gravity	Degrees Baume	Specific Gravity	Degrees Baume	Specifio Gravity
. 8	1.1137	. 2	1.1526	. 6	1.1944	28.0	1.2393
. 9	1.1145	. 3	1.1535	. 7	1.1954	. 1	1.2404
15.0	1.1154	. 4	1.1545	. 8	1.1964	. 2	1.2414
. 1	1.1162	. 5	1.1554	. 9	1.1974	. 3	1.2425
. 2	1.1171	. 6	1.1563	24.0	1.1983	4	1.2436
. 3	1.1189	. 7	1.1572	. 1	1.1933	. 5	1.2446
. 4	1.1188	. 8	1.1581	. 2	1.2003	. 6	1.2457
. 5	1.1197	. 9	1.1591	. 3	1.2013	. 7	1.2468
. 6	1.1206	20.0	1.1600	. 4	1.2023	. 8	1.2478
. 7	1.1214	. 1	1.1609	. 5	1.2033	. 9	1.2489
. 8	1.1223	. 2	1.1619	. 6	1.2043	29.0	1.2500
. 9	1.1232	. 3	1.16 .8	. 7	1.2053	. 1	1.2511
16.0	1.1240	. 4	1.1637	. 8	1.2063	. 2	1.2522
. 1	1.1249	. 5	1.1647	. 9	1.2073	. 3	1.2532
. 2	1.1258	. 6	1.1656	25.0	1.2083	. 4	1.2543
. 3	1.1267	. 7	1.1665	. 1	1.2033	. 5	1.2554
. 4	1.1275	. 8	1.1675	. 2	1.2104	. 6	1.2565
. 5	1.1284	. 9	1.1684	. 3	1.2114	. 7	1.2576
. 6	1.1293	21.0	1.1694	. 4	1.2124	. 8	1.2587
. 7	1.1302	. 1	1.1703	. 5	1.2134	. 9	1.2598
. 8	1.1310	. 2	1.1712	. 6	1.2144	30.0	1.2609
. 9	1.1319	. 3	1.1722	. 7	1.2154	. 1	1.2620
17.0	1.1328	. 4	1.1731	. 8	1.2164	. 2	1.2631
. 1	1.1337	. 5	1.1741	. 9	1.2175	. 3	1.2642
. 2	1.1346	. 6	1.1750	23.0	1.2185	. 4	1.2653
. 3	1.1555	. 7	1.1760	. 1	1.2195	. 5	1.2664
. 4	1.1364	. 8	1.1769	. 2	1.2005	. 6	1.2675
. 5	1.1373	. 9	1.1779	. 3	1.2216	. 7	1.2636
. 6	1.1381	22.0	1.1759	. 4	1.2226	. 8	1.2697
. 7	1.1390	. 1	1.1798	. 5	1.2236	. 8	1.2708
. 8	1.1399	. 2	1.1808	. 6	1.2247	31.0	1.2719
. 9	1.1408	. 3	1.1817	. 7	1.2237	. 1	1.2730
18.0	1.1417	. 4	1.1827	8	1.2267	. 2	1.2742
. 1	1.1426	. 5	1.1537	. 9	1.2278	. 3	1.2753
. 2	1.1435	. 6	1.1846	27.0	1.2288	. 4	1.2764
. 3	1.1444	. 7	1.185 6	. 1	1.2299	. 5	1.2775
. 4	1.1453	. 8	1.1866	. 2	1.2309	. 6	1.2787
. 5	1.1462	. 9	1.1876	. 3	1.2319	. 7	1.2798
. 6	1.1472	23.0	1.1885	. 4	1.2330	. 8	1.2809
. 7	1.1481	. 1	1.1895	. 5	1.2340	. 9	1.2821
. 8	1.1490	. 2	1.1905	. 6	1.23 .11	32.0	1.2832
. 9	1.1499	. 3	1.1915	. 7	1.2361	. 1	1.2843
19.0	1.1508	. 4	1.1924	. 8	1.2372	. 2	1,2855
. 1	1.1517	. 5	1.1934	. 9	1.2383	. 3	1.2866

EQUIVALENT BAUME' DEGREES-Con.

Degrees Baume'	Specific Gravity	Degrees Baume'	Specific Gravity	Degrees Baume'	Specific Gravity	Degrees Baume'	Specific Gravity
. 4	1.2877	. 8	1.3401	. 2	1.3969	. 6	1.4588
. 5	1.2889	. 9	1.3414	. 3	1.3983	. 7	1.4002
. 6	1.2900	37.0	1.3426	. 4	1.3996	. 8	1.4517
. 7	1.2912	. 1	1.3438	. 5	1.4010	. 9	1.4632
. 8	1.2923	. 2	1.3451	. 6	1.4023	46.0	1.4646
. 9	1.2935	. 3	1.3463	. 7	1.4037	. 1	1.4601
33.0	1.2946	. 4	1.3476	. 8	1.4050	. 2	1.4676
. 1	1.2958	. 5	1.3488	. 9	1.4064	. 3	1.4691
. 2	1.2970	. 6	1.3501	42.0	1.4078	. 4	1.4706
. 3	1.2981	. 7	1.3514	. 1	1.4091	. 5	1.4721
. 4	1.2993	. 8	1.3526	. 2	1.4105	. 6	1.4736
. 5	1.3004	. 9	1.3539	. 3	1.4119	. 7	1.4751
. 6	1.3016	38.0	1.3551	. 4	1.4133	. 8	1.4766
. 7	1.3028	. 1	1.3364	. 5	1.4146	. 9	1.4781
. 8	1.3040	. 2	1.3577	. 6	1.4160	47.0	1.4798
. 9	1.3051	. 8	1.3653	. 7	1.4174	. 1	1.4871
34.0	1.3063	. 4	1.3602	. 8	1.4188	. 2	1.4836
. 1	1.3075	. 5	1.3615	. 9	1.4202	. 3	1.4541
. 2	1.3087	. 6	1.3628	43.0	1,4216	. 4	1.4557
. 3	1.3098	. 7	1.3641	. 1	1.4230	. 5	1.4572
. 4	1.3110	. 8	1.3653	. 2	1.4244	. 6	1.4887
. 5	1.3122	. 9	1.3666	. 3	1.4258	. 7	1.4002
. 6	1.3134	39.0	1.3679	. 4	1.4272	. 8	1.4918
. 7	1.3146	. 1	1.3692	. 5	1.4286	. 98	1.4933
. 8	1.3158	.2	1.3705	. 6	1.4300	48.0	1.4245 1.4004
9 9	1.3170	. 3	1.3718	. 8	1.4314	. 1	1.4004 1.4979
35.0	1.3182	.4	1.3731	. 8	1.4328	. 3	1.4903
. 2	1.3194 1.3206	. 6	1.3757	44.0	1.4356	. 4	1.5010
.3	1.3218	. 7	1.3770	. 1	1.4371	. 5	1.5026
. 4	1.3230	. 8	1.3783	. 2 -	1.4385	. 6	1.5041
. 5	1.3242	. 9	1.3796	. 3	1.4399	. 7	1.5057
. 6	1.3254	40.0	1.3810	. 4	1.4414	. 8	1.5073
. 7	1.3266	. 1	1.3823	. 5	1.4428	49.0	1.5068 1.5104
. 8	1.3278	. 2	1.3836	. 6	1.4442	49.0 .1	1.5120
. 9	1.3291	. 3	1.3849 1.3802	. 8	1.44471	. 2	1.5136
36.0 .1	1.3303 1.3315	. 4	1.3862 1,3876	. 8	1.4486	. 3	1.515 ?
. 1	1.3315 1.3327	. 6	1,3876 1.3889	45.0	1.4500	. 4	1.516\%
.3	1.3329	. 7	1.3002	. 1	1.4515	5	1.51 .6
. 4	1.3352	. 8	1.3916	. 2	1.4529	. 7	1.5199
. 5	1.3364	. 9	1.3928	. 3	1.4544	. 8	1.5831
.6	1.3376	41.0	1.3942 1.3956	. 5	1.4573	. 8	1.5247
. 7	1.3389	. 1	1.3956	. 5	1.4513		

EQUIVALENT BAUME' DEGREES—Con.

Degrees Baume	Specific Gravity	Degrees Baume'	Speciflc Gravity	Degrees Baumé	Specific Gravity	Degrees Baume'	Specilic Gravity
50.0	1.5263	. 1	1.6129	. 1	1.7079	. 1	1.8148
. 1	1.5279	. 2	1.6147	. 2	1.7099	. 2	1.8170
. 2	1.5295	. 3	1.6165	. 3	1.7119	. 3	1.8193
. 3	1.5312	. 4	1.6183	. 4	1.7139	. 4	1.8216
. 4	1.5328	. 5	1.6201	. 5	1.7100	. 5	1.8239
. 5	1.5344	. 6	1.6219	. 6	1.7180	. 6	1.8362
. 6	1.5360	. 7	1.6237	. 7	1.7200	. 7	1.8285
. 7	1.5376	. 8	1.6256	. 8	1.722	. 8	1.8308
. 8	1.5393	. 9	1.6453	. 9	1.7241	. 9	1.8331
. 9	1.5409	56.0	1.6292	61.0	1.7262	66.0	1.8354
51.0	1.5426	. 1	1.6310	. 1	1.7282	. 1	1.8378
. 1	1.5442	. 2	1.6329	. 2	1.7303	. 2	1.8401
. 2	1.5458	. 3	1.6347	. 3	1.7324	. 3	1.8424
. 3	1.545	. 4	1.6366	. 4	1.7344	. 4	1.8448
. 4	1.5491	. 5	1.6384	. 5	1.7365	. 5	1.8477
. 5	1.5508	. 6	1.6403	. 6	1.7386	. 6	1.8495
. 6	1.50525	. 7	$1.642 \pm$. 7	1.7407	. 7	1.8519
. 7	1.5541	. 8	1.6440	. 8	1.7428	. 8	1.8542
. 8	1.5558	. 9	1.64 .59	. 9	1.7449	9	1.8596
. 9	1.5575	57.0	1.6477	62.0	1.7470	67.0	1.8590
52.0	1.5591	. 1	1.6496	. 1	1.7491	. 1	1.8614
. 1	1.5608	. 2	1.6515	. 2	1.7512	. 2	1.8638
. 2	1.5025	. 3	1.6534	. 3	1.7533	. 3	1.8662
. 3	1.5642	-4	1.6653	. 4	1.7504	. 4	1.8686
. 4	1.5659	. 5	1.657	. 5	$1.75 \% 6$. 5	1.8710
. 5	1.5676	. 6	1.6590	. 6	1.7507	. 6	1.8734
. 6	1.5693	. 7	1.6509	. 7	1.7618	. 7	1.8758
. 7	1.5710	. 8	1.6028	. 8	1.7640	. 8	1.8782
. 8	1.5727	. 9	1.6459	. 9	1.7661	. 9	1.8807
. 9	1.5744	58.0	1.6667	63.0	1.7683	68.0	1.8831
53.0	1.5761	. 1	1.6636	. 1	1.7705	. 1	1.8856
. 1	1.5778	.2	1.6705	. 2	1.7736	. 2	1.8880
. 2	1.5795	. 3	1.6724	. 3	1.7748	. 3	1,8905
. 3	1.5812	. 4	1.6744	. 4	1.7770	. 4	1.8930
. 4	1.5830	. 5	1.6763	. 5	1.7791	. 5	1.8954
. 5	1.5847	. 6	1.6782	. 6	1.7813	. 6	1.8979
. 6	1.5864	. 7	1.6802	. 7	1.7835	. 7	1.9004
. 7	1.5882	. 8	1.6827	. 8	1.7857	. 8	1.9029
. 8	1.5899	. 9	1.6841	. 9	1.7879	. 9	1.9054
. 9	1.5917	59.0	1.6560	64.0	1.7901	69.0	1.9079
54.0	1.5934	. 1	1.6880	. 1	1.7923	. 1	1.9104
. 1	1.5952	. 2	1.6900	. 2	1.7946	. 2	1.9129
. 2	1.5969	. 3	1.6919	. 3	1.7068	. 3	1.9155
. 3	1.5987	. 4	1,6939	. 4	1.7900	. 4	1.9180
. 4	1.6004	. 5	1.6959	. 5	1.8012	. 5	1.9205
. 5	1.6022	. 6	1.6979	. 6	1.8035	. 6	1.9231
. 6	1.6040	. 7	1.6999	. 7	1.8057	. 7	1.9356
. 7	1.6058	. 8	1.7019	. 8	1.8080	. 8	1.9282
. 8	1.6075	. 9	1.7039	. 9	1.8102	-. 9	1.9308
. 95	1.6093	60.0	1.7059	65.0	1.8125	70.0	1.9333
55.0	1.6111						

SPECIFIC GRAVITY AND CONTENT OF SULPHURIC ACID.

Specific Gravity 15°	100 parts by weight correspond to		1 liter contains grams		Specific Gravity 15°	100 parts by weight correspond to		1 liter contains grams	
$\begin{gathered} 4^{\circ} \\ \text { in vacuo } \end{gathered}$	$\mathrm{SO}_{3}^{\%}$	$\mathrm{H}_{2} \stackrel{\%}{\mathrm{SO}}_{4}$	SO_{3}	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\begin{gathered} 4^{\circ} \\ \text { in vacuo } \end{gathered}$	$\begin{gathered} \%_{0} \\ \mathrm{SO}_{3} \end{gathered}$	$\mathrm{IH}_{2}{ }_{\mathrm{S}}^{\mathrm{O}} \mathrm{O}_{4}$	SO_{3}	$\mathrm{H}_{2} \mathrm{SO}_{4}$
1.000	0.07	0.09	1	1	1.190	21.26	26.04	253	310
1.005	0.68	0.83	7	δ	1.195	21.78	20.68	260	319
1.010	1.28	1.57	13	16	1.200	22.30	27.30	265	325
1.015	1.88	2.30	19	23	1.205	22.82	27.95	275	337
1.020	2.47	3.03	25	31	1.210	23.33	28.58	252	346
1.025	3.07	3.76	32	39	1.215	23.84	29.21	200	305
1.030	3.67	4.40	38	46	1.230	24.36	29.84	297	364
1.035	4.27	5.23	44	54	1.225	24.88	30.48	305	373
1.040	4.87	5.96	51	62	1.230	25.39	31.11	312	321
1.045	5.45	6.67	57	71	1.235	25.88	31.70	300	391
1.050	6.02	7.37	63	77	1.240	26.35	32.28	327	400
1.055	6.59	8.07	70	85	3.245	26.83	32.86	334	409
1.060	7.16	8.77	76	93	1.250	27.29	33.43	341	418
1.065	7.73	9.47	82	102	1.255	27.76	34.00	348	435
1.070	8.32	10.19	89	109	1.260	28.22	34.57	356 363	4
1.075	8.90	10.90	96	117	1.265	28.69	35.14	363 370	454
1.080	9.47	11.60	103	125	1.270	29.15 29.62	35.71 36.29	317	462
1.085	10.04	12.30	109	133	1.275	29.62 30.10	36.29 36.87	350	473
1.090	10.00	12.99	116	142 150	1.280	30.10 30.57	3.87 37.45	393	481
1.095	11.16	13.67	122	158	1.290	31.04	33.03	400	490
1.100	11.71	14.35	129	166	1.295	31.52	35.61	408	500
1.105	12.27	15.03	136	160	1.300	${ }^{3}$	39.19	416	510
1.110	12.82	15.71	143	175	1.305	32.40	39.77	424	519
1.115	13.36	16.36	149	183	1.310	32.94	40.35	432	529
1.120	13.89	17.01	156	199	1.315	33.41	40.5	439	538
1.125	14.42	17.66	162	199	1.320	33.88	41.50	447	548
1.130	14.95	18.31	169	215	1.325	34.35	42.08	455	55%
1.135	15.48	18.96	186	223	1.330	34.80	42.66	462	¢
1.140	16.01	19.61	183	223	1.335	35.27	43.20	471	57
1.145	16.54	20.26	189	239	1.340	35.71	43.74	479	5^{\sim}
1.150	17.07	20.91	196	238	1.345	36.14	44.28	480	500
1.155	17.59	21.55	203	248	1.350	36.58	44.82	494	005
1.160	18.11	22.19	210	266	1.355	37.08	45.35	502	614
1.165	18.64	22.83	$\stackrel{217}{21}$	275	1.360	37.45	45.88	509	624
1.170	19.16	23.47	224	253	1.365	37.89	46.41	517	633
1.175	19.69	24.12 24.76	231	292	1.370	35.32	46.94	595	643
1.180 1.185	20.21 20.73	24.76 25.40	238 246	301	1.375	36.75	47.47	533	653

SPECIFIC GRAVITY AND CONTENT OF SULPHURIC ACIDContinued.

Specific Gravity 15°	100 parts by weight correspond to		1 liter contains grams		$\begin{aligned} & \text { Specific } \\ & \text { Gravity } \\ & \frac{15^{\circ}}{4^{\circ}} \\ & \text { in vacuo } \end{aligned}$	100 parts by welght correspond to		1 liter contalns grams	
$\begin{gathered} 4^{\circ} \\ \text { In }{ }^{\circ} \end{gathered}$	$\begin{gathered} \%_{2} \\ \mathrm{SO}_{2} \end{gathered}$	$\mathrm{H}_{2} \stackrel{\%}{\mathrm{~S}} \mathrm{O}$	SO_{8}	$\mathrm{H}_{2} \mathrm{SO}$		$\begin{gathered} \% \\ \mathrm{SO}_{8} \end{gathered}$	$\mathrm{H}_{2} \stackrel{\%}{\mathrm{~S}}_{4}$	SO:	$\mathrm{H}_{2} \mathrm{SO}$ 6
1.380	39.18	48.00	541	062	1.675	61.20	74.97	1025	1256
1.385	39.62	48.53	549	672	1.680	61.50	75.42	1034	1267
1.390	40.05	49.06	657	682	1.685	61.93	75.86	1043	1278
1.395	40.48	49.50	564	592	1.690	62.29	76.30	1053	1289
1.400	40.91	50.11	573	702	1.695	62.64	76.73	1062	1301
1.405	41.33	50.63	581	711	1.700	63.00	77.17	1071	1312
1.410	41.76	51.15	589	721	1.705	63.35	77.60	1050	1323
1.415	42.17	51.66	597	730	1.710	63.70	78.04	1089	1334
1.420	42.57	52.15	604	740	1.715	64.07	78.48	1099	1346
1.425	42.96	52.63	612	750	1.720	64.43	78.92	1108	1357
1.430	43.36	53.11	620	759	1.725	64.78	79.36	1118	1369
1.435	43.75	53.59	628	769	1.730	65.14	79.80	1127	1381
1.440	44.14	54.07	636	779	1.735	65.50	80.24	1136	1392
1.445	44.53	54.55	643	789	1.740	65.86	80.68	1146	1404
1.450	44.92	55.03	651	798	1.745	66.22	81.12	1156	1416
1.455	45.31	55.50	659	808	1.750	66.58	81.56	1165	1427
1.460	45.69	55.97	607	817	1.755	66.94	82.00	1175	1439
1.465	46.07	56.43	675	827	1.760	67.30	82.44	1185	1451
1.470	46.45	56.90	683	837	1.765	67.65	82.88	1194	1463
1.475	46.83	57.37	691	846	1.770	68.02	83.32	1204	1475
1.480	47.21	57.83	699	856	1.775	68.49	83.90	1216	1489
1.485	47.57	58.28	707	865	1.780	68.98	84.50	1228	1504
1.490	47.95	58.74	715	876	1.785	69.47	85.10	1240	1519
1.495	48.34	59.22	723	885	1.790	69.96	85.70	1252	1534
1.500	48.73	59.70	731	836	1.795	70.46	86.30	1265	1549
1.505	49.12	60.18	739	906	1.800	70.94	86.90	127	1564
1.510	49.51	60.65	748	916	1.805	71.50	87.60	1291	1581
1.515	49.89	61.12	756	926	1.810	\%2.08	88.30	1305	1598
1.520	50.28	61.59	764	936	1.815	72.69	89.05	1319	1621
1.525	50.66	62.06	773	946	1.820	73.51	90.05	1338	1639
1.530	51.04	62.53	781	957	1.821	73.63	90.20	1341	1643
1.535	51.43	63.00	789	967	1.822	73.80	90.40	1345	1647
1.540	51.78	63.43	79%	977	1.823	73.96	90.60	1348	1651
1.545	52.12	63.85	805	987	1.824	74.12	90.80	1352	1656
1.550	52.46	64.26	813	996	1.825	74.29	91.00	1356	1661
1.555	52.79	64.67	821	1006	1.826	74.49	91.25	1360	1666
1.560	53.12	65.08	829	1015	1.827	74.69	91.50	1364	1671
1.565	53.46	65.49	837	1025	1.828	74.86	91.70	1398	16.6
1.570	53.80	65.90	845	1035	1.829	75.03	91.90	1372	1681
1.575	54.13	66.30	853	1044	1.830	75.19	92.10	1376	1685
1.550	54.46	66.71	861	1054	1.831	75.35	92.30	1380	1690
1.585	54.80	67.13	869	1064	1.832	75.53	92.52	1384	1695
1.590	55.18	67.59	877	1075	1.833	75.72	92.75	1388	1700
1.595	55.55	68.05	886	1085	1.834	75.96	93.05	1393	1706
1.600	55.93	68.51	897	1096	1.835 1.836	76.27 76.57	93.43 93.80	1400 1405	1713
1.605	56.30	68.97	904	1107	1.836	76.57 76.90	93.80 94.20	1405	1722
1.610	56.68	69.43	913	1118	1.837 1.838	76.90 77.23	94.20 94.60	1412 1419	1730
1.615	57.05 57.40	69.89 70.32	921 930	1128 1139	1.838 1.839	77.23 77.55	94.60 95.00	1419 1426	1739 1748
1.620	57.40	70.32	930	1139	1.839 1.840	77.55 78.04	95.00	1426 1436	1748
1.625	57.75	70.74	938	1150	1.840	78.04 78.33	95.60 95.95	1436	1759
1.630	58.09	71.16	947	1160	1.8405	78.33	95.95 97.00	1441 1458	1765
1.635	58.43	71.57	955	1170	1.8410	79.19 79.76	97.00 97.70	1458 1469	1786 1799
1.640	58.77 59.10	71.99 72.40	964	1181	1,8415 1.8410	79.76 80.16	97.70 98.20	1469 1476	1799
1.645	59.10 59.45	72.40 72.82	972	1192	1.8410 1.8405	80.16 80.57	98.20	1476 1483	1816
1.650 1.655	59.45 59.78	72.82 73.23	981 989	1202	1.8405 1.8400	80.57 80.98	98.70 99.20	1483 1490	1816
1.660	60.11	73.64	938	1222	1.8395	81.18	99.45	1484	1830
1.665	60.46	74.07	1007	1283	1.8390	81.39	90.70	1497	1834
1.670	60.82	74.51	1016	1244	1.8385	81.59	99.95	1500	1838

Percentage of Sulphur Trioxide and Sulphuric Acid in Fuming Sulphuric Acid.

Total SO_{3} as found by titration	The acid contains \%		Total SO_{3} as found by titration	$\begin{gathered} \text { The } \\ \text { conta } \end{gathered}$	$\begin{aligned} & \text { cidd } \\ & \text { as } \% \end{aligned}$	Total as found by titration	The acld contains \%	
	$\mathrm{H}_{2} \mathrm{SO}$	SO_{8}		$\mathrm{H}_{2} \mathrm{SO}_{4}$	SO_{8}		$\mathrm{H}_{2} \mathrm{SO}$	SO,
81.8326	100	0	87.8775	66	34	93.9389	33	67
81.8163	99	1	88.0612	65	35	91.1224	32	68
82.0000	98	2	88.2448	64	$3 \hat{1}$	94.3061	31	69
82.1836	97	3	83.4285	63	37	94.4897	30	70
82.3674	96	4	88.6122	62	38	94.6734	29	71
82.5510	95	5	88.7959	61	39	94.8571	28	72
82.7346	94	6	88.9795	60	40	95.0408	27	73
82.9183	93	7	89.1632	59	41	95.2244	26	74
83.1020	92	8	89.3469	58	42	95.4081	25	75
83.2857	91	9	89.5306	57	43	95.5918	24	76
83.4693	90	10	89.7142	56	44	95.7755	23	77
83.6530	89	11	89.8979	55	45	95.9591	22	78
83.8367	88	12	90.0816	54	46	96.1428	20	80
81.0204	87	13	90.2653	53	47	96.3265	20	80
84.2040	86	14	90.4489	52	48	36.5102	19	8^{81}
81.3877	85	15	90.6326	51	49	96.6938	15	83
84.5714	84	16	90.8163	50	50	96.515	16	84
84.7551	83	17	91.0000	49	51	97.06418	15	85
84.9387	82	18	91.1836 91.3673	48 47	52	97.4385	14	86
85.1224 85.3061	81 80	19	91.3673 $91.551 \mho$	46	54	9 O .6122	13	87
85.4897	79	21	91.7346	45	55	97.7959	12	88
85.6734	78	22	91.9183	44	, 56	97.9795	11	83
85.8571	77	23	92.1020	43	57	08.1633	10	91
86.0408	76	24	92.2857	42	58 59	983469 98.5306	8	02
86.2244	75	25	92.4693 92.6530	40	60	98.7142	7	93
86.4081 86.5918	74	27	92.6530	39	61	98.5979	6	84
86.5918 86.7755	72	28	93.0204	38	62	90.0816	,	95
86.9591	71	29	93.2040	37	63	99.2583	4	0
87.1428	70	30	93.3677	35	64	90.63 m	2	98
87.3265	69	31 32	93.7514	35	66	99.8163	1	00
87.5102 87.6938	68 67	33	93.7551	34				

Sodium Hydroxide Solution at $15^{\circ} \mathrm{C}$ (Caustic Soda). LUNGE.

Specific Gravity	Degrees Baume	Degrees Twaddell	$\begin{aligned} & \text { Per Cent } \\ & \mathrm{Na}_{2} \mathrm{O} . \end{aligned}$	$\begin{aligned} & \text { Per Cent } \\ & \mathrm{NaOH} . \end{aligned}$	1 Liter Contains Grams	
					$\mathrm{Na}_{2} \mathrm{O}$.	NaOH.
1.007	1.0	1.4	0.47	0.61	4	${ }^{6}$
1.014	2.8	2.9	0.93	1.20	9	12
1.022	3.1	4.4	1.55	2.00	16	21
1.029	4.1	5.8	${ }^{2} .10$	2.70	32	28
1.035	5.1	7.2 9.0	2.60 3.10	3.35 4.00	${ }_{32}^{27}$	35 42
1.045 1.052	6.2 7.2	9.0 10.4	3.10 3.60	4.00 4.64	${ }_{38} 3$	42 49
1.060	8.2	12.0	4.10	5.29	43	56
1.067	9.1	13.4	4.55	5.87	49	63
1.075	10.1	15.0	5.08	6.55	55	70
1.083	11.1	16.6	5.67	7.31	61	79
1.091	12.1	18.2	6. 20	8.00	68	87
1.100	13.2	20.0	6.73	8.68	74	95
1.108	14.1	21.6 23.2	7.30 7.80	9.42 10.06	81 87	104
1.116 1.125	15.1 16.1	23.0	7.80 8.50	10.06 10.97	87 96	112
1.134	17.1	26.8	9.18	11.84	104	134
1.142	18.0	28.4	9.80	12.64	112	144
1.152	19.1	30.4	10.50	13.55	121	156
1.162	20.2	32.4	11.14	14.37	129	167
1.171	21.2	34.2	11.73	15.13	137	177
1.180	22.1	36.0	12.33	15.91	145	188
1.190	23.1	38.0 40.0	13.00 13.70	16.77 17.67	155	200
1.200 1.210	24.2 25.2	40.0 42.0	13.70 14.40	17.67 18.58	164 174	225
1.220	26.1	44.0	15.18	19.58	185	239
1.231	27.2	46.2	15.96	20.59	196	253
1.241	28.2	48.2	16.76	21.42	208	206
1.252	29.2	50.4	17.55	22.64	230	283
1.263 1.274	30.2 31.2	52.6 54.8	18.35 19.23	${ }_{24.81}^{23.67}$	245	299 316
1.274 1.285	31.2 32.2	54.8 57.0	19.23 20.00	24.81 25.80	245	316
1.297	33.2	59.4	20.80	26.83	270	348
1.308	34.1	61.6	21.55	27.80	282	364
1.320	35.2	64.0	22.35	28.83	295	381 399
1.332	36.1	66.4	23.20	${ }_{31.93}$	339	339
1.345 1.357	37.2 38.1	69.0 71.4	24.20 25.17	31.22 32.47	326 342	441
1.370	39.2	74.0	26.12	33.69	359	42
1.383	40.2	76.6	27.10	34.96	375	483
1.397	41.2	79.4	28.10	36.25	392	506
1.410	42.2	82.0	29.05	37.47 38.80	410	528
1.424	43.2	84.8 87.6	30.08 37.00	38.80 39.99	428	553 575
1.438 1.453	44.2 45.2	87.6 90.6	31.00 32.10	39.99 41.41	446 466	575 602
1.468	46.2	93.6	33.20	42.83	487	629
1.483	47.2	96.6	34.40	44.38	510	658
1.498	48.2	99.6	35.70	46.15	535	691
1.514 1.530	49.2 50.2	102.8 106.0	36.90 38.00	47.60 49.02	559 581	721 750
1.530						

Table of Chloride of Calcium Solution．

Specific İravity at 64 negrees F．	Degree Beaume at 64 Degrees \mathbf{F} ．	Degree Sal－ ometer at 64 Degrees F．	Per Cent of CaCl_{2}	Freczing Point in Degrees F．	Ammonia Gauge Pressure Pounds per Square Inch
1.007	1	4	0.943	＋31．20	46
1.014	2	8	1.886	$+30.40$	45
1.021	3	12	2.829	$+29.60$	44
1.028	4	16	3.772	＋28．80	43
1.035	5	20	4.715	$+28.00$	42
1.043	6	24	5.658	＋26．89	41
1.050	7	28	6.601	＋25．78	40
1.058	8	32	7.544	＋24．67	38
1.065	9	36	8.487	$+23.56$	37
1.073	10	40	9.430	＋22．09	35.5
1.081	11	44	10.373	$+20.63$	34
1.089	12	48	11.316	＋19．14	32.5
1.097	13	52	12.259	$+17.67$	30.5
1.105	14	56	13.202	＋15．75	29
1.114	15	60	14.145	＋13．82	27
1.122	16	64	15.088	$+11.80$	25
1.131	17	68	16.031	＋ 9.96	23.5
1.140	18	72	16.974	＋ 7.68	21.5
1.149	19	76	17.917	＋ 5.40	20
1.158	20	80	18.860	＋ 3.12	18
1.167	21	84	19.803	－0．84	15.
1.176	22	83	20.746	－ 4.44	12.5
1．186	23	92	21.689	－8．03	10.5
1.196	24	96	22.632	－-11.63	8
1.205	25	100	23.575	-15.23 -19.56	4
1.215	26	104	24.518 25.461	－19．06	1.5
1.225	27	108	25.461	－24．43	$1^{\prime \prime}$ vacuum
1.236	29	116	27.347	－35．30	$5^{\prime \prime}$ vacuum
1.257	30	120	28.290	－41．32	8．5＂vacuum
1.268	31	．．．．．．	29.233	-47.66	$13^{\prime \prime}$ vacuum
1.279	32	．．．．．．	30.176	－54．00	$15{ }^{\prime \prime}$ Vacuum
1.290	33	．．．．．．	31.119 3.068	－44．32	4＂vacuuill
1.302	34	．．．．．．．	33.	－25．00	1.5 pounils

Table of Brine Solution．
（CHLORIDE OF SODIUM－COMMON SALT．）

					$\begin{aligned} & \text { 영 } \\ & \text { 응 } \\ & \text { 을 } \\ & 0 \end{aligned}$				$\begin{aligned} & 00 \\ & 400 \\ & 400 \\ & 300 \end{aligned}$	
			1.	8.35	0.	8.35	12.4		82． 4	x．
1	0 4	1.007	0.992	8.4	0.084	8.316	60． 8	．138		
5	20	1.037	0.96	8.65	0.432	8.218	Cos．${ }^{\text {cos }}$	6．105	（10） 25	is 1
10	40	1.073	0.892	8.95	0.89	80.35	m． 50	10．435	5． 5.121	12．2
15	60	1.115	0.855	9.3	1.395	7.08	－1．76	14．85\％	［1\％40s	0×1
20	80	1.150	0.829	9.6	1.92	7．4．र）		$18.5 \times$	51.00%	1 m
25	100	1.191	0.783	9.34	2.45					

The Metric System, Fundamental Equivalents.

The fundamental unit of the metric system is the Meter-the unit of length. From this the units of capacity (Liter) and of weight (Gram) were derived. All other units are the decimal subdivisions or multiples of these. These three units are simply related, e. g., for all practical purposes one Cubic Decimeter equals one Liter and one Liter of water weighs one Kilogram. The metric tables are formed by combining the words "Meter," "Gram," and "Liter" with the six numerical prefixes, as in the following tables:

Prefixes.	Meaning.		Units.
milli- = one thousandth	1/1000	0.001	
centi- $=$ one hundredth	1/100	0.01	"meter" for length
deci- $=$ one tenth.	1/10	0.1	
Unit $=$ one.		1.	"gram"for weightor mass
deka- $=$ ten $\ldots .$. .	10/1	10.	
hecto- $=$ one hundred	100/1	100.	"liter" for capacity
kilo- = one thousand	1000/1	1000.	

All lengths, areas, and cubic measures in the following tables are derived from the international meter, the legal equivalent being 1 Meter $=39.37$ Inches (law of July 28, 1866). In 1893 the United States Office of Standard Weights and Measures was authorized to derive the yard from the meter, using for the purpose the relation legalized in 1866, 1 Yard $=3600 / 3937$ Meter.

The customary weights derived from the international kilogram are based on the value of 1 avoirdupois pound $=453.5924277$ grams. This value is carried out farther than that given in the law, but is in accord with the latter as far as it is there given. The value of the troy pound is based upon the relation just mentioned and also the equivalent $5760 / 7000$ avoirdupois pounds equal 1 troy pound.

In the following tables the metric unit has been selected as the common unit so that conversions may be made through the metric unit.

हु \&in tin ion iono

LINEAR DIMENSIONS-CONVERSION FACTORS.

 . FURLISHG $=660$ feet $=10$ chains. .1 CABLE LENGTH $=120$ feet. CHAIN $=66$ feet $=100$ links LINK $=7.92$ inches. BOLT $=40$ yards........ SPAN $=9$ inches. MAND $=4$ inches
. PANM $=3$ inches $10^{-5 \cap N T}=1 / 10^{5}=1 / 100000=0.00001$ (a) Note

SQUARE MEASURE, SURFACES, AREAS.

1.0000	
.1.000	- 10^{3}
1.000	- 10^{6}
1.6387	. 10
2.8317	- 10^{4}
7.64559	- 10^{5}

mi
它: घ宛

x
$=00625 \mathrm{~A}$

$=3.58701 \times 10^{-8} \mathrm{sq}$.
 ARE or $A R=119.59852621 \mathrm{sq}$. yd.
SQUARE KILOMETER $=0.386100614$ sq. miles.

SQUARE MILLIMETER $=0.001550 \mathrm{sq}$. in
\cdots səן!u әxenbs $9 \%=$ dIHSNMOL I
SQUARE MILE $=640$ acres $=2.78784$
$\mathrm{ACRE}=10$ sq. chains $=43560$ sq. ft.
or Pole $=272.25 \mathrm{sq} . \mathrm{ft} .=0.0$
SQUARE YARD $=9 \mathrm{sq} . \mathrm{ft} .=1296 \mathrm{sq}$.
SQUARE FOOT $=144 \mathrm{sq}$. in.
SQUARE INCH $=0.0069444$
SQUARE MIL $=0.000001 \mathrm{sq}$. in.
mi.
YOLUME, CAPACITY, CUBIC CONTENTS, SPACE.

CUBIC CENTIMETER $=16.23$ minims $=0.0610 \mathrm{cu}$. in
LITER $=1.056681868$ U. S. Qt. $=61.023 \mathrm{cu} . \mathrm{in} . . .$. CUBIC METER $=264.4$ U. S. Gal. $=35.3165 \mathrm{cu} . \mathrm{ft}$
oz. $=0.00058 \mathrm{cu} . \mathrm{ft}$

$1 / 10^{s}=1 / 100000000=0.00000001$
$1.000 \cdot 10^{-3}$
6.1023377953

U. S. LIQUID AND APOTHECARY MEASURE.

.6 .16119	$\cdot 10^{-2}$
.36967	
.2322	
.2 .9573	$\cdot 10$
.1 .1829	$\cdot 10^{2}$
.43179	$\cdot 10^{2}$
$.46358 \cdot 10^{2}$	
.3 .78543	$\cdot 10^{3}$
1.1924	$\cdot 10^{5}$
.2 .3848	$\cdot 10^{5}$
$.1 .58984 \cdot 10^{5}$	
1.5898	$\cdot 10^{5}$
.3 .176	$\cdot 10^{5}$

BRITISH LIQUID AND DRY MEASURE.

MISCELIANEOUS.
10^{2}
10^{8}
10^{9}
10^{6}
10^{8}

S. dry measure $\times 1.032=$ British liquid $=$ Britid and dry of same denomination.
U. S. dry measure $\times 1.032=$ British liquid and dry of same denomination.

1.693.
2.8219
3.527
1.7608
8.804
2.201.
1.1005
2.75121
6.87802
3.43901.

.GALLON $=4.543$ liters $=277.274 \mathrm{cu} . \mathrm{in}$.
BOARD FOOT $\left(1^{\prime} \times 1^{\prime} \times 1^{\prime \prime}\right)=144 \mathrm{cu} . \mathrm{in}$.
1 t .43560 cu
128 cu.
J. S. SIIIPIING TON $=40 \mathrm{cu} . \mathrm{ft}$
. 1 Biatish Shipping ton $=42 \mathrm{cu} . \mathrm{ft}$

훙를

WEIGHTS-CONVERSION FACTORS.
A.
$10^{3} \ldots \ldots \ldots$
$10^{-3} \ldots \ldots$
Grams to

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

PRESSURE CONVERSIONS.

PRESSURE CONVERSIONS-Continued.

$\xrightarrow{11 .}$ Oz./ft.	Lbs. $/ 2 . \mathrm{ft}$.	$\begin{gathered} 13 . \\ \text { Dynes/cm². } \end{gathered}$	14. Atmospheres
32.77	2.048	980.62	$9.679 \cdot 10^{-4}$
83.23	5.205	2492.0	0.002458
998.8	62.43	29890.0	0.02950
44.56	2.785	1333.3	0.0013159
445.6	27.85	13333.0	0.013159
1131.7	70.73	33865.0	0.03342
32.770	2.048	980.62	$9.679 \cdot 10^{-4}$
32770.0	2048.0	980620.0	0.9679
144.0	9.000	4309.5	0.0042525
2304.2	144.00	68950.0	0.06805
1.0000	0.06250	29.93	$2.9533 .10{ }^{\circ}$
16.000	1.000	478.9	$4.725 \cdot 10^{-4}$
$3.3410 \cdot 10^{-2}$	$2.088 \cdot 10^{-3}$	1.0	$9.868 \cdot 10^{-7}$
33861.9	211637	1013295.0	1.00000

COMPARATIVE TEMPERATURE DEGREES.

	Degrees Absolute	Degrees Cent.	Degrees Fahr.	Degrees Reaumur
Degrees Absolute	1.0	1.0	9/5	1/5
Degrees Centigrade	1.0	1.0	\%/5	$1 / 5$
Degrees Fahrenheit	5/9	\%	1.0	\%
Degrees Reaumur	$5 / 4$	$5 / 4$	\% 1	1.0

COMPARATIVE TEMPERATURE POINTS.
Absolute zero $=-273^{\circ}$ Centigrade $=-459.4^{\circ}$ Fahr. $=-218.4^{\circ}$ Reaum.
Freezing water $=0^{\circ} \mathrm{C} .=273^{\circ} \mathrm{A} .=32^{\circ} \mathrm{F} .=0^{\circ} \mathrm{R}$.
Boiling water $=100^{\circ} \mathrm{C} .=373^{\circ} \mathrm{A} .=212^{\circ} \mathrm{F} .=80^{\circ} \mathrm{R}$.

HEAT QUANTITY CONVERSION FACTORS.

One British Thermal Unit $=251.995 \times$ calories $(\mathrm{gm})=.0.251995 \times$ Cal. Large.
One gram caloric $=0.00396832$ British Thermal Units.
One B. T. U. per pound $=\overline{3} / 3$ calorie per gram.
One calorie per gram $=1.8$ B. T. U. per pound.

TIME CONVERSION FACTORS.

One year $=365$ days, 5 hours, 48 minutes, 48 seconds $=12$ calendar months.
$=52.1693+$ weeks $=8765.8133+$ hrs. $=525948.8$ minutes $=31556928$ seconds.
One week 7 days $=168 \mathrm{hrs} .=10080$ minutes $=604800$ seconds.
One day $=24$ hours $=1440$ minutes $=86400$ seconds.
One hour $=60$ minutes $=3600$ seconds.
One minute $=60$ seconds.
VELOCITY CONVERSION FACTORS.
Mi./hr. Ft./sec. K゙m./h2. M sece atl d.t. Kim. dh.

1. Miles per hour...... $1.0000 \quad 1.4667 \quad 1.6093 \quad 0.4470424 .00 \quad 38.62$
2. Feet per second.....0.6819 $1.0000 \quad 1.0973 \quad 0.30480 \quad 16.37 \quad 26.33$
3. Kilometers/hour ..0.6214 $\quad 0.9114 \quad 1.0000 \quad 0.2778$ 14.913 \quad 2.4.00
4. Meters per second.2.237 $3.281 \quad 3.600 \quad 1.0000 \quad 53.69 \quad 86.40$
5. Miles per day....... $0.04167 \quad 0.061120 .06706 \quad 0.018631 .0000 \quad 1.609$
6. Kilometers! day $\quad . . .0 .02589 \quad 0.03797 \quad 0.04167 \quad 0.01157 \quad 0.621+1.0000$

CONVERSION FACTORS FOR MONEY.

\$ to A.			$1.00{ }^{10}$
1.000			0.010
100.000	Cent (U. S.)		5.10972
0.196	Guinea (English)	$=21$ shillings	4.186
0.2055	Pound Sterling (Sovereign)	$=20$ shillings	4. 5660
4.11	Shilling (s)	$=12$ pence	0.24331 0.02028
40.93	Penny (d)	$=4$ farthings	0.00 .07
163.72	Farthing	$=1 / 1$ penny	1.21660
0.822	Crown	$=5$ shillings $=100 \mathrm{pfenmirs}$	0.238
4.200	Mark (Germany)		0.002:3ヶ
420.0	Pfennig	$=100$ centimes	0.19\%
5.182 518.2	Franc (France) Centime	$=100$ crntimes	$0.0019 \% 3$

CLASSIFICATION OF U. S. PATENTS ON PETROLEUM REFINING.

A. Water separation, dehydration, de-emulsification, heating and physical purification of oil and bottom settlings.
B. Cracking, conversion, and decomposition processes.
C. Paraffin and wax.
D. Chemical treatment of petroleum.

1. Acid or alkali.
2. Other than acid or alkali.
E. Asphalt.
3. Compositions.
4. Production.
5. Refining.
F. Simple distillation.
6. Fire.
7. Steam.
8. Gas.
9. Air.
10. Vacuum.
I. Batch.
II. Continuous.
G. Coal oil, Kerosene and Illuminating oils.
H. Oil-fire prevention, extinction and storage.
I. Recovery of acid-sludge and alkali-sludge.
J. Gasoline production and treatment.
K. Gas.
11. Production.
12. Treatment.
13. Production of carbon black.
L. Chemical products.
M. Patented blends and compounds.
N. Testing apparatus.
O. Lubricating oils.
P. Electrical processes.
Q. Transporting oil.
R. Methods of removing carbon and coke.
S. Mechanical appliances in oil refining, and processes. (Not covering any particular operation.)
T. Plastics.
U. Condensers and condensing.
V. Desulphurizing and deodorizing.
W. Oil shales, oil sands and coals.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922).

NAME	Number
Aab, Geo, and S. K. Campbell	369,902
Abbott, L. S.	1,332,018
Adair, Jas.	35,497
Adair, Jas., and Tweddle, H. W	56,343
Adair, Thos. D	1,106,352
Adams, Chas	52,509
Adams, J. H.	1,320,354
Adams, J. H	320,726-7
Adams, J. H	976,975
Adams, Jos. H	1,327,263
Adams, Henry W	12,614
Adamson, Wm.	45,007
Adiassewich, Alexander	629,536
Alberger, J. L	37,798
Alexander, Clive M	1,230,975
Alexander, Clive M	1,387,677
Alexander, C. M., and Taber,	1,381,098
Alexander, Jas. H	229,287
Alexander, Jas. H, and Eberhard.	156,265
Alexander, Robt	435,198
Alkemade, J. von P	1,076,000
Allan, Hugh Logie	1,390,742
Allan, D. M., Jr.	1,187,797
Allen, Geo.	182,625
Allen, W. H	1,167,966
Allison, Win	1,395,694
Alter, David, and Hill, S. A	20,026
Alvord, Clark.	213,157
Ambruson, H	1,252,642
Amend, Otto	480,311
Amend, Otto	480,312
Amend, Otto	747,348
Amend, Otto	551,941
Amend, Otto	601,331
Amend, Otto	747,347
Andrews \& Averill	1,319,828
Andrews, B., and Averill, W. C.	1,329,739
Andrews, B., and Averill, W. C..,	1,312,467
Andrews, Samuel.	58,197
Andrews, Samuel.	69,745
Angus, H. R .	407,274
Anthony, C.	620,082
Archbold, Geo	$503,028$
Archer, Wm..	44,137
Ard, L. B...	373,698-9
Artmann, Carl	1,031,227
Arvine, Freeling W	629.059
Arvine, Freeling W	431.795
Ash, Horace W. .	779,197
Ash, Horace W	779,198
Ash, Horace W	757,387
Ashworth, A. A	1,300,547
Ashworth, A. A	1,300.548
Atwood, Luther	27.767
Atwood, Luther	21,805
Atwood, Luther.	22,406
Atwood, Luther.	23,407
Atwood, Luther.	23,006
Atwood, Luther	23,337
Atwood, Luther	28,246
Atwood, Luther	28,448
Atwood, Luther	27.768
Atwood, Luther	31.858 15.506
Atwood, L. and W	15,505
Atwood, L. and W	206, 151
Atwood, W	$\begin{gathered} 26,101 \\ 672,882 \end{gathered}$
Aukerman, Cal M	1,375,245
Averill, W. C.,	1,076,2.15

Date
Sep. 13, 1887 Feb. 24, 1920 June 10, 1862 July 17, 1866 Aug. 4, 1914 Feb. 13, 1866 Oct. 28, 1919 Nov. 4, 1919 Nov. 29, 1910 Jan. 6, 1920 Aрг. 3, 1855 Nov. 15, 1864 July 25, 1899 March 3, 1863 June 26, 1917 Aug. 16, 1920 June 14,1921 June 29, 1880 Oct. 27, 1874 Aug. 26, 1890 Oct. 14, 1913
Sept. 13, 1921
June 20, 1916
Sept. 26, 1876
Jan. 11, 1916
Nov. 1, 1921
April 27, 1858
Mar. 11, 1879
Jan. 8, 1918
Aug. 9, 1892
Aug. 9, 1892
Dec. 22, 1903
Dec. 24, 1895
Mar. 29, 1898
Dec. 22, 1903
Oct. 28, 1919
Fel. 3, 1920
Aug. 5, 1919
Sept. 25, 186,6
Oct. 15, 1867
July 16, 1889
Feb. 21, 1899
Aug. 8, 1893
Sept. 6, 186.1
April 5, 1921
July 2, 1912
July 18,1899
July 8, 1890
Jan. 8, 190.
.lan. 8, 1005
April 12, 1901
April 15, 1919
April 15, 1919
April 10, 1880
Oct. 19. 1854

1) (ee. 28, 1858

Dee. 28, 1858
Fel. 2.2, 1859
ММг. 2!, $185!$
May 29, 18tio
May 29. 1s60
April 10, 1sigo
Nar, 2li, 1stil
Aus. 12, 18.14
A 4 : $12,145 \mathrm{~F}$
April 16, 18s
April :10, 190]
April 19, 1! ! il

Class
C
B, I
U
F
A
C
B

B
B

0
D 1
B, G
B
B
B
$\underset{\mathrm{F}}{\mathrm{F}}$
E 3
F
D 1
A. 0

J
$1 k$
K1
13
13

1) $1, \mathrm{~V}$
v. 1) 1

Y, 1) 1
t, 111
13
13
1: 1,1

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number
Bacon, Broohs \& Clark.	1,131,309
Bacon, Brooks \& Clark	1,334,731
Bacon \& Clark.	1,101,482
Backhaus, Arthur A	1,271,114
Backhaus, Arthur A	1,271,115
Backhaus, A. A.	1,296,902
Baillard, Chas. L	340,411
Baker, Leslie A	299,611
Ballard, A. M.	1,327,691
Barber, Guy M	1,251,952
Barbet, E. A	1,319,319
Barnes, Wm. T	-24,920
Barnes, Wm. T	24,921
Barrett, Michael	59,531
Barron, Thos. J.	46,987
Barnickel, W. S	1,093,092
Barnickel, W. S	1,223,659
Barnickel, W. S	1,223,660
Bartels, E	1,115,887
Barstow, Frank	181,814
Barthel, Peter	135,879
Baskerville, Chas	1,231,985
Bassett, R. D	1,120,669
Bassett, R. D	1,120,670
Bates, H. F	1,046,541
Baum, E. P	1,109,103
Baynes, R., and Fearenside, J	299,324
Beckley. R. E.	1,127,722
Bell, A. F. L	1,231,695
Bell, A. F. L	581,451
Bell, A. F. L	617,712
$\mathrm{B}=11, \mathrm{~A}$. F. L	580,592
Bell, A. F. L	€55,430
Bell, A. F. L	505,416
Bellingrath, Leonard, Jr	20,465
Bending, Wm. P..	998,670
Benham, E. B .	1,262,576
Benham, E. B	1,040,124
Benton, G. L	342,564
Benton, G. L.	342,565
Bending, Wm. P	1,144,522
Benhofi, G. F., Jr., and Jens	1,181,564
Berend, Ludwig.	1,167,373
Berg, Friedrich.	645,743
Berg, Friedrich	560,463
Berg, F	736,479
Berg, F	736,480
Berg, F	623,066
Berg, H. J	93,952
Bergius, Friedrich	1,344,671
Bergius, Friedrich	1,391,664
Bibby, John, and Lapham, A	-48,896
Bicknell, John E.	313,979
Bicknell, John E	400,042
Bicknell, John E	400,043
Biddison, P. MeD., and Boyd,	1,345,740
Bielouss, Elias.	1,384,423
Biggins, Jas. E	1,274,976
Blacher, L., and Sztencel, S	-956,276
Black, J. C.	968,640
Black, J. C	1,152,478
Black, J. C	1,164,162
Black, John C	1,275,648
Blakeman, Wm. N., Jr	1,385,035-6
Plakeman, Wm. N., Jr	1,385,037
Blowski, Jno. and A	1,186,373
Born, Sidney	1,234,124
Borrman, C. H	1,220,067

Date	Class
Mar. 9, 1915	J B
Mar. 23, 1920	B
June 23, 1914	B
July 2, 1918	M
July 2, 1918	M
Mar. 11, 1919	M
April 20, 1886	1) 1
June 3, 1884	A
Jan. 13,1920	K
Jan. 1, 1918	S
Oct. 21, 1919	F
Aug. 2, 1859	U
Aug. 2, 1859	G
Nov. 6, 1866	I
Mar. 28, 1865	M
April 14, 1914	A D 1
April 24, 1917	A D 1
April 24, 1917	A
Nov. 3, 1914	H
Sept. 5, 1876	C
Feb, 18, 1873	E 1, 3
July 3, 1917	I
Dec. 15, 1914	J
Dec. 15, 1914	J
Dec. 10, 1912	K 1
Sept. 1, 1914	A
May 27, 1884	D 2
Feb. 9, 1915	B
July 3, 1917	B R
April 27, 1897	E 3,2
Jan. 17, 1899	E 2, 3
April 13, 1897	E 3
Avg. 7, 1900	E 2, 3
Sept. 19, 1893	E 2, 3
June 1, 1858	F 1, 4
July 25, 1911	A
April 9, 1918	K 1
Oct. 1, 1912	B
May 25, 1886	B
May 25, 1886	B
June 29, 1915	D 1
May 2, 1916	F 2
Jan. 11, 1916	D 1
Mar. 20, 1900	F 2, 1
May 19, 1896	D 1
Aug. 18, 1903	V, D 1
Aug. 18, 1903	
April 11, 1899	D 1
Aug. 24, 1869	F 1
June 29, 1920	B
Sept. 27, 1921	D 3
July 25,1865	F 1
Mar.17, 1885	F 2
Mar. 26, 1889	C
Mar. 26, 1889	C
July 6, 1920	B
July 12, 1921	L D
Aug. 6, 1918	B
April 26, 1910	I
Aug. 30, 1910	D 1
Sept. 7, 1915	F 3
Dec. 14, 1915	D 2, F 3
Aug. 13, 1918	J
July 19, 1921	M
July 19, 1921	D 3
June 6, 1916	I
July 24, 1917	F 1, II, S
Mar. 20, 1917	F 2, II

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

Date	Class
Aug. 13, 1901	S
Sept. 23, 1919	F
Feb. 17, 1920	B
July 16, 1918	W
April 2, 1889	F
April 2, 1889	V, G
April 3, 1917	B
April 29, 1884	F D
July 20, 1880	F 2
Sept. 2, 1856	A
Sept. 2, 1856	W
June 12, 1917	B. P
Jan. 6, 1920	P
June 4, 1872	M
Feb. 8, 1881	M
Aug. 22, 1865	G. S
June 27, 1865	S
Dec. 19, 1865	S
Dec. 19, 1865	S
Aug. 21, 1894	F 2, II
Aug. 30, 1870	I
June 13, 1854	F 1, 2, I
July 20, 1915	K 1
Dec. 1, 1914	B
Feb. 16, 1915	B
Aug. 23, 1921	B
March 16, 1915	B
Oct. 1, 1895	F 3, 4
April 10, 1883	F 1, 4
May 20, 1884	F
May 26, 1885	F
April 1, 1862	G, F 2, II
Sept. 28, 1880	I
May 14, 1918	H
Dec. 18, 1917	B
Dec. 18, 1917	B
Dec. 18, 1917	B
June 24, 1919	S
Jan. 8, 1918	B
Jan. 8, 1918	B
Mar. 5, 1918	B
Jan. 8, 1918	B
Jan. 14, 1919	B
Dec. 18, 1917	B
Mar. 5, 1918	B
Aug. 23, 1921	B
Dec. 20, 1921	B
Mar. 8, 1921	B
Mar. 29, 1921	B
Aug. 12, 1921	B
May 24, 1921	B R
Mar. 16, 1920	B
June 29, 1920	B
Aug. 3, 1920	B
Aug. 3, 1920	B
Aug. 17, 1920	B
Oct. 12, 1920	B
Sept. 21, 1920	B
April 12, 1921	F
Oct. 17, 1916	A
Aug. 16, 1921	D
Sept. 9, 1919	I, D
Nov. 25, 1919	B, D
Aug. 23, 1921	D
Nov. 2, 1920	D
April 15, 1919	D
Mar. 4, 1919	B
Sept. 12, 1876	F 2, 4 II

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number
Coleman, John T	191,406
Colin, T. F	607,017
Colin, T. F	723,368
Colin, T. F	744,720
Colin, T. F	685,907
Collins, Jacob	1,028,439
Collins, John F	59,334
Collins, Jos. G	32,557
Connelly, Martin	240,093
Connelly, Martin	240,094
Cook \& Price. . .	1,190,633
Cooper, A. S	617,226
Cooper, H. C	1,323,837
Cooper, Isaac N	1,349,048
Corfield, Wm...	54,061
Corfield, Wm	54,060
Cornell, Sidney	1,202,969
Cosden, J. S...	981,176
Cosden, J. S., and Coast, J. W., J	258,196
Cosden, J. S., and Coast, J. W., Jr	1,261,215
Cottrell \& Wright.	987,117
Cottrell \& Speed.	987,115
Cottrell \& Speed.	987,116
Cottrell, F. G	987,114
Courtois, F. A	788,250
Cowan, Wm. P	558,258
Crane, Frederick D	1,223,153
Crane, Adolphus G	1,276,879
Crane, Gerard...	231,280
Crawford, Benjamin.	113,023
Crocker, Samuel H..	12
Cronemeyer, A. H	718,318
Cronenberger, W. M	1,152,399
Cronin, C. J .	150,465
Cross, A. B	1,327,906
Cross, Jas. P	1,255,138
Cross, Roy....	1,203,312
Cross, Walter M	1,326,851
	$1,326,851$ 635,429
Culmer, Geo., and Geo. C. K	635,430
Culmer, F. W	217,995
Cunningham, Christopher.	158,042
Danckwardt, P	1,141,529
Danckwardt, P	$1,373,653$ $1,317,077$
Danckwardt, P ...	$1,317,077$ $1,353,638$
Daugherty, Alvin A	$1,353,638$ 213,395
Daul, John.	258,28-1
Davidson, J. G., and Ford, R. W	$1,238,61.1$
Davidson, Samuel. Davis, C. S.	1,369.787-8
Davis, C. Sohn T	$\begin{array}{r}671,078 \\ \hline 159,186\end{array}$
Davis, John T	$1,159,186$ 65,884
Davis, Samu	1,32:3,681
Day, D. F	826,089
Day, David T	1,221,698
Day, David T.	1,004,632
Day, David T.	1,280,178
Day, David T	1,365,891
Day, David T	1,342.741
Day, David T	1.:186.768
Day, David T	1,280,179
Day, Roland B	157,276-78
Day, Roland B	1,174,970-1
Dayton, W. C	1,398,587
Dean, Daniel A	

Date	Class
May 29, 1877	F
July 12, 1898	V, D 1
Mar. 24, 1903	V, D
Nov. 24, 1903	V, D
Nov. 5, 1901	V, D
June 4, 1912	
Oct. 30, 1866	F 4, I
June 18, 1861	
April 12, 1881	D 1, V
April 12, 1881	D 1, V
July 11, 1916	E 3
Jan. 3, 1899	E 2, 3
Dec. 21, 1919	J
Aug. 10, 1920	H
April 17, 1866	M
April 17, 1866	M
Oct. 31, 1916	F 2
Jan. 10, 1911	F 2, 11
Mar. 5, 1918	B
April 2, 1918	B
Mar. 21, 1911	P
Mar. 21, 1911	PA
Mar. 21, 1911	${ }^{\prime}$
Mar. 21, 1911	P
April 25, 1905	N
April 14, 1896	C
April 17, 1917	M1)
Aug. 27, 1918	F
Aug. 17, 1880	E 1
Mar. 28, 1871	13
July 16, 1872	13
Jan. 13, 1903	A
Scpt. 7, 1915	11
May 5, 187.1	F
Jan. 13, 1920	J K
Aug. 14, 1866	11
Feb. 5, 1918	13
Oct. 31. 1916	13
Dec. 30, 1919	13
Oct. 24, 1899	F
Oct. 24, 1839	W
July 29, 1879	(;
Dec. 22, 1874	('
June 1, 1915	1. F 1.11
April 5, 1921	13, 1)
Sept. 23, 1919	11, 11
Sppt. 21, 1920	13
Mar. 18, 187!	$1: 2$
May 2:3, 188:	Fこ
June 5, 1917	
Aug. 28, 1917	J, K=
Mar. 1, 1921	
April 2, 1901	$1 \cdot 1.11$
Nov, 2,1915	1. 2.11
June 18, 1 817	$\stackrel{1}{1}$
1)	W
July 17, 1906	V. 11
April :1, 1917	11, 11
Oct. :1, 1911	11
Oct. 1, 1!18	W
Jan. 18, 1821	W1:
Junce 8,1920	11
Aug. 9, 1921	11
Oct. 1, 1918	11
Nov. 2, 1920	K1
Nev. 2!, 1921	1

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) -
Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

Date	Class
Jan. 26, 1869	F 1, 2 II
Fcb. 13, 1866	
Sept. 4, 1866	
$\begin{aligned} & \text { May } 15,1917 \\ & \text { Nov. } 11,1919 \end{aligned}$	J, B
May 15, 1877	I
May 30, 1876	I
May 30, 1876	I, T
Dec. 31, 1839	M
Aug. 23, 1921	W
June 4, 1918	A
April 29, 1921	I
May 22, 1866	S
Sept. 21, 1920	B, P
Oct. 29, 1918	
July 25, 1871	F
July 25, 1871	A
June 20, 1865	F 4, 5
April 9, 1861	
Nov. 14, 1865	
June 15, 1869	F 2, II
Jan. 20, 1920	
April 5, 1921	W
April 6, 1920	
July 27, 1920	
July 27, 1920	
Jan. 28, 1918	K 2, S
Mar. 10, 1914	K 1, 2
Oct. 19, 1915	K 1
Dec. 28, 1915	F 2, II
Oct. 17, 1911	
May 7, 1872	M
Dec. 14, 1920	A
Oct. 2, 1900	M
July 25, 1911	E 1, 2
Dec. 9, 1879	F 2 ,
Nov̀. 14, 1893	D 1, v
Jan. 9, 1900	$\mathrm{V}, \mathrm{D} 1$
Sept. 20, 1859	F1
Aug. 20, 1867	F 1, II
June 18, 1861	F 1, 2 II
Nov. 17, 1868	F 1, II
May 6, 1884	
Dec. 13, 1887	F 1, I
April 7, 1914	
May 6, 1919	S
Oct. 22, 1889	D
Mar. 15, 1887	D 1
Sept. 4, 1883	D, M
May 6, 1891	D 1, 2
July 25, 1916	K 2, J
Sept. 21, 1915	D 1, S
Sept. 21, 1915	D 1
Oct. 25, 1921	
Oct. 26, 1920	O, D
Oct. 4, 1887	V
May 4, 1920	
Sept. 5, 1918	K 2
Oct. 3, 1916	J
April 16, 1918	D
Jan. 8, 1918	D 1
May 21, 1861	G. W
June 16, 1868	F 1, II
May 27, 1879	F 1, II
Nov. 21, 1882	
Aug. 15, 1916	E 1, 2

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) -
Continued.

NAME	Number
Garner, J. B., and Clayton, H. D	1,262,7¢9
Garner, J. B.	1,299,455
Garner, J. B., and Cooper, H. C	1,332,290
Garrity, W. F., and Jarvais, A	1,190,538
Garvey, Benjamin.	29,218
Gathmann, Louis.	768,796
Gathmann, Louis	755,760
Gay, Cassius M	1,179,001
Gearing, C. M .	212,084
Gellen, A	1,063,025
Gengembre, H. P	52,283
Gengembre, $\mathrm{H} . \mathrm{P}$	52,284
Gengembre, H. P	24,454
Gengembre, H. P	25,109
Gengembre, H . P	27,542
Gengembre, H. P	33,699
Gerbeth, F. L. de	81,071
Gesner, A braham	11,205
Gesner, A.	11,203
Gesner, A	11,204
Gesner, A braham	12,612
Gibbons, Samuel	87,485
Gibbons, S	87,658
Gibbons, S	85, 810
Gibbons, S	68,97.
Gilchrist, V. T	1,386,467
Gillespie, Jas.	23,362
Giilons, G. H	1,084,080
Goldwater, Henry	366,720
Goldwater, Henry	432,525
Goodaire, Wm., and Stead, G	101,003
Gordon, Thos	
Govers, F. X	1,297.833
Gracie, John	
Gracie, John.	114, 503
Gracie, John.	
Gracie, John.	117,406
Gracie, John	99,081
Grady, Chas. F	732,937
Graham, C	36,403
Grant, H. F	1,303,292
Grant, Jas. B	57,311
Grant, J. B., and Mason, A	339,545
Grant \& Mason.	339,546
Grant \& Mason	339,5.5
Gray, A, McD	663,239
Gray, Daniel T	2.50 .585
Gray, D. T	251.191
Gray, D. T	1,005,125
Gray, E. ${ }_{\text {Gray, }}$ W.	1.193 .540
Gray, G. W	1,193,5.41
Gray, J. L.	928,428
Gray, J. L	
Gray, J. L	$10.30,127$
Gray, J. L	1,381,909
Gray, John La	1,3,10,889
Gray, T. T...	1158,205
Gregory, Ralph and Winton	1,271,517
Green, Joel.	
Greene, H. J	1.110,92.1
Greenstreet, Chas. J	1,110,92:
Greenstreet, Chas. J	1,110,025
Greenstreet, C. J	1,166,182

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number ${ }^{\text {c }}$	Date	Class
Greenstreet, C. J.	1,299,172	Jan. 1, 1916	B
Grieg, A., and Smith, Jas	42,171	Mar. 29, 1864	K 1
Griffin, Jonathan.	23,167	Mar. 8, 1859	M
Groble, J. C	1,283,502	Nov. 5, 1918	K
Grogan, Henry	94,409	Aug. 31, 1869	F 2
Grogan, H., and Lape, G. T	89,988	May 11, 1869	F 2, 5 II
Grousilliers, Hector de.	378,774	Feb. 28, 1888	
Guillaume, Emile.	996,081	June 27, 1911	B
Gulick, W. R.	1,187,061	June 13, 1916	M
Gumpoldt, Emil.	616,838	Dec. 27, 1898	M
Hadley, B. E	1,300,230	April 8, 1919	S
Hague, S. L.	775,448	Nov. 22, 1904	W, S
Hague, S. I	759,988	May 17, 1904	W, S
Hall, C. H.	86,535	Feb. 2, 1869	F 2
Hall, C. H	55,855	June 26, 1866	F 1,2 II
Hall, C. H., and Ellis, John.	58,813	Oct. 16, 1866	F 1, II
Hall, T. G.	372,672	Nov. 8, 1887	
Hall, Wm. A	1,175,909	Mar. 14, 1916	
Hall, Wm. A	1,105,772	Aug. 4, 1914	B, K 1
Hall, Wm. A	1,194,289	Aug. 8, 1916	
Hall, Wm. A	1,239,099	Sept. 4, 1917	B
Hall, Wm. A	1,175,910	Mar. 14, 1916	B, K 1
Hall, Wm. A	1,247,671	Nov. 27, 1917	
Hall, Wm. A	1,242,795	Oct. 9, 1917	B
Hall, Wm. A	1,242,796	Oct. 9, 1917	B
Hall, Wm. A	1,239,100	Sept. 4, 1917	B
Hall, Wm. A	1,261,930	April 9, 1918	B
Hall, Wm. A	1,242,746	Oct. 9, 1917	B
Hall, Wm. A	1,242,795	Oct. 9, 1917	B
Hall, Wm. A	1,285,136	Nov. 19, 1918	B
Hall, Wm. C	266,990	Nov. 7, 1882	F^{2}
Halvorson, Halvor	305,182	Sept. 16, 1884	S
Halvorson, H....	305,180	Sept. 16, 1884	F
Hamilton, T. S	1,018,971	Feb. 27, 1912	
Hand, Harry W	596,874	Jan. 4, 1898	U, S
Handy, Jas. O.	1,281,355	Oct. 15, 1918	
Handy, Jas. O	1,281,354	Oct. 15, 1918	\bigcirc
Hansen, Julius	1,084,738	Jan. 20, 1914	C
Hardy, C. A.	51,042	Nov. 21, 1865	F
Hardy, C. A	40,168	Oct. 6, 1863	F 2,4
Hardy, C. A.	46,899	Mar. 21, 1865	
Harris, Ford W	1,281,952	Oct. 15, 1918	A, P
Harris, John.	1,283,508	Nov. 5, 1918	K 2
Harris, Milo.	170,730	Dec. 7, 1875	
Harrison, Poole	1,355,554	Oct. 12, 1920	
Hart, Thos. M	1,252,433	Jan. 8, 1918	A, E2, 3
Hartshorn, H. M	91,843	June 29, 1869	
Hastings, D., and Brink, A. W	867,505	Oct. 1, 1907	$\underset{\mathrm{G}}{\mathrm{K}}, 2, \mathrm{~J}$
Hatch, N. B.	22,798	Feb. 1, 1859	
Hawes, Benj. N	444,833	Jan. 20, 1891	
Hazlett, R. W., and Hobbs, J. H	24,211	May 31, 1859	G, S
Hebard, Benj. F.	31,457	Feb. 19, 1861	M
Heckenhleikner \& Gilchrist	1,310,078	July 15, 1919	I
Hedges, E. E.	1,383,205	June 28, 1921	W
Helbing, H., and Passmire, F. S .	666,010	Jan. 15, 1901	D 1
Hempel, H.	621,338	Mar. 21, 1899	M
Hempel, H .	621,411	Mar. 21, 1899	M
Henderson, Geo. A	1,266,261	May 14, 1918	E 1
Henderson, N. M	490,199	Jan. 17, 1893	C
Henderson, N. M	340,878	April 27, 1886	
Henderson, H.	1,335,438	Mar. 30, 1920	B, F
Hennebutte, H	1,165,878	Dec. 28, 1915	
Henncbutte, H	1,165,877	Dec. 28, 1915	F 4,1
Hense, Rudolf.	1,073,233	Sept. 16, 1913	
Herber, Samuel M	1,111,580	Sept. 22, 1914	F, D 1

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number	Date	Class
Kitchen, J. M. W	1,008,273	Nov. 7, 1911	F 1, 21 I
Klauber, Laurence M	1,371,378	July 25, 1919	
Klein, John S. .	306,837	Oct. 21, 1884	
Kline, Geo. H	253,362	Nov. 30, 1886	F1, II S
Klosterman, Robt	152,650	June 30, 1874	
Knottenbelt, H. W	1,194,033	Aug. 8, 1916	W
Knottenbelt, H. W	1,277,605	Scpt. 3, 1918	D 1
Koch, G. T., and Stallkamp, A. L	1,380,067	May 31, 1921	1), L
Koehler, Herman	507,441	Oct. 24, 1893	V
Koehler, W. C., and Kink, L	1,084,016	Jan. 13, 1914	0
Koetchaw, R............	1,325,299	Dec. 16, 1919	
Koppers, H	1,098,723	June 2, 1911	F 2, II
Kormann, Frederick A	1,332,849	Mar. 2, 1920	
Kotschevar, H. J.....	1,357,998	Nov. 9, 1920	B, K
Kreiser, J. M	384,768	June 19, 1888	
Kresier, J. M	366,487	July 12, 1887	F
Kreusler, A.	50,368	Oct. 10, 1856	F
Kroll, C.	1,373,251	Mar. 29, 1921	F
Lachman, W	1,363,659	Dec. 28, 1920	
Lackmen, A.	1,171,524	Feb. 15, 1916	F 2, 11
Lacy, B. S.	1,263,906	April 23, 1918	1.
Laing, John	471,291	Mar. 22, 1892	B
Laing, John	488,767	Dec. 27, 1892	
Laird, Robt. H	507,230	Oct. 24, 1893	
Laird, Robt. H	498,518	Nay 30, 1893	
Laird, R. E., and Raney, Jos. H	1,116,299		
Laird, W. G...	$1,320,396$ $1,142,761$	June 8, 1915	A, P
Laird \& Raney	$1,142,761$ $1,1 \cdot 2,760$	June 8, 8, 1915	A, ${ }^{\text {A }}$
Laird \& Raney	1,112,759	June 8, 1915	A, ?
Laird \& Raney	183,401	Oct. 17, 1876	I), 1
Lamb, Frederick	102,135	April 19, 1870	
Lambert, Chas. G	1,245,930	Nov. 6, 1917	13
Lamplough, F.	1,229,098	June 3, 1918	13
Landes, Wm.	1,199,909	$\text { Jan. 9, } 1917$	
Landsberg,	1,2172,131	Jan. 11, 1876	F 1, II
Lane, Edw	954,575	April 12, 1910	
Lang, J. S...	904,517	Oct. 30,1866	
Lapham, Alle	1,266,281	May 14, 1918	13
Lapp, C. E..	1,075,481	Oct. 11, 1913	1) 1
Lawrence, W P	1,315,632	Sept. 9, 1919	K
Lee, A. K....	162,394	Dec. 21, 1918	I)
Leete, H. C	1,727,391	May 5, 1903	
Leman, Wrm. T	459,123	Sept. 8, 1891	10.11
Lennard, F	499,557	June 13, 1893	F"
Lennard, F	659,076	Oet. 3,1900	'T
Lennard, F..	1,261,410	April 2.1918	F
Lepley, Clyde E	$1,310,16.1$	July 15, 1919	\bigcirc
Leslie, E. H	1,33:7,523	April 20,1920	
Leslie, E. H., and Barbre, C	1,281,597	(ret. 15, 1918	K:
Lessing, Rudolf	1,283,0.42	Nov. 12, 18i2	1
Letchford, R. M., and Nation, W	1,251,978	Jan. 1, 1914	()
Levy, E. D., and Jacobs, H. W	1,364,4.13	Jan. 1, 19\%1	13
Lewis, Jos. W	$1,392,58$.	()et. I, 19\%1	13
Lewis, F. B., and Cooke,	1,35,527	. 1 unt 11), Intie	11
Lewis, Sylvester	12,6171	May 11, 1861	1
Lewis, S	43,156	Junc 11, 1stil	
Lewis, S S	1220,651	Mar. 27, 1917	K
Linderborg, G., and scott, W. B	1,256,3,310	Fッh. 12, 191\%	$\begin{aligned} & h 1 \\ & \text { is } \end{aligned}$
Lindsy, Wm. J	1,284,117	Nov. 5, 1918	M
Linn, S. S. K Kird Jas	258.774	Nay 澋, 1882	
Livesay, Jas., and Kidn, Jas	233, 264	Mar. 29, 1881	
Livingston, Julius	2337.5430	Frlb, K, 1481	
Livingston, Max	728.257	May 19, 190,	1
Livingston, Max.			

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number	Date	Class
Lockhart, Chas., and Gracie, J	40,632	Nov. 17, 1863	F
Lockhart \& Gracie.	80,294	July 28, 1868	F
Loew, Oscar	101,284	M1ar. 29, 1870	D 1
Lofhjelm, Karl	546,018	Sept. 10, 1895	F
Loftus, Robt. G	113,782	April 18, 1871	D 1
Loftus, Robt. Cr	81,654	Sept. 1, 1868	K 2
Loftus, Robt. G	-43,157	June 14, 1864	I
Long, F. R....	1,256,146	Feb. 12, 1918	S
Loomis, C. C	1,280,612	Oct. 1, 1918	L
Loomis, Wells, Hitcheock \& Str	66,364	July 2, 1867	M
Looney, John J	139,009	May 20, 1873	D 1
Lorch, H. D.	1,264,668	April 30, 1918	F 2, 5
Lorraine, David G	1,396,860	Nov. 15, 1921	B-D-3
Lossen, Clemens. .	537,121	April 9, 1895	
Low, Frank S.	1,192,653	July 25, 1916	J, B
Lowe, L. P., and Ruff, F. C	1,351,859	Sept. 7, 1920	B
Lowe, W. P., and Bilfinger, C.	556,155	Mar. 10, 1896	B
Lucas, Owen D.	1,168,404	Jan. 18, 1916	B
Lucas, Owen D	1,183,091	May 16, 1916	B
Lugo, Orazio . .	51,843	Jan. 2, 1886	F 3
Lugo, Orazio	60,757	Jan. 1, 1867	V, D 1
Lugo, Orazio	5S,113	Sept. 18, 1866	F 3, 4, I
Lugo, O., and Schrade, T. O. L	60,396	Dec. 11, 1866	F 3, 4, 1
Lupton, Geo.	110,054	Dec. 13, 1870	
Lutz, H. E. .	240,914	May 3, 1881	F 1, II
Maag, G. C	1,142,525	June 8, 1915	B
McAfee, Almer M	1,277,092	Aug. 27, 1918	C
Mcafee, A. M.	1,099,096	June 2, 1914	B
McAfee, A. M	1,127,465	Feb. 9, 1915	B
Mcafee, A. M	1,144,304	June 22, 1915	B
McAfee, A. M	1,202,081	Oct. 24, 1916	B
McAfee, A. M	1,277,329	Aug. 27, 1918	D
McAfee, A. M	1,277,328	Aug. 27, 1818	D
McAfee, A. M	1,235,523	July 31, 1917	B
McAfee, A. M	1,326,072	Dec. 23, 1919	B
McAfee, A. M	1,326,073	Dec. 23, 1919	B
McArthur, D. R	1,119,974	Dec. 8, 1914	B
MeAig, D. C.	1,255,449	Feb. 5, 1918	S
McCabe, J. R	1,376,713	May 3, 1921	B, P
MeCarty, F.	1,91,953	June 29, 1869	F 2, II
McCarty, Wm. F. M	1,274,912	Aug. 6, 1918	B
MeCarty, W. F. M	1,274,913	Aug. 6, 1918	B
McCaskell, J. A	1,317,514	Sept. 30, 1919	W
MeComb, Wm. F	1,374,858	April 12, 1921	B
McComb, Wm. M	1,337,144	April 13, 1920	B
McCue, J. and W. B	21,143	Aug. 10, 1858	W
McElroy, Karl P.	1,259,757	Mar. 19, 1918	K 2, B
McElroy, Karl P	1,259,758	Mar. 19, 1918	K 2
McGinnis, Walter R	1.328,680	Jan. 20, 1920	K J
McGowan, Thompson	492,421	Feb. 28, 1893	F
McGowan, T........	454,061	June 16, 1891	F
McGowan, T	443,328	Dec. 23, 1890	F
McGowan, T	658,857	Oct. 2, 1900	
McGowan, T	257,961	May 16, 1882	F 3, D 1
McGowan, T	431,386	July 1, 1880	
McGowan, T	166,285	Aug. 3, 1875	F 2
McGowan, T	492,419	Feb. 28, 1893	S
McGowan \& Van Syckel, S.	154,700	Sept. 1, 1874	S
McGowan \& Van Syckel, S.	156,229	Oct. 27, 1874	F 1
MeHenry, C. D.....	1,154,869	Sept. 28, 1915	B, K 1
McKee, Ralph H	1,244,444	Oct. 23, 1917	L.
McKibben, Chas. W	1,327,835	Jan. 13, 1920	A
McKibben, Chas. W.	1,299,589	April 8, 1919	A
McKibben, Chas. W	1,299,590	April 8, 1919	
McKissack, R. I.	1,113,029	Oct. 6, 1914	K 1
McManus, H...	305,097	Sept. 16, 1884	I

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

Date	Class
May 20, 1879	C
July 6, 1920	B
July 19, 1921	M
Dec. 16, 1919	H
June 14, 1921	D
Aug. 7, 1900	D 1,2
Nov. 12, 1901	D 1,2
Dec. 25, 1900	F 2, 5, 1
Oct. 13, 1903	
June 27, 1916	O, D
July 16, 1918	D 1
Feb. 14, 1899	B
Jan. 11, 1921	D
Dec. 7, 1915	D
May 16, 1916	I.
Jan. 30, 1917	B
Dec. 11, 1917	B
Feb. 26, 1918	B
Jan. 11, 1921	L
Jan. 11, 1921	L
May 28, 1878	N
July 7, 1874	N
Jan. 11, 1921	K, L
June 26, 1866	M
Jan. 28, 1879	C
July 5, 1881	F
Mar. 14, 1882	F
June 30, 1908	B, P
Jan. 6, 1891	F 1, 2,11
Jan. 6, 1891	F 1, 2, Il
Feb. 11, 1919	
Nov. 29, 1887	F 2, 5, II
Sept. 1, 1903	F 1,2, II
Oct. 31, 1882	M
Dec. 13, 1881	
Feb. 10, 1880	F 1, 1, 11
Sept. 4, 1866	M
July 11, 1871	
Dec. 22, 1891	F1, 3
May 19, 1892	F 3, V
Feh. 12, 1867	C
July 31, 1855	W
May 27, 1919	J-K
June 22. 1869	O, 1)
May 31, 1904	F
Dec. 17, 1861	S
July 30, 1861	S
July 2, 1861	S
July 2, 1861	1) 1
July 2, 1861	[) 1
May 18, 1869	F1, 2
June 28, 186.	I) 1
Jan. 1, 1918	1:3 11
April f, 1886	$\mathrm{F}^{2} 211$
Oct. 29, 1918	K
July 8, 1919	K
Sept. 3, 186\%	I) 1
Mar. 11, 1919	M
Jan. f, 1920	$\stackrel{0}{ }$
April 11, 1916	C
June 25, 1878	1×8
Jan. 18, 1916	
April 21, 1868	10611
Nov. 24, 1920	(1)
Aug. 5, 1919	
May 19. 1863	I) 1
Mar. 17, 1863	11

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number	Date	Class
Parker, R. B	1,252,481	Jan. 8, 1918	K 2
Parker, W. C	169,189	Oct. 26, 1875	\bigcirc
Parker, W. M	1,226,990	May 22, 1917	B
Parsons, Chas. C	88,978	April 13, 1869	F 2, 5
Parsons, C. Cbauncey	93,739	Aug. 17, 1869	
Parsons, H. E	214,946	April 29, 1879	F, K ?
Pease, Francis S	226,187	April 6,1880	
Pemberton, Henry	24,952	Aug. 2, 1859	W, I
Pennissat, Andre.	204,244	May 2S. 1878	
Perkins, A. H. .	36,632	Oct. 7, 1862	T
Perkins, George H	399,073	Mat. 5, 1889	F
Perkins, Geo. H	240,923	May 3, 1881	S
Perkins, J., and Burnet, Wm. H	47,125	April 4, 1865	F 2,11
Perkins, W. D.	731,943	June 23, 1903	F 1, 2, 11
Perrier, Odilon	544,516	Aug. 13, 1895	$\mathrm{F} 1,2,11$
Perrine, Robt.	419,347	Jan. 14, 1890	V, D
Peterson, F. P.	1,031,664	July 2, 1912	J, K 2
Petroff, Grigos	1,087,888	Feb. 17, 1914	D
Petroff, G.... .	1,233,700	July 17, 1917	D 1
Petty, T. K., and Warden, W. G	37,263	Dec. 23, 1862	S
Peucben, S. C..........	531,560	Dec. 25, 1894	
Pfiefer, F .	1,296,115	Mar. 4, 1919	
Pfiefer, F	1,296,116	Mar. 4, 1919	
Pbillip, A	1,286,091	Nov. 26, 1918	Q, M
Phillips, Joseph.	98,883 $1,228,818$	June 5, 1917	
Pictet, Raoul P.	1,228,818	June 5, 1917 Feb. 6, 1877	
Pielsticker, Carl M	186,951 477,153	Feb. 6, 1877	$\mathrm{F} 9,11$
Pielsticker, Carl M	1,070,730	June 19, 19,1913	$\mathrm{C}^{-\infty}$
Pinckney, T. De Witt	,221,421	Nov. 11, 1879	N
Pine, J. A. W., and Ruggles, W'm. B	1,057,667	April 1, 1913	
Pinkham, C. W.	34,772	Mar. 25,1862	M, V.
Pitt, Wm. H.	379,492	Mar. 13, 1888	F',
Pitt, Wm. H	243,080	June 21, 1881	
Place, Chas. T.....	7,124	Feb. 26, 1850	F2, 11
Poisat, A. M., and	1,254,271	Jan. 22,1918	A
Ponton, John	165,612	July 13, 1875	N
Poole, Willard B	1,340,793	May 18, 1920	8
Porges, P., and Neumann, R	1,017,587	Feb. 13, 1912	(
Porter, Alonzo W	146,778 $+53,386$	June 2, 1891	W
Poterie, George	+51,386 $\mathbf{6 1 , 0 9 8}$	Jan. 8, 1867	¢,
Pray, Lyman. . . . ${ }^{\text {Pr }}$ Robertson, R	61,098 48,435	June 27, 1865	
Prentiss, E, F., and Roberts	41,858	Mar. 8, 186.1	F 2.11
Prentiss \& Robertson	1,273,091	July 16, 1918	Fi) 1
Price, Walter B.	- 518,391	Oct. $22,189 \%$ Aug. 10, 1920	
Price, W. B., and Dietz, Ernest	$1,349,294$ 522,028	Aug. ${ }^{\text {June }} 26,189.1$	(i, 1) 1
Price, W. B .	1,264,435	April 30, 1918	$1: 3,11$
Prichard, Geo. I	$1,290,345$	Jan. 7.1919	
Prichard, G. L	1,389,978	Sept. A, 192\%	
Primose, Jobn Propfe, H. . .	1,378,265	July 5, 1 sus	11, 11
Propfe, H. . Paul W	1,397,113	Nov. 15, 1921	i
Prutzman, Paul W	1,238,331	Aug. 1\%, 19, 1	
Prutzman, Paul, and Goodwin,	1,176,09.1	Mar. 19,1916	
Puening, Franz	1,358,17.1	Nov. 9, 1936	
Puening, Franz	1,010,408	Ort. 8,1912	
Pyzel, Daniel.	1:276,690	Aug. 00,1918	
Puzel, Daniel.	1,383,024	Junw 2 s, 1921	F:
Pyzel, Daniel...			
	1,382,23.1	June 21, 198	
Quinby, Henry	31,998	April	
Quinn, A......	36,481	sprl. ${ }^{\text {an, }}$	
Ramage, Alexander S..	1,365,849	Jan. 18. 1921	11

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number	Date	Class
Ryder, Henry	142,515	Sept. 2, 18731	$\mathrm{F}, \mathrm{~S}$
Ryder, Watson.	214,199	April 8, 1879	$\mathrm{F}, \mathrm{~S}, \mathrm{II}$
Ryder, W., and Qualey, J. A	$739,757$	Sept. 22, 1903	F^{\prime}
Sabatier, P., and Malihe, A	1,124,333	Jan. 12, 1915	B, P
Sabatier, P., and Malihe, A	1,152,765	Sept. 7, 1915	B ${ }^{\text {P }}$
Salathe, Frederick.	452,764	May 19, 1891	T
Salathe, F	564,341	July 21, 1896	T
Sampson, C. E., and Woods, W	1,177,816	April 4, 1916	
Sangster, W. H.	-54,414	May 1, 1866	S, D
Sangster, W. H., and Spencer, T. C	56,276	July 10, 1866	F
Sargent, Thos. D	20,587	June 15, 1858	W
Saunders, H. F., and Sutherland, L	1,362,355	Dec. 14, 1920	I.
Savage, Wallace	1,279,918	Sept. 24, 1918	E 1
Sawyer, G. T., Howland, W., Jr. Hatch, T.	33,905	Dec. 10, 186^{\prime}	S
Saybolt, Geo. M	565,039	Aug. 4, 1896	D 1
Saybolt, G. M	989,927	April 18, 1911	J, K -
Saybolt, G. M	218,066	July 29, 1879	
Saybolt, G. M	245,658	Aug. 9, 1881	N
Schalk, Emil.	146,405	Jan. 13, 1874	I)
Schalk, Emil	133,598	Dec. 3, 1872	1), S
Schesch, H. A	54,218	April 24, 1866	
Scheuffgen, Robert	1,118,952	Dec. 1,1914	H
Schieffelin, S.	1,381,936	June 21, 1921	W
Schildhaus, G., and Condrea, C	956,184	April 26, 1910	
Schill, E.	1,100,260	June 16, 1914	F, K 2
Schill, E	1,142,275	June 8, 1915	J, K 2
Schiller, Max	580,652	April 13, 1897	
Schmidt, A. T	164,694	June 22, 1875	D
Schmidt, W. A., and Wolcott, E. R	1,307,930	June 24, 1919	13
Schubert, Julius .	156,600	Nov. 3, 1874	A
Schwartz, Stephen	1,247,883	Nov. 27, 1917	13
Scott, John B....	58,180	Sept, 18, 1866	11
Seeger, Robt.	1,394,688	Oct. 25, 1921	13
Seeger, Rober	1,259,786	Mar. 19, 1918	13
Seely, E. D.	57,390	Aug. 21, 1866	M
Seely, C. A	87,207	Feb. 23, 1869	F
Seibert, N. M., and Brady, J.	1,290,369	Jan. 7, 1919	A
Seidenschur, F., and Dehnst,	1,162,729	Nov. 30, 1915	
Seigle, A	567,751	Sept. 15, 1896	F 1, 1]
Seigle, A	567,752	Sept. 15, 1896	
Sellers, H. L., and Conyngton, H. R	549,499	Nov. 5, 1895	18
Setzler, H. B....	1,292,966	Jan. 28, 1919	13
Sewell, B. F. Brooke	781,045	Jan. 31, 1905	F
Sexton, Wm. A....	1,248,730	Dec. 4, 1917	A
Seymour, M. J	306,965	Oct. 21, 188.4	
Shapter, J. S	61,474	Jan. 22, 1867	F $1,2,5$
Sharples, P. T	1,352,265	Aug. 31, 1920	
Sharples, P. T	1,373,773	April 5, 1921	
Shaw, F. D...	1,098,412	June 2, 1914	
Shaw, G. E	61,572	Jan. 29, 1867	
Shaw, G. E	56,107	July 3, 1866	
Sheets, Earl H	1,273,191	July 23, 1918	K 2, 3
Sherman, L. O	968,088	Aus. 23, 1910	
Sherman, L. O	1,260,584	Mar. 26, 1918	11.
Sherman, L. O	1,288,711	June 9. 191.1	I1
Shiner, O. J . . .	$\begin{array}{r} 1,099,622 \\ 613 \end{array}$	Nov. 8,1898	S
Shively, Martin.	613,728 $1,297,022$	$\begin{aligned} & \text { Nov. } 8,1898 \\ & \text { Mat. } 11,1919 \end{aligned}$	W
Shreves, F. G....	1,416,255	1)eer 16, 1851	W
Shroder, Richard. Walter H., and Mantius, 0	1.384,978	July 19, 19321	()
Skidmore, C. J., and Conerty, P. F...	1,302,09.4	April 20, 1919	()
Slater, Wm. A.	1,263,950	Fibl 27, 1816 fi	()
Slemmer, Henry T	109,772	Nov. 29, 1870	A
Sloane, W. M......	109,519	Jan. 1?, 1880	$\stackrel{C}{ }$
Sloane, W. M., and Potter, B. M Sloane, W. M., and Bell, Wm . .	235,057	Nov.30, 1880	C

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number
Slocum, F. L., and Stutz, C. C.	1,304,211
Slocum, F. L., and Stutz, C. C.	1,304,212
Small, H. J., and Stillman, H	595,788
Smedley, J. D	37,709
Smith, A. D	1,239,423
Smith, A. D	1,374,402
Smith, A. D	1,324,075
Smith, C. A	558,747
Smith, H. C	300,811
Smith, Hlamilton L	60,585
Smith, H. L.	60,076
Smith, H. J., and Jones, W	35,184
Smith, Rolin H.	306,653
Smith, Wm	23,719
Smith, Wm. A	596,437
Smothers, H. F., and Norquist	1,261,337
Snee, J. A	1,165,458
Snelling, Walter	1,371,268
Snelling, Walter O	1,056,845
Snelling, Walter O	1,186,855
Snelling, W. O.	1,215,732
Snow, Wm. B	130,668
Snow, Wm. B	137,496
Soderlund \& Boberg	1,252,962
Sommer, Adolph	525,696
Sommer, Adolph	523,716
Southey, A. W	1,120,857
Spangle, George W	58,905
Sparie, \& Masland	695,123
Spears, Wm.	107,734
Spier, Robert, and Mather, J	168,060
Speller, F. N.	774,341
Squires, Frederick.	1,249,232
Squire, F. B	197,197
Stafford, Jas. B	10,813
Stapp, A. A	24,212-13
Stanley, A. M	1,177,904
Starke, Eric A	597,920
Starke, E. A.	781,240
Starke, E. A	913,780
Starke, E. A	1,109,187
Stearns, H. A	103,385
Steenbergh, B. Van	1,124,364
Steinschneider,	1,302,988
Steinschneider, Leo.	981,953
Steinschneider, Leo	1,192,581
Stelwagon, W. H.	503,996
Stephens, Sam F.	1,375,427
Stevens, E. W	1,374,199
Stevens, Levi.	363,432
Stevens, Levi.	414,601
Stevens, Wm. H	1,165,462
Stewart, John .	24,587
Stewart, J. L.	162,965
Stewart, J. L., and Logan, J. P	113,811
Stewart, J. L., and Dubler, J. B	136.557
Stewart, Lyman	1,163,570
Still, Carl......	1,080,177
Stombs, D. S., and Brace, J	27,842
Stone, C. W	1,070,555
Stott, Chas .	1,68,257
Strache, H., and Porges, P	1,205,578
Straight, Halver R .	1,330,014
Straight, H. R. .	1,323,204
Strain, E. W	311,543
Strather, W. P	1,326,618
Street. G. E. J	695,123

Date	Class
May 20, 1919	B
May 20, 1919	B
Dec. 21, 1897	D 1, F 2
Feb. 17, 1863	
Sept. 4, 1917	J, B
Apill 12, 1921	F, B
Dec. 9, 1919	
April 21, 1896	V, D
June 24, 1884	F, II
Dec. 18, 1866	
Nov. 27, 1866	F 2, 4, I
May 6, 1852	N
Oct. 14, 1884	C
April 19, 1859	G, S
Dec. 28, 1897	V
May 14, 1918	Q
Dec. 28, 1915	K 2
Mar. 15, 1921	B
Mar. 25, 1913	J, K, 2, B
June 13, 1916	F 1
Feb. 13, 1917	V
Aug. 20, 1872	S
April 1, 1873	S
Jan. 18, 1918	F 2
Sept. 11, 1894	V
July 31, 1894	V
Dec. 15, 1914	K 1
Oct. 16, 1866	D
Mar. 11, 1902	M
Sept. 27, 1870	F, G
Sept. 21, 1875	U
Nov. 8, 1904	N
Dec. 5, 1917	J, K 2
Nov. 13, 1877	
April 25, 1854	U
Dec. 9, 1919	B
April 4, 1916	K 1
Jan. 25, 1898	D 1
Jan. 31, 1905	E 3, B
Mar. 2, 1909	D, F 2
Sept. 1, 1914	D 1
May 24, 1870	F 2, II
Jan. 12, 1915	K 1, B
May 6, 1919	
Jan. 17, 1919	F 5
July 25, 1916	F 5
Aug. 29, 1893	S
April 19, 1921	B
April 5, 1921	B, P
May 24, 1887	F2
Nov. 5, 1889	B
Dec. 28, 1915	M
June 28, 1859	W
May 4, 1875	F 2, II
April 18, 1871	F
Mar. 4, 1873	S
Dec. 7, 1915	B
Dec. 2, 1913	S
April 10, 1860	G
Aug. 19, 1913	A
Aug. 19, 1867	F 1, 2
Nov. 21, 1916	B
Feb. 3, 1920	W
Nov. 25, 1919	W
Feb. 3, 1885	F 1, 2, IJ
Dec. 30, 1919	O
Mar. 11, 1902	M

UNITED S'TATES PETROLEUM PATENTS (TO JANUARY, 1922)— Continued.

Date	Class
June 23, 1891	D
Feb. 13, 1872	F 1, 2, I1
Nov. 23, 1920	B
Feb. 19, 1895	V
Dec. 22, 1914	F 2, 11
Dec. 18, 1917	A
Nov. 12, 1918	S
Mar. 26, 1918	B
Sept. 10,1867	A
Nov. 1, 1859	G
May 28, 1867	V
May 28,1867	V
Dec. 28, 1920	K, J
Oct. 3, 1882	F 1, 2, 3, 4, 11
Feb. 28, 1882	F 1, 2,11
A pril 16, 1918	N
Oct. 28, 1862	N
May 5, 1863	N
Sept. 16, 1862	N
Nov. 16, 1869	S
Aug. 12, 1913	J, K
Feb. 16, 1915	K 1. B
Mar. 20, 1866	F 2, 3, 11
Mar. 19, 1867	F 1
Feb. 11, 1873	F 2, 11
Feb. 8, 1870	I) 1
Aug. 9, 1870	1) 1
July 2, 1918	1, 1:1
May 22, 1866	1) 1
Nov. 20, 1866	1) 1
Mar. 31, 1896	V, D)
May 4, 1915	13
Dee. 31, 1895	F
1)ec. 31, 1895	F
Sept. 2.1, 1901	1) 1
Jan. 29, 1918	
Jan. 8, 1867	F1,11
Mar. 8, 18ti.	
Apri] 16, 1867	$10:$
June 20, 1876	
July : $1,1 \times 8: 3$	18, 11
Mar. 24. 1855	F:
Fel). 7,1905	\bigcirc
Mar. 25, 1! 19	5
Nov. 16, 1916	
Scpte 25, 188.	F゙2, 1
Iune 8, 1920	IV
M:1y $3,181: 3$	11
July $7,1 \times 85$	111
Nov. 17, 1485	1) 1
Aug. 15, 1911	
Nov. 12, 1878	F\%,
duls 28, 1911	F1, 11
April 11, 1911;	$1 \cdot 1$
Şpt.21, 1918	λ
19.c. 1, 1:917	λ
Scpt. $\mathbf{S t}$, 1!111	1
(1et, 1, 1921	11
dan. 31, 1880	10%
May 11, 1930	13
duly 1, 1!11	¢
Aик, 17, 1! ${ }^{\text {(1) }}$	11
Sı-1!. 5, 1911	F1, 11
Aug. 12. 191:1	1. 2,11
May 9, 1!1t;	$1: 3,12,11$

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

UNITED STATES PETROLEUM PATENTS (TO JANUARY, 1922) Continued.

NAME	Number
Wallace, John Stewart, and Cowell,	716,132
Wardell, H. R	1,385,511
Warden, Henry	266,929
Warden, Wm. G	240,937
Warden, Wm. G	240,036
Warden, Wm. G	110,806
Warden, Wm. G	112,751
Warfield, R. N	40,068
Waring, Richard S	284,098
Waring, Wilson.	643,578
Warren, Cyrus M	248,074
Warren, Cyrus M	47,235
Warren, John.	97,998
Warren, John.	102,186
Warren, John W	705,168
Warren, John W	666,446
Warren, M. H.	1,110,361
Warth, C. H	1,131,880
Washburn, C. H	1,138,266
Webster \& Boynton	1,361,940
Wehr, Austin A.	1,340,427
Weisenberger, P	54,984
Weiser, Josef	1,127,951
Weizmann, Chas., and Leff, D. A	1,395,620
Welles, Wm. C.	61,291
Wellman, Frank E	$1,390,002$
Wellman, Frank E	1,328,468
Wellman, Frank E	1,362,160
Wellman, Frank E	1,335,767
Wellman, Frank E	1,335,769
Wellman, Frank E	1,347,664
Wellman, Frank E	1,347,567
Wellman, Frank E	1,347,568
Wellman, F.E.	1,275,337
Wellman, F. E	1,245,291
Wells, A. A.	1,232,454
Wells, A. A	1,187,874
Wells, A. A. . .	1,268,225
Wells, Raymond	1,267,611
Wells, Raymond	1,351,365
Wells, W. C., and Wells, F. E	1,350,482
Wells, W. C., and Wells, F. E	$\begin{array}{r}877,620 \\ 1 \\ \hline 19624\end{array}$
Wells, W. C., and Wells, F. E	1,296,24.4
Welsh, M. J.....	$1,159,150$ $1,262,886$
Wemple, H. R.	1,262,886
Wendtland, August	219,546
Weston, Elijah.	219,978
Wetmore, I. W	1,387,876
Wheeler, Milloughby MacB	1,381,877
Wheeler, Norman W.	768,101
Whitall, Frank M	768,192
Whitall, Samuel	1,226,041
White, Carter	1,202,936
Whiting, Jas. R	58:1,779
Whlting, J. R., and Lawrence,	1,312,375
Whitman, J. C....	1,125,420
Whitmore, Samuel W	1,376,180
Wickersham.	1,313, 6017
Wiegand, S. Lloyd	12,58.1
Wiegand, S. Lloyd	(3),777
Wiggins, Isaac B	2:1,210
Wilber, William	19, 19
Wilcox, L. N	115,707
Wilkinson, Asa W	512,318
Wilkinson, Walter S	597,89:
Wilkinson, Walter S	26,759
Willard, Franklin W	

Date	Class
Dec. 16, 1902	D
July 26, 1921	E
Oct. 31, 1882	C
May 3, 1881	S
May 3, 1881	S, D
Jan. 3, 1871	F 1, Il
Mar. 14, 1871	F1
Sept. 22, 1863	V
Aug. 28, 1883	T
Feb. 13, 1900	I
Oct. 11, 1881	T
April 11, 1865	U
Dec. 14, 1869	F
April 19, 1870	S
July 22, 1902	I
Jan. 22, 1291	V
Sept. 15, 1912	B
Alar. 16, 1915	F 2, 1I, C
May 4,1915	13
Dec. 14, 1920	I
May 18,1920	H, J
May 22, 1866	D 1
Feb. 9, 1915	S
Nov. 1, 1921	L
Jan. 15, 1867 .	S
Sept. 6, 1921	B
Jan. 20, 1920	B
Dec. 14, 1920	13
April 6, 1920	13
April 6,1920	13
July 27, 1920	13
July 27, 1920	13
July 27, 1920	13
Aug. 13, 1918	13
Nov. 6, 1917	13, S
July 3, 1917	11
June 20, 1916	11
Nov. 27, 1917	13, J
Nay 28, 1918	A
Nov. 2, 1920	A
Aug. 24, 1929	(1) (${ }^{\text {a }}$
Jan. 28.1908	l: 1, 1, 11
Mar. 4, 1919	
Nov. 9, 1915	${ }^{\circ}$
April 16,1918	K゙1
Jan. 21, 1899	('
Sept. 9, 1879	¢
Sept. 15, 186:3	1
Aug. 16, 1981	11
FFCb. (i, 1864	-
Aug. 33,1904	\%
July el, 190:1	${ }^{7}$
\$1ay 15, 1917	13
April 11, 1890	-
dune 1, 1897	V
Aug. 5, 1! 119	(1,
Jan. 19, 1!115	1. 1, 11
April 21 , 1! 1	13.1
Aug. 18. 1 mosin	1 F
Mar. 6, 1507	'
April ?. 18t,7	\$1
Miar. X, 1-59!	!
July 25, 1 hif,	
Juer 11i, 1n7:	fir
dan. ! 1m!	:
.1211. 25. 14.18	$1 \cdot 3$
Jar. 3, intiu	(i, 5

UNITED STATES PETROLEUM PATENTS (TO JANUARY; 1922) Continued.

NAME	Number
Willard, Franklin W	27,503
Willard, Franklin W	27,327
Williams, R. A., and bragg,	304,390
Willis, Geo. M .	918,628
Wilson, R. J	379,090
Wingett, John N	1,229,189
Wintz, Jas. P.	807,983
Wirkner, George von	783,916
Wohle, Salo	1,081,801
Wolf, Herman	604,280
Wolf, Linus	1,265,573
Wolit, Albert	1,240,523
Wright, E. H., and Atwood,	1,278,280
Wright, R. K	1,316,214
Wingett, J. N	1,384,878
Wynne, Edward W	901,411
Wynne, Edw. William.	1,351,458
Yaley, Theodore E	1,329,450
Yaryan, Homer T	300,185
Yates, Robert	1,395,075
Young, Alex V	1,378,643
Young, W. H	62,798
Young, Wm. Herbert	1,378,307
Yunck, John A	1,345,656
Zerning, Herman	1,183,266
Zimmering, August F	313.795

Date	Class
Mar. 13, 1860	F
Feb. 28, 1860	G, S
Sept. 2, 1884	S
April 20, 1909	E 3
Mar. 6, 1888	F 4
June 5, 1917	P
Dec. 19, 1905	D
Feb. 28, 1905	D 1
Dec. 16, 1913	K 1
May 17, 1898	D 1
May 7, 1918	K 1
Sept. 28, 1917	D
Sept. 10, 1918	F
Sept. 16, 1919	F
July 19, 1921	W
Oct. 20, 1908	D
Aug. 31, 1920	P, F
Feb. 3, 1920	B
June 10, 1884	F 2, 5, II
Oct. 25, 1921	B
May 17, 1921	B
Mar. 12, 1867	O
May 17, 1921	B
July 6, 1920	B
May 16, 1916 Mar. 10,1885	$\underset{\mathrm{M}}{\mathrm{~J}} \mathrm{~K} 2, \mathrm{~B}$

BOOKS ON PETROLEUM, ASPHALT AND NATURAL GAS.

Abady-Gas Analyst's Manual. \$ 6.50
Abraham-Asphalts and Allied Substances 5.00
Aisinmann-Taschenbuch fur die Mineralol-Industrie. 8 vo. Berlin, 1896
A!!en-Modern Power Gas Producer 2.50
American Society for Testing Materials- 1921 Berky Standard.. 5.00
Archbutt and Deeley-Lubrication and Lubricants. 8 vo. Lon- do:1, 1912
Armold \& Darmell--Manual for the Oil and Gas Industry 2.50
Baron and Hamor-The American Petroleum Industry 12.00
Baker-Roads and Pavements 5.00
Battle-Lubricating Enginerr's Handbook 4.00
Battle-Industrial Oil Engincering
Berlinerblau-Das Erdwachs. Ozokerit und Cerestin. 8 ro.Brunswick, 1917
3.00
Booth-Liquid Fuel 2.60
Brannt-Petro'eum: Its History, Origin, Occurrence, Produc-tion, Physical and Chemical Constitution, Technology, Ex-amination and Uses. Philadelphia and London, 1895
Butler-Oil Fuel: Its Supply, Composition and Application 2.25
Campbell-Petroleum Refining 8.50
Clowes and Redwood-The Detention and Measurement of In-f!ammable Gas and Vapor in the Air. Svo. London, 1916Cooper-Kcy--Stomage of Petroleum Spirit. London, 1914...
Coste-Ca'orific Power of Gas 2.00
Cox-Field Methods 4.00 4.00
Craig-Oil Finding 2.40 2.40Crew-A Practical Treatise on Petroleum. 8vo. Philadelphia,18872.50Danby-Natural Rock Acphalts and Bitumens 0Dar-Handbook of the Petrolcum Industry 1922Delano-Twenty Years' Practical Experience of NaturalAsphalt and Mineral Bitumen. Svo. London and New
York, 1893 2.10Deunis-Gas AnalysisDeutech (De la Meurthe)-Le Petrole et ses Application.Paris, N. D.:300
Dowson and Larter-Producer Gas 3.01Dunn-Industrial Uses of Fuel GasEllis \& Meigs-Gasoline and Other Motor Fuels(6.019
Emmons-Geology of Petroleum
Franzen-Exercises in Gac Analysis 1.00
Frost-The Art of RoadmakingGarfias-Petrol-um Resources of the WorldGas Chemist's HandbookGibbings-Oil Fuel Equipment for Locomotives and Principles2.50
of ApplicationGill-Short Handbook of Oil Analysis2.50
Gregorius-Mineral Waxes: Preparation and Uses $3.0 n$
Hager-Practical Oil Gcology

BOOKS ON PETROLEUM, ASPHALT AND NATURAL GASContinued.

Hamor \& Padgett-Examination of Petroleum \$ 6.00
Hempel-Methods of Gas Analysis 2.25
Hicks-Laboratory Book of Mineral Oil Testing. 1.00
Hofer-Das Erdol (Petroleum) und Steine Verwandten. Bruns- wick, 1888
Holde-Muller-Examination of Hydrocarbon Oils 5.00
Hubbard-Laboratory Manual of Bituminous Materials
Hubbard-Dust Preventives and Road Binders 3.00
Jaccard-Le Petrole, L'Asphalte, et le Bitume au Point de vue Goologigue. Paris, 1895Guttentas, W. E.-Petrol and Petroleum Spirits, Sources, Prep-aration, Examination, Uses.3.40
Johnson and Huntley-Principles of Oil and Gas Production. 4.50
Judson-City Roads and Pavements. 2.00
Road Preservation and Dust Prevention 1.50
King-Knight Co.-Oil Flow in Pipe Lines (San Francisco) 3.00
Lewes-Liquid and Gaseous Fuels. 2.00
Lunce-Technical Gas Analysis. 4.00
Marvin-The Petroleum Industry of Southern Russia. 4to. London, 1884The Region of the Eternal Fire; An Account of a Journeyto the Petroleum Region of the Caspian in 1883. 8vo.London, 1884
The Petroleum of the Future. Baku, the Petrolia of Eu- rope. 8vo. London, 1883.
The Moloch of Paraffin. 8vo. London, 1886
The Coming Deluge of Russian Petroleum, and its Bearings on British Trade. 1887
England As a Petroleum Power, or the Petroleum Fields of the British Empire. London, 1887.
Our Unappreciated Petroleum Empire. 8vo. London, 1889
The Coming Oil Age: Petroleum-Past, Present, and Fu-ture. 8vo. London, 1889
Mills-Destructive Distillation: A Manualette of the Paraffin, Coal-Tar, Rosin Oii, Petroleum, and Kindred Industries. London, 1887
Neuberger-Technology of Petroleum 9.00
Neuberger and Noalhat-Technology of Petroleum. Paris 10.00
North-Oil Fuel 2.00
Paine and Stroud-Dil Production Methods 3.00
Panvity-Prospecting for Oil and Gas 3.25
Peckham-Solid Bitumens 5.00
Pforzheimer \& Co., 25 Broad St., New York City-Independent Oil Stocks, 1921
Pogue-Economics of Petroleum, 1921 6.00
Redwood-Minerai Oils and Their By-Products 5.40
Petroleum and Its Products. (3 vol.) 13.50
Redwood and Eastlakc-Petroleum Technologist's Pocketbook. 3.00
Richardson-Asphalt Construction for Pavements and High- ways 2.00

BOOKS ON PETROLEUM, ASPHALT AND NATURAL GASContinued.

Riche-Halphin-Le Petrole. Paris, 1896. \$
Richardson-The Modern Asphalt Pavement 3.00
Ries-Economic Geology 5.00
Singer-Beitrage zur Theorie der Petroleum-bildung. Zurich, 1892
Southcombe-Chemistry of the Oil Industries. 3.00
Sur-Oil Prospecting and Extraction 1.00
Tecklenburg-Handbuch der Tieftoohrkunde. 6 Bde. Leipzig, 1886-1896
Thompson-Oil Fields of Russia. London, 1908 7.50
Petroieum Mining and Oil Field Development 5.00
Thomson and Redwood-Handbook on Petroleum 2.70
Tillson-Street Pavements and Paving Material 4.00
Tinkler and Challenger-The Chemistry of Petroleum and Its Substitutes 4.50
Tower-The Story of Oils 1.00
Vieth-Das Erdol und seine Verarbeitung. Brunswick, 1892
Warner-Field Mapping for the Oil Geologist. 2.50
Westcott-The Handbook of Casinghead Gas. 4.00
Westcott-Handbook of Natural Gas
Whinery-Specifications for Street Roadway Pavements 1.00
Ziegler-Popular Oil Geology 3.00 3.00
U. S. Government Publications on Petroleum, Asphalt and Natural Gas.
BUREAU OF MINES TECHNICAL PAIERS.

No. 10. Liquified products from latural gas, their properties and uses.
No. 25. Methods for determination of water in petroleum and its products.
No. 26. Sulphur content of fuel oils.
No. 32. Cementing process of exeluding water from oil wells as practiced in California.
No. 36. Preparation of specifications for petroleum products.
No. 37. Fuel oil for internal combustion engines.
No. 38. Prevention of waste of natural gas.
No. 42. Prevention of waste of oil and gas in Califormia.
No. 43. Influence of inert gases on explosive mixtures.
No. 45. Waste of oil and gas in Mid-Continent field.
No. 49. Flash point of oil.
No. 51. Causes of decline of oil wells.
No. 57. Petroleum and gas in Wyoming.
No. 66. Mud laden fluids in well drilling.
No. 68. Mud laden fluid in well drilling in Oklahoma.
No. 70. Oil recovery in California.
No. 72. Problems of petroleum industry.
No. 74. Properties of California petroleum.
No. 79. Electric lights for use about oil an! gas wells.

No. 87. Method of testing natural gas for gasoline content.
No. 104. Fractional distilation of natural gas at low temperature.
No. 109. Composition of natural gas in 25 cities.
No. 112. Explosibility of acetylene.
No. 115. Inflammability of gasoline and air mixtures.
No. 117. Explosions of gasoline in sewers.
No. 119. Limits of inflammability of mixtures of methane and air.
No. 120. Bibliography of gas manufacture.
No. 121. Conditions of explosibility of methane air mixtures.
No. 127. Hazard in handling gasoline.
No. 130. Underground waste in oil and gas fields.
No. 131. Compressibility of natural gas.
No. 140. Oil products of carbonization of coal.
No. 142. Vapor pressures of various hydrocarbons at low temperatures.
No. 146. Nitration of toluene.
No. 147. Absorption of gases by coal.
No. 150. Inflammability of mine gases.
No. 158. Compression and composition of natural gas.
No. 161. Construction of single tube cracking furnaces for making gasoline.
No. 163. Properties of commercial gasoline sold during 1915.
No. 166. Methods of testing and properties of motor gasoline.
No. 176. Recent developments in the absorption process for recovering gasoline from natural gas.
No. 181. Determination of unsaturated hydrocarbons in gasoline.
No. 183. Oily or volatile matter in coal.

bUREAU OF MINES BULLETINS.

No. 19. Physical and chenical properties of the petroleum of the San Joaquin Valley, Calif.
No. 32. Commercial deductions from comparisons of gasoline and alcohol tests on internal-combustion engines.
No. 43. Comparative fuel values of gasoline and denatured alcohol in internal combustion engines.
No. 65. Oil and gas wells through workable coal beds.
No. 88. The condensation of gasoline from natural gas.
No. 144. Manufacture of gasoline and benzene-toluene from petroleum and other hydrocarbons.
No. 125. The analytical distillation of petroleum.
No. 120. Extraction of gasoline from natural gas by absorption methods.
No. 134. The use of mud-laden fluid in oil and gas wells.
No. 148. Methods for increasing the recovery of oil from wells.
No. 151. Compression plants for extracting gasoline from natural gas.
No. 155. Oil storage tanks and reservoirs.
No. 158. Cost accounting for oil producers.
No, 206. Petroleum laws.

BUREAU OF STANDARDS.

Action of sunlight and air upon some lubricating oils. 1911. (Standards Reprint 153.) 5̌c.
Behavior of high-boiling mineral oils on heating in air. 1911. (Standards Reprint 160.) 5c.
Data on oxidation of automobile cylinder oils. 1916. (Standards Technologic Papers 73.) 5c.
Density and thermal expansion of American petroleum oils. 1916. (Standards Technologic Papers 77.) 10c.
Effect of adding fatty and other oils upon carbonization of mineral lubricating oils. 1911. (Standards Technologic Papers 4.) 5c.
Evaporation test for mineral lubricating and transformer oils. 1913. (Standards Technologic Papers 13.) 5c.
Fluorescent test for mineral and rosin oils. 1911. (Chemistry Circular 84.) 5c.
Iodine number of linsecd and petroleum oils. 1914. (Standards Technologic Papers 37.) 10c.
Modification of Herzfeld-Bohme method for detection of mineral oil in other oils. 1912. (Chemistry Circular 85.) 5c.
Oil films on water and on mercury. (In Smithsonias Report 1913, pages 261-273, illus.) Cloth $\$ 1.10$.
United States standard tables for petroleum oils. 1916. (Standards Circular 57.) 15c.
Determination of ammonia in illuminating gas. 1914. (Standards Technologic Papers 34.) 10c.
Determination of sulphur in illuminating gas. 1913. (Standards Technologic Papers 20.) 10c.
Industrial gas calorimetry. 1914. 150 pages illus. (Standards Technologic Papers 36.) 40c.
Lead acetate test for hydrogen sulphide in gas. 1914. 46 pages, illus. (Standards Technologic Papers 41.) 25c.
Legal specifications for illuminating gas. 1913. (Standards 'locchnologic Papers 14.) 10c.
London sliding scale for gas. 1909. (60th Congress, S. Doc. 696.) 5e.
On definition of ideal gas. 1910. (Standards Remint 136.) 反火.
Standard methods of gas testing. 1917. 202 pages, illus. (Standands Circular 48.) 40c.
Standards for gas service. 3d edition. 1915. 197 pages. (Standards Circular 32.) 35c.

Supersedes 1 st edition with title, "State and municipal regulations for gas," and 2d edition entitled, "Standard regulations for manufactured gas and gas service."

U. S. GEOLOGIC SURVEY:

Annual Reports of Gcological Survey. 22d. 1901. Pint 1 Director's. Report and paper on asphalt and bituminons rock deposits. doi pages, illus., maps. \$1.60.
Bulletin No. 365. Fractionation of crude petroleum by capillars dif. fusion. 1908. 10c.

Bulletin No. 392. Commercial deductions from comparisons of gasoline and alcohol tests on internal-combustion engines. 1909. 5c.
Bulletin No. 401. Relations between local magnetic disturbances and genesis of petroleum. 1909. 24 pages, map. 5c.
Bulletin No. 475. Diffusion of crude petroleum through fuller's earth with notes on its geologic significance. 1911. 5c.
Bulletin No. 653. Chemical relations of oil-field waters in San Joaquin Valley, California. 1917. 119 pages, illus. 10c.
Water Supply Papers 113. Disposal of strawboard and oil-well wastes. 1905. 5 c .
Mineral Resources of U. S.-Non-metals. Part II (yearly).
Asphalt and Bituminous rock deposits of United States. (In Geological Report 1901, pt. 1, pp. 209-452, 52 plates, illus. maps.) Cloth, $\$ 1.60$.
Asphaltum deposits of California. (In Mineral Resources, 1883-4, pp. 938-948.) Cloth, 60c.
Asphaltum, production, importation, commercial applications, history of paving industry, etc. (In Mineral Resources, 1893, pp. 627669.) Cloth, 50 c .

AGRICULTURAL DEPARTMENT.

Effect of controllable variables upon penetration test for asphalts and asphalt cements. (In Journal of Agricultural Research, Jan. 24, 1916, pp. 805-818.) 10c.
Bitumens and their essential constituents for road construction and maintenance. 1911. (Roads Circular 93.) 5c.
Methods for examination of bituminous road materials. 1915. (Agricultural Bulletin No. 314.) 10c.
Macadam roads. Construction of macadam roads. 1907. (Roads Bulletin No. 29.) 10 c .
Macadam Roads. 1908. (Farmer's Bulletin No. 338.) 5c.
Use of mineral oil in road improvement. (In Agricultural Yearbook, 1902, pp. 439-454, illus.) Cloth, 85c.

SMITHSONIAN INSTITUTION-U. S. NATIONAL MUSEUM.

Bulletin No. 102, part 6. Petroleum. A resource interpretation.

PETROLEUM TRADE JOURNALS.
Published at
California Derrick. San Francisco, Calif.
The California Oil World Bakersfield, Calif.
Coalinga Oil Record Coalinga, Calif.
Gulf Coast Oil News. Houston, Texas
Journal du Petrole Paris
National Petroleum News.
Cleveland, Ohio
Natural Gas and Gasoline Journal. New York
Mining and Oil Bulletin.
San Francisco

IMPORTANT SCIENTIFIC JOURNALS AND SOCIETY PUBLICATIONS.

(With articles on Petroleum, Asphalt and Natural Gas.)

Chemical Abstracts of American Chemical

Society ...Easton, Pa.
Journal of Industrial and Engineering Chemistry. New York City, N. Y. Journal of American Chemical Society...................Easton, Pa.
Chemical and Metallurgical Engineering. Engineering and Mining Journal. Engineering News Record. New York City, N. Y. New York City, N. Y Journal of the Society of Chemical Industry...... London American Society for Testing Materials.............. Philadelphia, I'a. Journal of the Franklin Institute. International Society for Testing Materials.......... Philadelphia, Pa. Institute of Mining Engineers.

New York City, N. Y.
State Geological Survey Publications on Petroleum, Asphalt and Natural Gas.

ALABAMA.
Circular No. 3. Concerning oil and gas in Alabama, by E. A. Smith. Bulletin No. 10. The Fayette Gas Field.
Bulletins Nos. 20, 22, 23, 28, 31, 33, 35.

> CALIFORNIA.

Petroleum Resources of California.
KANSAS.

Vol. IX. Oil and Gas.
Bulletin No. 3. Oil and Gas Resources of Kansas.

KENTUCKY.

Vol. I, Series V, No. 1. Oil and Gas

MCHIGAN.

Publication No. 14, Series No. 11. Occurrence of oil and gas in Michigan.
Publication No. 19, Series No. 16.

> MnNESOTA.

Bulletin No. 5, 1889. Natural Gas in Minnesota. N. H. Winchell. 39 p.

MISSISSIPPI.

No. 15. Oil and Gas Prospecting in Mississippi. By E. N. Lowe. MISSOURI.
Vol. III, No. 4. Missouri School of Mines-Production of Oils and Tars from Bituminous Materials.

NEBRASKA.
Vol. 4, Part 25. Natural Fuels of Nebraska.
NEW YORK.
Vol. 6, No. 30. Petroleum and Natural Gas in New York, by Edward Orton.

OHIO.

Bulletin No. 1. Oil and Gas.
A New Geological Map of Ohio.
Bulletin No. 12. The Bremen Oil Field.
Vol. VI. Geology and Petroleum and Natural Gas.
OKLAHOMA.
Circular No. 8. Methods of exploring for oil and gas.
Handbook of Natural Resources of Oklahoma.
Bulletin No. 2. Rock Asphalt, Asphaltite, Petroleum, Natural Gas in Oklahoma.
Bulletin No. 14. Asphalt in Oklahoma.
Costs of drilling oil and gas wells.
Circular No. 7. Correlation of the oil sands in Oklahoma.
Circular No. 5. Rock asphalts of Oklahoma and their use in paving.
Bulletin No. 16. Ponca City Oil and Gas fields.
Bulletin No. 18. Cushing Oil fields.
Bulletin No. 19. Part I, 1915. Petroleum and Natural Gas.
Part II, 1917. Petroleum and Natural Gas. PENNSYLVANIA.
Reports I, 12, 13, 14 and J. Bituminous coal fields.
Report L for the Pittsburgh gas well and the use of gas in iron manufacture.
Reports Q, Q2, Q3 and Q4 for reference to oil rocks in Beaver, Lawrence, Mercer, Crawford, Erie and S. Butler Counties.
Report K for the Dunkard Creek oil wells of Green County.
Reports R, R2 for description of oil rocks in McKean, Elk and Forest County.
Reports V. V2 for notes on the oil rocks of N. Butler and Clarion County.
Report H2 for oil boring at Cherry Tree, Cambria County.
Report G5 for oil boring in Wayne County.
Annual Report, 1885, for report of the progress in oil and gas region, with special facts relating to the geology and physics of natural gas.
Grand Atlas Div. III, Part I, under Bituminous Coal Fields.
Annual Reports, 1886, Part II.

SOUTH DAKOTA．

Circular No．4．Possibilities of oil and gas in Harding County． Circular No．1．Oil in South Dakota．

TENNESSEE．
Vol．II．No．2，No． 7.
Vol．V．No． 4.
Vol．VI．No． 1.
Vol．VII．No．1，No． 4.
Vol．VIII．No． 3.
TEXAS．
Texas University Bulletin 246．Geology of Oil and Gas fields of Wichita and Clay Counties．
Texas University Bulletin No．66．Thrall Oil field．
Texas University Bulletin No．44．Review of Geology of Texas．

WEST VIRGINIA．

Coal，oil，gas，limestone and iron ore map．
Vol．I．Petroleum and Natural Gas，levels and true meridians．
Vol．Ia．Petroleum and Natural Gas．

WYOMING．

Bulletin No．2．The Lander Oil Fields．
Bulletin No．14．The Byron Oil Fields．
Bulletin No．15．The Oregon Basin Oil and Gas Fields．

LIST OF STATE GEOLOGISTS．

Eugene A．Smith，University，Ala．
N．F．Drake，Fasetteville，Arli．
R．D．George，Boulder．Colo．
H．E．Gregory，New Haven．Conn．
E．H．Sellards，Tallahassee，Fla．
S．W．McCallie，Atlanta．Ga．
F．W．DeV＇olf，Urbana，Ill．
Edward Barrett，Indianapolis，Ind．
Geo．F．Kay，Iowa City，Iowa．
Raymond Moore，Lawrence，K゙ュns．
J．E．Barton，Louisville，Ky：
E．B．Mathews，Baltimore，Md．
R．C．Allen，Lansing，Mich．
IV．H．Enmons，Minneapolis，Minn．
E．N．Lowe，Jackson，Miss．
H．A．Buehler，Rolla，No．
E．H．Barbour．Lincoln，Neb．
H．B．Kummel，Trenton．N．J．

d．M．rlarko．Abans．ふ．
J．H．Pratt，（＇hipel ilill．ふ．C．
A．G．Leonard．firand I＇orlis．N゙，い．
J．A．Fownocker，（＇olumblas．（blo．
C．W．Shammon，Norman，（lkla．
K．H Hice，Bu\＆ver，l＇i．

stopleen Taber，（＂olmmbia s．（＇．
Freemen Ward．Vermillion，\＆，Jak

1．A．Vflon，lustin，TVexis
（：If．I＇rrkins，Burlinstorn，V＇t

Index

Page
Abel-Pensky Tester 476
Abel tester 476
Absorption
Method for testing natural and casinghead gas 512
Oil, specifications for 271-2
Gasoline by absorption process 399
Capacity of absorption towers 401
Charcoal absorption process 401
Literature on absorption process 589-590
Relation of gasoline in natural gas by absorption, compression and specific gravity 402a
Acetylene
Explosibility of 404
Heat of combustion of 340, 409
Acid
Tables of properties of sulphuric acid 547-9
Treat ment of benzine with acid 191, 199, 201
Treatment of lubricants with acid 195
Determination of free acids in oils. 495
Determination of combined acid in oils 496
Sludge acid 195, 562
Fuming sulphuric or Nordhausen 199
Aeroplanes 255
Specifications for fighting grade of gasoline for
255-6
255-6
Specification for domestic grade of gasoline for
Specification for domestic grade of gasoline for
292
292
Specifications for aero machine gun oil. 286
Africa, oil in 11
Aggregates
Calculation of voids in mineral aggregales 377
Mineral aggregates in asphalt pavements 376-392
Methods of grading mineral aggregates 506-7-8
Agitators and agitation 192
Cost, weight, capacity and dimensions of agitators 246
Air
Specific heat of 346
Air blowing of asphalt 368, 375
Furnace heat losses due to excess of air 337
Required for combustion of fuel oil 326, 334, 336
Air compressor oil definition of 305
Alabama, inspection laws and taxes of 259
Albertite, properties of 380
Aluminum chloride
In production of gasoline 230
Yields of gasoline from aluminum chloride treat ment 230
Properties of aluminum chloride gasoline 231,2,3
American Society for Testing Materials closed tester 467,471-2
Ammonia
From oil shale 354
Nielting point and heat of fusion of 343
Heat of vaporization of 344
Specific heat of 345,6
From coal 361, 2
Ammonia compressor lubricant, definition of 305
Analyses
Outline of methods 425,6,7
Index to application of methods 427
Dielectric value or breakdown of transformer oils 309
Specific gravity 428-436
Color. 437-442
Odor. 442
Transparency 442
Viscosity 443-453
Melting point 454-459
Cold, pour and flow test 460, 1
Water and B. S. 462
Distillation tests 463-470
Flash and burning points 472-476
Pressure-heat tests 477-9
Carbon tesis. 480-1
Emulsification Page
Heat of combustion 482
Sulphur 486－190
Ultimate analysis
491
491
Doctor test 492
Olefins
493
493
Aromatics 494
Acid 495－6
Floc test 496
Corrosion and gumming 197
Penetration of asphalt 497,8
Ductility 499
Loss by evaporation 500
Asphaltic conte nt 501
Solubility 502－3
Oxidation value $50-1$
Wax 505
Bitumen and grading 506－7
Cementing strength 508
Gas gravity by effusion 509－10－11
Gasoline in gas 512－13
Chemical analysis of gas 51．1－16
Heat of combustion of gas 517－8
Anthracite coal，properties of 381
Antlclines，diagram showing accumulation of oil and \＆as in $18,20,21,22$
Areas
Heating area of stills 220
Heating area of cracking tubes per gallon of gasoline 226
Condensing areas for gasoline and kerosene 228
And surfaces，conversion factors for units of 554
Argentina，production of petroleum in 1．11
Arizona，inspection laws and taxes of 259
Arkansas 254
Inspection laws and taxes of
Inspection laws and taxes of
Properties of crude oil from． 187
Aromatic
185
185
Or benzine hydrocarbons，definition of
Or benzine hydrocarbons，definition of
191
191
Or paraffin hydrocarbons in petroleum hydrocarbon
Hydrocarbons．calculated amount of by distillation． 105
Ash，method of determining ash in asphalt，oil and bituninous materials 181 Asphalt
198
And asphaltic materials 1884
In crude petroleum
In crude petroleum
1619
1619
Prices $36 i-8$
Method of production of
$364.3: 11$
$364.3: 11$
Pavements いぶ
Method of production of blown asphalts
3 M
3 M
Air required for blowing asphalt ：3i＂
Composition of natural asphalts ： $14: 4$
Composition of oil asphalts 36,4
Composition of blown asphalts
．3．11
．3．11
Composition of rock asphalt ：31）
Properties of sheet asphalt pavement ：3．1
Composition of various types of asphalt pavernents $: 1$ ：1．1
Effect of mineral filler on penetration of asphaltic cemene
Effect of mineral filler on penetration of asphaltic cemene
Fluxing of hard asphalt$\therefore 1,1$
Material required for asphaltic concrete． 112
Relation of defects of an asphalt pavement to its physical properties
\therefore
Various const ituents of asphaltic surface mixture 3.11
Specifications for asphaltic cement Graph showing relation of penctration to melting point of asphale proxluced hy ablowing3.1 .1
Purposes of specifications for an asphaltic cement ：1，
Typical specincations for wearing surface of asphaltic comeret
Characteristics of typical blown petrolcum asphates 124
Cross Section of sheet asphalt 1．4
Asphaltic concrete Asphaltic macadam and oil treated macadam pavememt－州Method of determining specific gravity of asplaltic cememt by flumf sitymenti1
Method of determining fixed carbon and ash in asphatt Method of determining specific gravity of asphathic cemen：
Page
Method of determining melting point of bituminous or asphaltic material by ring 454
and ball method
and ball method
Method of determining melting point of bituminous or asphaltic material by cube method 455
Method of determining melting point of bituminous or asphaltic material by General Electric method 456
Determination of nitrogen in asphalt by Kjeldahl method 492
Methoc' of making penetration tests of 497-8
Method of making ductility tests of 499
Method of determining amount of asphalt in crude oil or petroleum residues 501
Method of determining solubility of asphalt in petroleum ether 502
Method of determining cesistance of asphaltic cement to oxidation 504
Method of determining bitumen and grading of asphaltic surface mixtures by extraction method 507
Method of determining bitumen and grading of asphaltic surface mixtures by burning method 506
Asphaltenes, determination of 503
Atomization of fuel oil 321, 326
Atwood process for cracking 212
Automobiles
Number of 247
Lubricating oils for 277-80
Composition of exhaust gas, air required and completeness of combustion in com- bustion of gasoline in automobile engines 251
Graph showing amount of gasoline obtained from natural gas, from cracking and from natural crude, and amount consumed by automobiles 247
Traction efficiency of 254
Radiation, exhaust loss, engine friction, transmission friction, tire friction and air 254
resistance of automobiles.
resistance of automobiles.
Aviation gasoline
Specifications for (fighting grade) 255
Specifications for (domestic grade) 255
Bailers for well drilling 33
Ball and ring melting point method 454
Barrel
Content of petroleum 150
Gauging tables for standard fifty-gallon barrel 183
Baku pitch, properties of 380
Baumé gravity (see gravity)Benton processFor cracking208
Gasoline, fractional gravity distillation of 241
Bentonite for bleaching oil 202
Benzene (see benzol)
Hydrocarbons, definition of 185
Benzine
Definition of 191
Treatment of in refining 191, 199, 200-1
Stream gravity of, from various crude oils
U. S. P. properties of 265
Benzine by distillation 191
Control of benzine distillation by stream gravity 191
Or gasoline distillation capacity for horizontal stills 226
Benzinum purificatum, properties of 265
Benzol
Producing plants of the U. S 81
Carbon, hydrogen sulphur, nitrogen and oxygen in 184
In petroleum and its products 184
Fractional gravity distillation of 240
Properties of 248
Comparison of, with gasoline as a motor fuel 265
Ultimate composition of 184
Heat of combustion of 340
In manufactured gas 364-5
Bermudez asphalt 369
Properties of 380
Bi-products plants for coal distillation 357, 89
Binder course for sheet asplialt 370
Bitumen
And bituminous materials (see asphalt) 367-392
Determination of or solubility in carbon disulphide 503
Method of determining bitumen and grading in asphaltic surface mixtures by burning and by extraction methods 506-7
Bltuminous coal
Page
Properties of 381
Coatings for acid proofing concrete 386-7
Concrete, cross section of 388
Earth pavement, cross section of 389
Substances, classification of 380-1
Surface mixtures, method of determining tensile strength of. 508
Bleaching of oil 200
Bentonite for bleaching oil. 202
Bloom or fluorescence of mineral oils 199
Blown oil 36
Boiling point, definition of 3.17
Boiling temperature (see distillation temperature, etc.)
Of various substances 3.4
Of hydrocarbons 186
Books, list of important books on petroleum, asphalt and natural das 58.-8-9
Bottom settlings 202
Brick oil, definition of 305 305
Brick pavement, cross section of 39
Brine, gravity of solutions 551 551
British thermal units, definition of 347
Brockie oil, definition of 305 305
Bunker fuel oil, specifications for 333
Bureau of Mines
589
Technical papers of
$5(\mathrm{~K})$
$5(\mathrm{~K})$
Bulletins of 591
Bureau of Standards, publications of
2.12
2.12
Burkburnett crude oill, gasoline obtained by cracking of
Burkburnett crude oill, gasoline obtained by cracking of 19)
Prices of 2 (iki
Description of
267
267
Specifications for 268
Specifications for long time burning oils
Burton process 213-1
For cracking 205
Composition of gas from
215
215
Still with various modifications for cracking oil 18 f
Butane, properties of 18.1
Byerlite, composition ofCabin Creek187180
Properties of crude oil from $23!$
Water white distillate from Cabin Creek crude oil
551
551
Calcium chloride, gravity, composition and freezing temperature of 3.211
Petroleum production of 2.
Geological occurrence of oil in 12
Production of oil by pools in. 39
Oil gushers in 181
Ultimate composition of crude oil from 313.
Fuel oil from il
Map showing production and pipe lines in 211
Cost of refining petroleum from P1
Prices of crude oil from
2\%,
Large petroleum producers of 2.1"
Cracking of California oil
3
3
Inspection laws and taxes of
14.
14.
Composition of California asphalt
Composition of California asphalt 31
Properties of crude oil from
Properties of crude oil from
Calorie, small and large,
183
Calorlmeter
,1.
Bomb calorimeter. 1101
Canada 14.
Petroleum refinerics of
41
Properties of crude oil from
Cannel coal$2|x|$Properties ofOil yields from distillation of
CapacltyConversion factors for units ofFormula and lables for capacity of tanksCarbenes, method of determining
Carbon
Page
In various brands of motor lubricants 277-8
In various petroleums and products of petroleum 184
In benzol 184
In asphalt 184
In lubricating oil 184
Produced by cracking 226
Composition of "carbon" produced by cracking 226
Conradson carbon residue 480
Fixed carbon
481
481
Method of determining carbon 480, 481, 491
Carbon bisulphide
Solubility of bituminous substances in 369, 373-4, 380-1-2
Method of determining solubility in 503
Carbon black
Uses of 408-9
Specifications for
Specifications for 409 409
From natural gas 406-7-8-9
Carbon dioxide
394
In natural gas
253, 251
In exnaust gas from gasoline engines
336, 7
336, 7
In flue gases, from oil furnaces
In flue gases, from oil furnaces
515, 6
515, 6
Determination of in gas
Determination of in gas $343,4,5,6,409$
Carbon dioxide compressor lubricant, definition of 305
Carbon monoxide
In natural gas 394
In exhaust gas 253,4, 251
In flue gas 335
Determination of in gas 515, 6
Properties of 340, 345, 6, 409
Explosibility of 404
Heat losses from unburned carbon monoxide in burning fuel oil 335
Relation of, to air mixtures in gasoline engines 253
Carbon residue in lubricants and heavy distillates determined by Conradson method 480
Carbon tetrachloride
Solubility of bituminous substances in 373
Method of determining solubility in 503
Production from natural gas. 405
Carboniferous
Relation of oil to carboniferous age. 5, 19, 20, 23, 25, 26Cars (see tank cars)Car oil
Definition of 305
Specifications for 294
Casinghead (see gasoline)
Production of casinghead gasoline 400
Producers of casinghead gasoline 76-79
Cost of plant for casinghead gasoline 399
Hydrocarbons of casinghead gasoline 402
Method of determining vapor pressure of 478-9
Method of determining content of casinghead gas 512
Metrod of determining volume of casinghead gas 410-419
Equipment for oil wells 35
Specification for various grades of 257
Specifications for blended casinghead gasoline 258
Casinghead qas
Absorption method for testing 512
Gasoline from 399
Capacity of absorption towers for 401
Testing capacity of casinghead gas wells 410
Castor oil
Definition of 305
Lubricating properties of. 278
Viscosity of 278
Catalysis, in cracking of oil 207,230-33
Caustic potash-reagent 519
Caustic soda-reagent 519
In treatment of oil 193, 195
Gravity of solutions of. 550
Cement (see asphalt and hituminous cement)
Natural gas used in making portland cement 403

Centrifuge method for determining sediment and water in crude oil and fuel	
Cerro Azul oil weil .	.. $\begin{aligned} & 462 \\ & \end{aligned}$
Chain lubricants	290
Chemical nature of the cracking of oil	20.1
Chemical properties (see special subject)	
Of various crude oils.....	1,187, 8, 9
Of petroleum hydrocarbons.	6, 210, 20.1
Of natural gas	402
Involved in cracking of oil	20.1
Chemical treatment of gasoline	199
Chemical constitution of petroleum	183
Chlorine	
In treatment of oil	199
Reactions in natural gas	405
Chlorination of natural gas	405
Chromometer	
Saybolt, for color of oil	137
Comparison with potassium dichromate solutions	139
Claroline oil. . .	272
Cleveland flash tester Cloud test, method of determining cloud test of lubricants and other petro-	
Coal oil (see kerosene), description of .	
Products of.	3611
Coal distillation plants in U. S	35\%-9
Production and value of coal distillation products in U.S	31191
Composition of, from various sources.	$3 \cdot 11-\frac{2}{2}$
Yields from distillation of coal. ${ }^{\text {a }}$ -	361
Distillation of Kentucky, West Virginia and Pennsylvania coals.	312
Yield from distillation of cannel coal.	366
Comparison of heating value of coal, oil and gas	320, 21,22
Relative cost of coal and natural gas .	3631
Method of manufacture of gas from gas oil and coal	319363
Distillation products of	
Coal gas	391
Composition of	36.1-39.4
Properties of.	(1) 1
Explosibility of	360, $1,2,5$
Yield from coal	- 36
Benzol in	isil
Coal tar, products of	
Coal tar pitch	(2ix)
Properties of.	(3i\%
Composition of. .	
Coke	1.195, 2 ()1
From crude oi	(3()) 1, 2
From coal.	201
From Panuco crude oil	2\%-4
Coking in various brands of motor lubricams	(ii) 1
Cold test of various lubricants .	
Colloidal fuel	3131
Advantages of	3:31
Definition and properties of	
Color 4161	
Method of determining color of crude oil and dark	111
Method of determining color of lubricants....i... ind gasolunc.	13, 31
Method of determining color of kerosene, naphthat and gasome	18.1
Of crude oil from various localities	1×1
And odor of refince petroleum	1'r)
Of cracked gasoline......	: 1×1
Removal of, in oil by fuller's earth	1811
Iodmetric method of determining color..	1.19
Potassium dichromate method of determining color	111
Union colorimeter for determining color...	1.14
Saybolt chromometer for determinins: color	14
By Lovibond tintometer	$1(x)$
Relation of sulphur to color	Q.,
Of various brands of motor lubricants	
Colorado 4×1 in in	
Oil shale in.	
Inspection laws and tilxes of	

Combustion
Page
Products of, of fuel oil 326
Graph showing relation ol air to amount of carbon dixoide in the stack in the com- bustion of fuel oil 323
Of gasoline 251
Products of, in gasoline engines of 1 gallon of gasoline 253
Combustion efficiency of gasoline engines per gallon of gasoline 254
Composition of exhaust gas, air required, and the completeness of combustion in combustion of gasoline in automobile engines 251
Compressor oils, properties of 279-280, 305
Compression, gasoline, by compression of natural gas 397-401
Concrete pavement, cross section of 392
Concrete storage tanks 133
Condensers and condensing 226-7-8
Water required 228
Area for distillates 228
Vapor lines 228
Heat absorbed in condensing 228
Condenser
Boxes, cost, weight and size of 246
Oil, definition of 305
Conradson method of determining carbon in oils 480
Connecticut, inspection laws and taxes of 259
Conversion
Conversion factors and tables for units of
Linear dimensions
Square measure 553
Volume, capacity, contents, space 554
Weight 554-5-6
Liquid measure 557
Work 150-556
Pressure 559-56i
Temperature 5 f1
Time 561
Velocity 563
Money 561
For measuring of water and oil 150
For viscosities 445-447- ε
Baume', specific gravity and pounds per gallon 523-52\&
For metric units 552
For Centigrade and Fahrenheit degrees 520,521,522
Copper chloride for gas analysis 519
Copper oxide for treatment of oil 199
Corrosion, method of making corrosion tests of gasoline and naphtha 497
Cost
Formula for determining cost of gasoline made by both skimming and cracking 242
Of refining oil 242-246
Cottrell process for emulsions 203
Cracking
Of petroleum 196-246
Chemical nature of 204
Of paraffin wax 201
Classification of methods of 206
In the vapor phase 206
In the liquid phase 206
Commercial processes for 207
Benton process for 208
Advantages of liquid phase 209
Dewar \& Redwood process for. 211
Development of cormmercial cracking 212
Atwood process for 212
Young pro ess for 212
Burton process for 213-4
Burton still for various modifications for 215
Dubbs process for 216
Commercial results of operation of Dubbs process 217-8
Cross process for 219
Operating system of Cross p-ocess 220-1
Relation of cracking plant to skimming plant 222
Commercial results of operation of Cross process 223
Comparative co:ts of making gasoline by cracking by various methods 223
Double unit cracking plant 224-5
Refinery engincering data bv distillation and cracking of petroleum 226
Page
Fixed gas produced in cracking 226
Carbon produced in cracking 226°
Composition of cracking still carbon. 226
Operation of pressure distillate cracking systems 228
Cracking curves of petroleum hydrocarbons 234
Equilibrium cracking tests on heavy petroleum hydrocarbons 235
Cracking of Mid-Continent fuel oil 235
Cracking of heavy Kansas Crude oil $2: 35$
Paraffin base residuum. 235
California oil 235
Kerosene 235, 238
Healdton crude oil 235
Gas o:1 235
Mexican flux oil. 23.3
Effect of pressure on the products of cracking kerosene and fuel oil 237 237
Relation of gravity to amount distilled of water white distillate hefore and after cracking 237. \&
Relation between gra ity and distilling temperature of paraffin base oil before and after cracking 239
Cabin Creek water white distillate before and after 239
Marcus Hook fuel oil before and after cracking 234
Formula for determining amount of synthetic gasoline obtained by cracking
Formula for determining amount of synthetic gasoline obtained by cracking 2.12 2.12
Formula for determining cost of gasoline made by cracking 242
312
Viscosity of fuel oil before and after cracking Gasoline obtained by cracking Mexia, Burkburnett Ranger and Mexican crude 2.12
oils
oils
Graph showing fractional gravity distillation of shale oil be
Fractional gravity distillation of shale oil before cracking 356
$351 i$
$351 i$
Olefins in shale oil after cracking
Olefins in shale oil after cracking 356
Fractional gravity distillation of shale oil after cracking $355-1$
Properties of shale oil before and after cracking
Properties of shale oil before and after cracking
177
177 30%
Method of making cracking tests of petroleum hydrocarbons
Method of making cracking tests of petroleum hydrocarbons
Cream separator oil
7, 22, 23, 25, 26
7, 22, 23, 25, 26
Cretaceous formations and oil
210
210
Critical pressure of various gasoline hydrocarbons 210
Critical temperature of various gasoline hydrocarbons
Cross process 214
For cracking
2201
2201
Operating system of $29: 3$
Commercial results of operating of
Commercial results of operating of
19%
19%
Crude, oil, chart showing relative prices of
Crude, oil, chart showing relative prices of
Cube method for determining melting point of asphaltic and bltumbons 1.! 5
material. 364
Cuban asphalt, properties and composition of 2 28 ? : 26 KH
Cup grease (see grease) 187. 188.114
Cushing, Oklahoma, crude oil 19%
Cylinder oil.: un_{K}
Definition of 185 !
In crude petroleum 19
Prices of $270-2 M$
Propertics of 1.11 K
Cylindrical tanks$1.1,1.6$
Contents of horizontal15:3. 1,
Contents of bumped ends of1.3., (i)Tables of capacity of horizontal1.11
Construction ol gauging tables for 18"
Contents of vertical, of all diameters-formula 140Contents of vertical, of all diamcters-lalles
Decane 21
Heat of vaporization of " ${ }^{1 / 1}$
Properties of
\because
Critical pressure and critical (emperature of
Critical pressure and critical (emperature of 3Dehydration of petroleum
Delaware, inspection laws and tixes of
Demand for
Petroleum products
Gasoline
Depletion of oll wellsDepth of oil wells.Derrlck-Standard derrick for drilling oll wellsDevonlan period and oll
Dewar \& Redwood process for crackins
Dielectric strength Page
Relation of water content to, in transformer oils 310
Method of testing, of transformer oils
Method of testing, of transformer oils 309
Diesel engine oil, specifications for 270
Diesel engine, fuel oil for 326-332
Directory of oil assoclations 108-9
Distillate
Oil or solar oil 193
Pressure 206-218
Pressure distillate systems of cracking 206
Water white 193,237, 8,9
Pressed distillate 193
Wax distillate 193-7
Distillation and distilling
Relation between gravity and distilling temperature of paraffin base oil before and after cracking. 238, 239
Refinery engineering data by distilling and cracking of petroleum 226
Relation of distilling temperature to specific gravity of various hydrocarbons. 236
Main features of crude oil distillation 194
Properties of crude petroleum from various sources. 190
Benzine, gasoline and naphtha by 191
Control of benzine distillation by stream gravityg 191
Distillation of kerosene or water white distillate from crude oil 191
Fractional gravity distillation of coal tar benzol 240
Fractional gravity, distillation of Benton process g̣asoline 241
Fractional gravity distillation 238
Benzine or gasoline distillation capacity for horizontal stills 226
Yields from distillation of Eastern coals 362
Method of determining water in crude petroleum and fuel oil by distillation method
463
463
Method of making end point distillation of gasoline, naphtha, benzine, pressure distillate, turpentine substitute, and kerosene. .464-5-6-7
Method of making fractional gravity distillation of crude petroleum and petro- leum distillate 468-9
Method of making a distillation of crude petroleum for sample of products 470
Method of making a distillation of crude petroleum for water, gasoline, kerosene and fuel oil 470
Method of calculating amount of aromatic hydrocarbons by distillation 495
Doctor test
Method of making for gasoline or kerosene 492
Solution, formula for 492
Domes, diagram showing accumulation of oil and gas in 19, 20, 1,2
Drafts, chart showing the influence of temperature on drafts in oil furnaces 327
Drilling
Description of oil well drilling 27-36
Standard derrick for drilling oil wells 28
Standard tools for drilling oil wells 30
Rotary or flush drilling 31
Percussion drilling 31
Portable well drilling rigs 31
Cost of well drilling by motor 35
Cost of drilling oil wells by standard methods 36-7
Drilling and operating costs for oil wells 37
Dubbs process for cracking 216
Commercial results of operation of 217-8
Ductility
Interpretation of, of A. C 375
Method of determining ductility of asphaltic and bituminous materials 499
Duodecane, critical pressure and critical temperature of 210
Dynamo oils, properties of 279-280
Ebano, Mexico field 63
Economics of petroleum 2-112
Effusion method of determining gravity of gases 509-10-11
Elaterite, properties of 380
Electricity
Cracking with 206
Drilling wells with 35
Comparison of heating values of electricity with fuel oil, coal, natural gas and coal gas. 312
Elliott closed tester
Method of determining flash and burning points of lubricants, asphalt and other petroleum products by 473
Comparison of flash point of the Elliott closed tester with other testers
Comparison of flash point of the Elliott closed tester with other testers 476 476
Emulsions of petroleum Page
Dehydration of 20 202
Cottrell process for．
Enmlsifying properties of lubricating oils，method of determinins 203 2031゙ジン
End point distillation
Enersy and work，conversion factors for units of 14.1 14.1
Engincering－Refnery engineering data 2355 sEngines
Horsepower of gasoline engines 2.51Relation of power，combustion efficiency and theoretical mixtures in gasoine
engines 253
Products of combustion in gasoline engines of one gallon of gasoline 2.3 2.3
Relation of carbon monoxide to the air mixtures in gasolme engines 253
Combustion efficiency on gasoline engines per gallon of gasoline 25
Distribution of heat energy of gasoline in gasoine engines． 251
Requirements for jubricating oils for internal combusion engines 2.6
Operating temperatures in various parts of exp＇osion engines 27
Engine oils，properties of $2792(0)$
Engler viscosimeter，equivalent values of iiscosity by，Redwood and Saybolt 1． i
Equivalents，tables of $553-561$
Eschka method of determining sulphur in petroleun 187
Ethane，properties of 185
Ether，petroleum．．． 265
Etliylenes
Definition of 185
Chentical properties of 185
Evaporatiou Loss in storage of oil hy 128
Losses of oil by $1: 30$
Rate of evaporation of gasoline and benzol 2（i）
Exhaust gas
253
253
Amount of per gallon of gasoline
Amount of per gallon of gasoline
2513
2513
Composition of in automobile engines．
Composition of in automobile engines． $127-1: 31$
Of petroleum
1.2
1.2 111
Tables of expansion of oil
Tables of expansion of oil
Explosibility of various gises
2，
2，
Explosion engines，operating temperature in various parts of 1： 1
Express，rules for shipment of petroleum products by $\because 1$
Extraction of oil from oil sands．5． 1351
Factors（see conversion factors） $1!2021-2$
Faults，diagram slzowing accumulation of oil and kas in
1．1．）
Fatty acid
1．1．
Determination of $3 n$ lubricants
in
Fatty oil，method of determining anoumt of，in petroleum products 3.
Asphalt 号い
1．，19： 19.1
Filtration of oilFire1.9
Losses in storage of oil by $1^{\prime \prime}$
Losses from oil fires 1210 ，
Fire test of various brands of motor lubricames Determination of lubricants，asphalt and other petroloum proxluchs by Fllion íw wh tester and Cleveland open tester
Fishing operation in oil wells
Fixed carbon
Method of determining
Interpretation of，in asphaltic cement

Flash point

Of various brands of motor lubricants
Interpretation of，of asphattic cement

By ASTM closed lester
By Elliott or New York closed lester

Correction of，for barometric pressure
Comparison of flash points by different irsters
Float test of petrolcum reshdues，meth oul ol malilns
Floc test，method of makins
Floor oil
Page
Specifications for
Specifications for
Definition of 290 290 306
Florida, inspection laws and raxes of 259
Flour mills, fuel requirements of 403
Flow sheet of complete refinery 192
Flow test of various brands of motor lubricants 277-8 277-8
Fluorescence of mineral oils 199
Fluxing of hard asphalt 371
Foam for fire extinguishing 131 197 197
Foots oils
Foots oils
Fractional gravity distillation, method of making, of crude petroleum and petroleum distillates 468-9
Freezing method for testing natural gas, for gasoline content 513 513 459
Freezing point, graph slowing freezing point curves of paraffin wax
Freezing point, graph slowing freezing point curves of paraffin wax
Freezing temperatures of hydrocarbons 186, 255
Freight, rules for shipment of gasoline and naphtha by 137-8-9
Friedel \& Craft's reaction 230
Fuel oil 193, 311, 347
Chart showing relative prices of 47
Prices of 49
Content of commercial crude oils 187
Cracking of Mid Continent fuel oil 236
Effect of pressure on the products of cracking of 237
Stack requirements for fuel oil furnaces 326-7, 339
Advantages of, over coal for locomotives and boats 326 326
Use of, for boats 328 328
Sampling of 328 328
Comparison of, with other fuels 328 328
Heat losses in flue gases from fuel oil furnaces 329 329
Fuel value of producer gas compared with 339
U. S. specifications for 332
U. S. Navy fuel oil 332 332
Specifications for bunker fuel oil 333
Air required for 334
U1timate composition of 334
Total heat losses due to chimney gases from 335
Heat losses from unburned carbon monoxide in burning fuel oil 335
Heat losses from hot gases in burning fuel oil 335
Heat losses from water vapor in burning fuel oil 335
Properties and requirements of one pound of various fuel oil elements. 336
Formula for calculating heating value of fuel and air required for ultimate com- position of 336
Practical losses from fuel oil furnaces 337
Losses in fuel oil furnaces due to excess air 337
Transmission rates of radiant heat in fuel oil furnaces 338
Stack design for fuel oil furnaces 339
Sources and properties of 311, 323
Gravity of, from various sources 312 312
Viscosity of 312-314
Comparison of heating value of, with coal, natural gas, coal gas and electricity 312 312
Viscosity of, before and after cracking 312
Properties of various commercial fuel oils 313 313
Viscosity curves of miscellaneous fuel oils 314
Properties of, from various sources 315
Comparison of, with other fuels. 316
Graph showing relation of gravity to heat of combustion of 317 317
Table showing relation of gravity to B. T. U. per gallon of. 318
Table showing relation of gravity to B. T. U. per pound of 319 319
Advantages of the use of over coal 320
Relative cost of coal and fuel oil for the same fuel value 320 320
Requirements for burning 321
Graph showing relative cost of gas and fuel oil
Graph showing relative cost of gas and fuel oil 322 322
Method of burning 321-3 321-3
Graph showing relation of air to amount of carbon dioxide in the stack in com- bustion of 323
Prices of, for the past seven years 325. 325.
Consumption of, by railroads 325
Miscellaneous information concerning the use of 326-7-8 326-7-8 326
Steam required for atomization of.
Steam required for atomization of.
Air required for combustion of. 326
Composition of stack gases from fuel oil furnaces 326
Temperature of fuel oil flame Page
For melting iron 326
Consumption for Diesel engines 326
Determination of viscosity of, by Saybolt Universal viscosimeter, as adopted by ASTM
443-5
Method of determining viscosity of, by Furol viscosimeter
449
449
Method of making distillation of crude petroleum for
Method of making distillation of crude petroleum for
Method of determining water in, by distillation method
Method of determining water in, by distillation method 163 163 163
470
470
Method of determining flash point of, by Pensky-Martens tester
Method of determining flash point of, by Pensky-Martens tester 475 475
Fuel
Consumption in production of gasoline
223-226
223-226
Requirements of United States 311
Fuller's earth
Properties of
200
200
Removal of color of oil by
200
200
Furol viscosimeter, determination of viscosity of fuel oil and road oils by 149
Gas (see casinghead)
Gas (see casinghead)
Method of manufacture of, from gas oil and coal
363-1
363-1
Average content of light oils in various gases 365
Chart showing specific heat of flue gases 326
Comparative gas statistics of American cities 399
Method of making complete chemical analysis of $51+5-6$
Method of calculating heat of combustion of, from chemical analysis 518
American gas syndicates 110-112
Fixed gas produced in cracking 226
Geologic occurance of 19,26
Relation of oil, gas and salt water 19
Hydrocarbons constituting natural gas 402-109
Comparison of heating value with other fuels 312
Relative cost of, to other fuels 312
Composition of commercial gas 39.1
Producer gas costs 3330
Light oils from $360-2-4$
Benzol in $36(1-5$
Composition and properties of natural gas from various sources 396-7
Gasoline in natural and casinghead gas 397-8, 401
$.106-10$
Commercial uses of natural gas 103
Gas consumed by gas engines, brick plants, flour mills, etc 403
Composition of, from Burton stills 205
Explosibility of gases 10.1
Testing the capacity of gas wells by the orifice meter 419
Determining capacity of gas wells by Pitot tube 411
Calculation of the capacity of gas pipe lines 115
Absorption method for gasoline in natural gas 512
Freezing method for gasoline in natural gas 51.3
Specific gravity met hod gasoline in natural gas $5(1)$
Method of determining specific gravity of 5×1
Reagents for gas analysis 517
Methods of determining heating value of 518
Production of 39.5
Gas black (see carbon black) Gas compressors, gas consumed by 10:3
Gas engines, gas consumed by 403
Gas oil $1!3$
Cracking of
270
270
Specifications for :323-1
Method of manufacture of gas from
Gasoline
17
Chart showing relative prices of 11
Prices of 76-8-8?
Casinghead gasoline manufacturcrs 186 ,
Rules governing location of oil loading racks for 25.1
Ultimate composition of 18%
Properties of gasoline hydrocarbons 18
Content of commercial crude oil 111
By distillation
Color of cracked gasoline l|x|
Chemical treatment of :10
Critical points of gasoline hydrocarbons 2
Comparative costs of making gasoline by cracking by varous method 23
Distillation capacity for horizontal stills
Fuel consumption in production of 20320
Heat absorhed in condensing
Page
Condensing surface required for 228
Aluminum chloride in production of230
Yields of, from aluminum chloride treatment 230
Properties of aluminum chloride gasoline 231-2-3
Vapor pressure of 234
Fractional gravity distillation of Benton process gasoline 241
Olefins in cracked gasoline. 233-241
Formula for determining amount of synthetic gasoline obtained by cracking 242
Formula for determining cost of gasoline made by cracking 242
Formula for determining cost of gasoline made by skimming 242
Formula for determining cost of gasoline by both cracking and skimming
242
242
Formula for determining cost of gasoline by cracking gas oil. 242
Obtained by cracking Mexia, Burkburnett, Ranger and Mexican crudes 242
Definition of 247
Hydrocarbons constituting gasoline, with their properties 247, 210, 184, 6
Heat of vaporization of gasoline hydrocarbons 328, 344
Origin of commercial gasoline 248
Synthetic gasoline 248
Graph showing amount of, obtained from natural gas from cracking and from natural crude, and amount consumed by automobiles 247
Production, consumption and stocks of, at various periods 248
Properties of, sold in 1921 249
Distillation curves of, sold in 1921 250
Combustion of. 251
Composition of products of combustion of, in automolile engines 251
Effect of carbureter adjustment on gasoline consumption 251
Volatility of 234
Carbon, hydrogen, sulphui, nitrogen and oxygen in 184
Amount of exhaust gas per gallon of 253
Calorific value of 253
Products of combustion in gasoline engines of one gallon of 253
Combustion efficiency of gasoline engines per gallon of 254
Distribution of the heat energy of, in gasoline engines 254
U. S. specification for various grades of 255
Specifications for aviation gasoline, fighting grade 255
Specifications for aviation gasoline, domestic grade 255
Specifications for motor gasoline, new navy 255
1nspection laws and taxes on 259
Possible savings in the use of 264
Comparison of gasoline and benzol as motor fuel 265
Production of natural gas gasoline 400
From natural gas and casinghead gas 399
Explosions of natural gas and gasoline 404
Method of determining color of, by Saybolt chromometer 437
Method of determining color of, by Lovibond tintometer 438
Method of determining color of, with the use of potassium dichromate solution. 439
Method of determining viscosity of, by Ubbelohde viscosimeter 450
Method of making an end point distillation of 464-5-6-7
Method of making a distillation of crude petroleum for 470
Method of making doctor test for 492
Method of determining corrosive sulphur in 487
Method of making corrosion or gumming test of 496
Freezing method for testing natural gas for gasoline content 513
Gauging
Of petroleum 113, 183
And measurement of petroleum 149, 183
Method of construction of gauging tables for oil tanks
Method of construction of gauging tables for oil tanks 149-151-2-3-4 149-151-2-3-4
Method of construction of gauging tables for horizontal cylindrical tanks with bumped ends 154
Method of gauging horizontal cylindrical tanks with bumped ends. 153-8
Table for gauging contents at various liquid depths of cylindrical horizontal tanks with and without bumped ends 155-8
Gauging tables for various types of tank cars 174-182
Gauging tables for standard fifty-gallon barrel 183
Gear case oil, definition of 306
Gear, cliain and wire rope lubricants, specifications for 290
General Electric method of determining melting point of asphaltic or bitu- minous matcrials 456
Geographic distribution of petroleum 5-18
Geological Survey publications of various states relating to petroleum, as- phalt and natural das 593-4-5
Geologists, list of state geologists 595
Geology Page
Of petroleum and natural gas.
19-26
Of certain oil fields.
25-26
25-26
Occurrence, economics and geology of petroleum, asphalt and natural gas 19-26
Character of oil from various strata
25-26
Of various oil fields.
25-26
25-26
Correlation chart of oil sands of Oklahoma 23
Georgia, inspection laws and taxes of
259
259
Germany, oil production of 4
Gilsonite
Gilsonite
Composition of
Composition of 369 369
Properties of
Properties of
380
380
Glance pitch, properties of 380
Grading, method of determining bitumen and grading of asphaltic pavement surface mixtures by burning and extraction 506-7
Grahamite
Composition of 369
Properties of
:380
:380
Ultimate composition of 184
Gram 552
Gravity
Relation of distilling temperature to specific gravity of various hydrncarbons 236
Relation between gravity and distilling temperature of paraffin base oil before and after cracking 239
Of various brands of motor lubricants 277-8
General discussion on specific gravity and Baume' gravity 428
Definition of specific gravity and Baumc gravity 429
Formulae for converting specific gravity and Baume' gravity into cach other by Petroleum Association and U. S. Government standards 128
Effect of high temperature on the specific gravity of oil 429
Method of determining specific and Baumé gravity with hydrometer $13(3)$
Determination of specific gravity with the picnometer 133
Method of determining specific gravity with the Westphal balance 131
Method of determining specific gravity of A. C. by fluid susjension 434
Method of determining specific gravity of solid asphaltic material by displacement 135
Method of determining specific gravity of asphaltic cement 133
Method of calculating heat of combustion of oil from gravity 181
Method of determining the specific gravity of gases by the viscosity or cliusion method $5(1) 9-10 \quad 11$Equivalents of specific gravity, pounds per gallon and Baume gravity by U. S.Bureau of Standards formulac.
Tables for conversion of specific gravity, pounds per gallon, Baume gravity, by Tag scale, with extension of tables for oils heavier than water.
Tables for reduction of specific gravity readings at observed temperature to hasis

of $60^{\circ} \mathrm{F}$.
Tables of equivalent values for degrees Baume' and specific gravity for huadsheavier than water
Specific gravity and content of sulphuric acid solutions :月,$13-1,1 i$
Composition of fuming sulphuric acid 1"
Specific gravity, Baume' gravity, composition and freczing temperat ure of calcouns chloride and brine solutions (.,)
Specific gravity, Baume' gravity and composition of caustic sorla solutions (1, (1)
Greases
Specifications for various greases. $3!5$
Various types of. 29
Composition of commercial greases 208
Gulf fields, map showing production, pipe lines in Gulf ficlels Gumming 11":
Or corrosion test, method of making of gasoline and napp hat
$\therefore \times$
Test of various brands of motor lubricants
Gun grease, specifications for
2"x
2"x
Gun and ice machine oil, specificatlons for
Gushers 111
Oil. 1.1
Cause of Mexican gushers 4 H
Harness oil, definition of \because,
Healdton crude oil, cracking of
Healdton crude oil, cracking of
Heat
And temperature, definition of units ofAbsorbed in condensing gasoline and keroseneExchanges in refincry condensers.
Page
Losses from unburned carbon monoxide in burning fuel oil 335
Losses from hot gases. 335
Losses from water vapor 335
Conversion factors for units of 561
Heat 347
Fusion and melting point of various substances 343
Fusion, definition of 347
Heat of combustion
Of various substances 340
Of coal from various parts of the United States 341-2
Of gases found in natural gas 409
Method of determining heat of combustion or calorific value of petroleum products 483-4
Method of determining heat of combustion of oil from the gravity 484
Method of determining heat of combustion of natural gas 517-8
Method of calculating heat of combustion of natural gas by oxygen consumed 518
Method of calculating heat of combustion of gas from chemical analysis 518
Definition of 347
Heat of Vaporization
And boiling temperature of various substances. 344
Definition of 347
Heat pressure test
Method of making, of motor lubricants for resistance to decomposition 478
Of various brands of motor lubricants $277-8$
Heating areas of stills 226
Helium
In natural gas 401a
Properties of. 401a
Extraction of 401a
Lifting power of 401 b
Heptane
Properties of 187
Heat of vaporization of 247
Critical pressure and critical temperature of 210
Hexane
Properties of 187
Heat of vaporization of 247
Critical pressure and critical temperature of. 210
Horizontal cylindrical tanks 151-183
Gauging tables for 152-183
Method of constructing gauging tables. 153-4
Contents of horizontal cylindrical tanks with bumped ends. 155
Formulae for contents of 151
Horsepower of gasoline engines 251
Hydrocarbons
And their properties 184-6
Paraffin or saturated 184, 186
Olefin, ethylene or unsaturated 185
Naphthene 184
Aromatic or benzene 185
In natural gas 39.1, 396, 402
Properties of gaseous hydrocarbons 186
Properties of gasoline hydrocarbons 186
Properties of lubricating oil hydrocarbons 186
Properties of, found in natural gas 402
Hydrogen
Explosibility of 404
In crude petroleum from various states, in Byerlite pitch, Grahamite, Trinidad asphalt, gasoline, kerosene, lubricating oil and benzol 184
Determination of, in petroleum products 491
Hydrogen chloride
In treatment of petroleum 199
In chlorination of gas 405
Hydrogenation of petroleum 205
Hydroline oil, definition of 305
Ice machine oil, properties of. 279-280
Ice plant, gas fuel required for 403
Ichthyol, definition of 306
Idaho, inspection laws and taxes of 260
Ignition temperature of gases. 404
Illinois, inspection laws and taxes of 260
lliuminating oils (see kerosene) Page
Description ofMethod of determining sulphur in266
Impsonite, properties of 488-9-90
India, petroleum production in 380
Indiana, inspection laws and taxes of 260
lodine method
Of determining color of crude petroleum and lubricating oils 141
Equivalent of color by, with other methods
411-2
411-2
Iowa, inspection laws and tases of 260
Italy, petroleum production in 4
Japan, petroleum production in 1
Journals relating to petroleum, asphalt and natural gas
Kansas
Propertics of crude oil from
187
187
Inspection laws and taxes of
260
260
Large petroleum producers of. 75
Kentucky
Properties of crude oil from 187
Asphaltic sandstone from
370
370
Inspection laws and taxes of. 200
Kerosene
Prices of 49
Ultimate composition of 18.1
Distillation of, from crude osl 191
Critical points of kerosene hydrocarbons 210
Cracking of 235, 238
Effect of pressure on the products of cracking of 237 237
Inspection laws and taxes on kerosene 359
Description of $26 i$
Value and gravity of, from various districts 26
Specifications for water white kerosene 217
Specifications for prime white kerosene 267
Method of determining color of, by Saybolt chromometer 137
Method of determining color of, by Lovibond tintometer. 138
Method of determining color with use of potassium dichromate 139
Method of determining viscosity by Ubbelohde viscosimeter 150
Method of making distillation of crude petroleum for 17.)
Method of determining flash point of, by ASTM closed tester. 171-2
Method of making doctor test for kerosene. -1ب2
Heat absorbed in condensing kerosene 298
Kjeldahl method of determining nitrogen in petroleum or asphalt 112
Knitting machine oil, definition of. 301
Laws, inspection laws and taxes on gasoline and kerosene 2.4)
Leather oil, definition of いた
Liberty aero oil, specifications for 2!"
Limestone
Asphaltic :170
Composition of Mississippi 218.5
Linear dimensions, conversion factors for units of
116
Loading racks, rules governing location of, for gasoline
20:
20:
Locomotive engine oil, specifications for
2.13 $2(2(x)$
2.13 $2(2(x)$
Loom oil, properties of
Loom oil, properties of (*) $)^{\prime}$
Losses
$12 \cdot 4$
In the storage of oil
198
198
In storage of oil by evaporation, by seepage and by lire
In storage of oil by evaporation, by seepage and by lire [3)
In oil on its way to refinery at various stages
In oil on its way to refinery at various stages (4 (4)
From oil fires.
(4)
Of oil by evaporation.
$\because(x)$
$\because(x)$
Louisiana, inspection laws and taxes of
Properties of crude oil from is.
Lovibond tintometerMethod of determining color of gasoline, kerosenc, lubraitmig ohs and whmalpetroleum.$11=$
Equivalents of color hy, and other methorls
Lubricants and lubricationProperties of
Description and properties of
Lubricating properties of crude oil from varous localble's
Prices of lubricating oil
Method of refining petroleum for 11it.
Economy of lubrication

Economy of lubrication.$1-1$
Theory of lubrication
Physical properties of various types of 274
Purposes of tests of 274
Viscosity blending chart for 275
Requirements for, for internal cornbustion engines 276
Sources of 273
Principles of refining 273
Summary of properties of well known brands of motor lubricants 276
Gravity, color, flow test, flash and fire, viscosity, carbon, gurnming and coking and heat pressure tests of various hrands of motor lubricants 277-8
Properties of various lubricants, including cyiinder oil, enginc oil, turbine oil, com- pressor oil, ice machine oil, dynamo o:l, spindle oil and loom oils 279-280
Effect of automobile engines on the qualities of 280
Effect of fire distillation on viscosity of 281
Effect of cracking on lubricating properties of oil 282
U. S. specifications for 283-296
Various grades of, inclu 382-4-5
Ultimate composition of 184
Properties of lubricating oil hydrocarbons 186
Cost of making 24.4-5
Method of determining color of, by Lovibond tintometer 438
Method of determining coor of by iodine method 440
Method of determining color of, by Union colorimeter 441
Determining viscosity of, by Saybolt Universal viscosimeter, as adopted by ASTM 443-4
Method of determining cloud, pour and cold tests of 460-1
Method of determining flash and burning point of, by Cleveland open cup 474
Method of determining flash and burning point of, by Elliott or New York closed tester 473
Method of making heat pressure tes!s of motor lubricants for resistance to decompo- sition 478
Method of determining emulsifying properites of 482
Determination of free fatty acid in 495
McAfee process 230
Machine gun oil, specificaxions for air craft machine gun oil 286
MacMicliael riscosimeter
Equivalent reading of, with other viscosimeters 447
Method of determining viscosity of petroletum products by 451
Magruder viscosimeter, eduivalent reading of, with other viscosimeters 447
Malne, inspection laws and tases of 260
Manjak, properties of 380
Maps $6,8,10,12,14,16,18$
Marine engine oil, specifications for 288
Maryland, inspection laws and taxes of 260
Mass, conversion factors for units of 447
Massachusetts, inspection laws and taxes of 260
Mazout, definition of. 307
Measure, conversion factors for units of 554-5-6
Measurement
And gauging of petroleum 149-183
Conversion tables for units of, of oil 150
Equivalent of various units of, of oil 150
Mechanical equivalent of heat, definition of 347
Medicinal oil, specification for 2.99
Melting point
And heat of fusion of various substances 343
Definition of
Definition of 347 347
Interpretation of 374-5
Graph showing rclation of penetration to melting point of asphalt produced by blowing with air 375
Method of determining melting point of asphaltic and bituminous materials by cube method 455
By ring and ball method 454
By General Electric method 456
Method of determining melting point of paraffin wax by titer or English method. 457-8
Methane, properties or 186
Method of analysis
Outline of. of petroleum and its products 425-6
Application of, of petroleum and its products. 427
Metric system, fundamental units of. 552
Mexia, gasoline obtained by the cracking of Mexia crude oil 242
Mexico
Page
Mlap showing production and pipe lines in 16
Petroleum production and production conditions in 59-188
Potential production of oil in 59
Oil producing areas of 61
Number and production of wells in 63
Cause of Mexican gushers 6. 6.
Salt water in Mexican oil 6.1
Panuco, Mexico field 63
Topila, Mexico field 63
Ebano, Mexico field 13 13
Undeveloped oil fields of $67-8$
Production of oil by companies in 69 69
Pipe lines in. 69
Storage capacity in 70
Tankers handling oil from 71-2
Total petroleum operations of 73-4-5
Petroleum refineries of 103
Cracking of Mexican flux oil 235
Gasoline obtained by the cracking of Mexican crude oil 242
Composition of Mexican asphalt 369
Michidan, inspection laws and taxes of 261
Mid-Continent field
8
Map showing production and pipe lines in $52-8$
Price changes in crude oil from
268
Specifications for 300° mineral seal oil
307
307 261
Definition of..
Definition of..
Minnesota, inspection laws and tases of
$2(1)$
$2(1)$
Mississippi, inspection laws and taxes of
261
261
Missouri, inspection laws and taxes of
511
511
Money, conversion factors for units of
Money, conversion factors for units of
380
380
Montan wax, properties of
Montana 187
Properties of crude oil from
261
261
Inspection laws and taxes of 29
Specifications for. :30)
Definition of 258
Motor gasoline, specifications for
Naphtha 19%
Method of making corrosion and gumming tests of
Method of making corrosion and gumming tests of 9 9
Prices of ins ! ! (x)
Method of determining amount of sulphur in 1378
Rules for shipping by freight $1!1$
By distillation 23
Specifications for 1:37
Method of determining color of, by Saybolt chromometer 1位5!-7
Method of making end point distillation of 171 :
Method of making flash point of, by ASTM closed tester
Naph thene hydrocarbons 181
Definition of 181
Properties of various naphthene hydrocarbons
Properties of various naphthene hydrocarbons 318 318
National Paving Brick Manufacturers' Ass'n specitications for 111 : 111 :
National Pe 1.6
Natural gas

1. 8
Freezing method for testing nat combustion of 1141
Specific heat of gases found in.
Specific heat of gases found in. $1, \mathrm{M}$ $1, \mathrm{M}$
Heat of combustion of gases found in $110: 1$
Measuring the flow of, by orilice meter 1111
Production of, in the United States... $515,1,110$
Properties of. 311
Occurrence, economics and geology of
Occurrence, economics and geology of 位
Composition of 111
Selling price of, in various cities
2.
3.

Composition of, of Oklahoma and Kansis. ITI (11")
Gasoline from.
Properties of hydrocarbons found inITI
Various uses of. For gas engines, brick plants, ice plants, zinc plants, comuent ulank, s.alt phant(1)flour mills, gas compressors
Page
Explosions of 404
Chemical products from 405
Chlorination of 405
Comparison of heating value of fuel oil, coal, natural gas, coal gas and electricity. 312
Relative cost of coal and natural gas 321
Temperature of natural gas flame 326
Natural gasoline, specifications for 258
Nebraska, inspection laws and taxes of 261
Neutral oil
Prices of 49
Definition of 307
Nevada, inspection laws and taxes of 261
New Hampslire, inspection laws and taxes of 261
New Jersey, inspection laws and taxes of 261
New Mexico, inspection laws and taxes of 262
New Navy gasoline, specifications for 255
New York, inspection laws and taxes for 262
New York closed tester
Method of determining flash and burning point of lubricants, asphalt and other petroleum products by 473
Comparison of flash points of, with other testers 476
Nitrogen
In various crude oils and Grahamite, Trinidad, gasoline, etc 184
Method of determining nitrogen in petroleum or asphalt by Kjeldahl method 492
Nonane
Properties of 186
Critical pressure and critical temperature of 210
Heat of vaporization of 247
Non viscous neutral oil, definition of 307
North Carolina, inspection laws and taxes of 262.
North Dakota, inspection laws and taxes of 262
Octane
Properties of 186
Critical temperature and pressure of 210
Heat of vaporization of 247
Odor
Of refined petroleum 199
Determination of odor of petroleum 442
Ohio, inspection laws and taxes of 262
Oil burners
Operation of. 323
Various types of 322
Oildag, definition of 307
Oil shale
Distillation products of 349-366
Properties of 381
Composition of 349-350
Occurrence of 352-3
Oil wells, spacing of and relation to production 33
Oklahoma
Properties of crude oil from 187
Inspection laws and taxes of 262 262
Correlation chart of oil sand of 23
Oil producing companies of 87-93
Olefins
Method of determining 493
Definition of 185
In cracked gasoline 233, 241
In shale oil 355
In shale oil after cracking 356
Orifice meter, measuring flow of natural gas by 419-424
Oregon, inspection laws and taxes of 262
Ostwald viscosimeter, equivalent readings of, with other viscosimeters 447
Oxldation, method of determining resistance of asphaltic cement to 504
Oxygen
In crude oil from various States, Byerlite pitch, Trinidad asphalt, gasoline, kero- sene, lubricants and benzol 184
Bomb calorimeter, method of determining sulphur in petroleum by 485
Gas compressor lubricant, definition of 305
Ozokerite, properties of 380
Panuco, Mexico field 63
Page
Paraffin 197
And paraffin wax 457-8
Method of determining melting point of, by titer or English method
459
459
Graph, showing freezing point curves of 380
Properties of. 302
Grades and uses of 301-2-3
Manufacture of 293
Specifications for 20.1
Cracking of 303
Specifications for U. S. P. paraffin
Paraffin hydrocarbons 184
Definition of 186
Detailed properties of 494
Method of determining, in petroleum hydrocarbons 562
Patents fifation of U. S. patents on petroleum refining
Classification of U.S. patents on petroleum 563-586 381
Peat, properties of
Penetration test497-8
Method of making, of asphaltic and bituminous materials 374-5
Interpretation of 371
Effect of minera! filler on penetration of asphaltic cement
Effect of minera! filler on penetration of asphaltic cement
Pennsylvania 187
Properties of crude oil from 51
Price changes in crude oil from 262
Inspection laws and taxes of 1.17
cosimeters 175
Pensky-Martens tester
116
116
Comparison of flash points of, with other testers 186
Pentane 210
Properties of 2.17
Critical temperatures
Heat of vaporization of 50)
Petrolatum 296
Prices of $3(x)$
Properification for U. S. petrolatum Specification for U. S. petrolatum formula for converting specific gravity and 128Petroleum Association standard, formula
Baume gravity into each other by
307
Petroleum coke, definition of 59
Petroleum ether, properties of
Petroleum ether, properties of 133 133
Petroleum Trade Journals
Petroleum Trade Journals $115 \cdot 11!$
Pipeline 123- 125
Capacity of gasoline pipelines
Capacity of gasoline pipelines
Formulae 123
Friction of standard fittings for 123
Properties of average pipeline oil i
Effect of viscosity on capacity of r
Map of United States showing II
Map showing pipelines in Mid-Continent States 12
Map showing pipelines in Easteming It
Map showing pipelines in Wyoming lii
Map showing pipelines in California (i)
Map showing pipelines in Mexico 1112
In Mexico. 11.1.
Transportation 116
Principal pipelines of the United States 11.
Extent and cost of 11819Method of12.1Cost of pipe line transportation friction pressure loss of
$111: 31$ HMethod of calculating capacity of sas wellsPitot tube for testing open flow of gas wells and gallerlesPits, mining of petroleum by means of pits anti gatlerian
Potassium dichromate solution gasoline and kerosene with 134Method of determining color of gasoline and kerosene with other methewhColor equivalents with potassium dichromate snutions
Pounds per gallonEquivalents of, by U. S. Bureatu of Standards formulit fables for enf heaviet Hath
Tables for conversion of, by T'as scale, with cxtension of tables fur miv herome thenwater.
Pressure Page
Conversion factors for units of 559-560
Effect of, on products of cracking of kerosene and fuel oil 237
Pressure tar, properties of 380
Pressure tar asplialt, composition of 369
Prices
Petroleum and its products. 44-58
Crude oil at the well 44-5-6
Road oil and asphalt 46
Chart showing relative prices of gasoline, crude oil and fuel oil 47
Of crude oil compared with other raw commodities. 48
Of gasoline, naphtha, kerosene, burning oil, fuel oil, neutral oil, lubricating oil, cylinder stock, gas and asphalt 49
Of petrolatum, medicinal oils 50
Retail prices of gasoline and kerosene 50
Of California crude oil 50
Changes in Pennsylvania crude oil 51
Changes in Mid-Continent crude oil 52-8
Production
3
3
Of petroleum by states.
Of petroleum by states.
3
3
Of petroleum in the world 4
Refined products of petroleum 4
Map showing production in Mid-Continent and Gulf fields 8
Map of United States showing refineries, production and pipelines 7
Map showing production in Eastern United States 10
Map showing production in Wyoming 12
Map showing production in Califorma 14
Map showing production in Mexico 16
Daily production of oil by pools in United States 42-3
Petroleum production and production conditions in Mexico 59-68
Potential production of oil in Mexico 59
Production of oil by companies in Mexico 69
Large petroleum producers of California 75
Oil producers of Texas 82-86
Oil producers of Oklahoma 87-93
Production, consumption and stock of gasoline at various periods 248
Propane
Properties of 186
Heat of vaporization of 247
Properties
Of petroleum 192-246
Of methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane and undecane
Of gaseous hydrocarbons 186
Of gasoline hydrocarbons 186
Of paraffin hydrocarbons 186
Of lubricating oil hydrocarbons 186
Typical crude oil from various sources 187
Crude oil from various states 187
Publications-U. S. Government publications on petroleum, asphalt and natural gas 589-592
Pumo equipment for oil wells 34
Pumping of oil wells 34
Quenching oil, definition of 306
Ranger crude oil, gasoline obtained by cracking of 242
Recoil oil, specifications for 287-290
Recuperator oil, definition of 305
Recuperator grease, definition of 305
Redwood viscosimeter, equivalent readings of, with other viscosimeters 447-8
Reduction
Tables for reduction of Baume' gravity readings at observed temperatures to basisof $60^{\circ} \mathrm{F}$529-30-1-2-3-4-5-6-7
Tables for reduction of specific gravity readings at observed temperatures to basis of $60^{\circ} \mathrm{F}$ 538-9-40-1-2
Refineries
Map of United States showing refineries 5-18
Petroleum refineries of United States 94-103
Petroleum refineries of Canada 103
Petroleum refineries of Mexico 103
Engineering data on distillation and cracking of petroleum 226
Calculation of heat exchanges in refinery condense rs. 228
Refinery
Flow sheet for complete petroleum refinery. 192
Typical refinery practice 191
Refining

Of petroleum.
192-216
Cost of. 243-246
Cost of, in 1922 2.16
Method of, for lubricating oils 195
Cost of refining California petroleum $2: 16$
Method of, refining oil for road building purposes $361-8$ $361-8$
Products of the refining of light oil from gas works 364
Methods of determining refining loss of petroleum products 194
Classification of U . S. patents on petroleum refining 562
List of U.S. patents on petroleum refining 563-586 563-586
Repress oil, definition of 305
Residuum, cracking of paraffin base residuum 235 235
Rhode 1sland, inspection laws and taxes of 262
Ring and ball method of determining melting point or softening point of bituminous material 151
Road oil
Prices of. 46
Specifications for 383-1
Properties of typical road oils 38.3
Graph showing amount of road oil required 385 385
Method of determining viscosity of, by Furol viscosimeter 149
Roily oil 202
Roll oil, definition of.
Roll oil, definition of. 312 312
Rotary or flush drilling 31
Russia, properties of crude oil from
(i)
(i)
Salt water in Mexican oil
Salt water in Mexican oil
Sands
20
20
Voids in petroleum sands....
23
23
Correlation chart of oil sands in Oklahoma
Correlation chart of oil sands in Oklahoma 32
Sand screens or strainers
137
Method of determining color of kerosene, gasoline, naphtha and other refined pe- troleum by
139
139
Color equivalents on Saybolt chromometer scalc
111
111
Method of determining viscosity of fuel oil and road oil by 117
Equivalent readings of, with other viscosimeters
Saybolt Universal Viscosimeter $-412-5$
Viscosity of lubricants, fuel oil and crude oil by, as adopted by ASTM 1178
Equiva!ent readings of, with other viscosimeters 5013
Scientific journals relating to petroleum
117
117
Scott viscosimeter, equivalent readings of, with other viscosimeters
Scott viscosimeter, equivalent readings of, with other viscosimeters 3
Screens or strainers for sand Sediment, determination of, in crude petroleum and fuel oil hy centrifuse $16{ }^{2}$
method
method 12 s 12 s
Seepage, losses in storage of oil by 10i
Sewing machine oil, definition of
Sewing machine oil, definition of
Shale oil 311Composition of.$35:$
Refining of
:3.3.3
Olefins in

Fraction gravity distilation of, before cracking :3, H^{2}
Olefins in, after cracking
3.,
3.,
Fractional gravity distillation of, after cracking $318.3,01$
Properties of shale oil before and after cracking i. 4.4
Sheet asphalt, cross section of
Shipment
Shooting, method of shooting wells
Skimming
Plant, relation of cracking plant toFormula for determining cost of gasoline nade byFormula for deter crude oil
Slack wax
Smithsonian institute, publications of
Solar oil or distillate oil
Page
Method of determining bitumen, or solubility in carbon bisulphide 503
Method of determining carbenes or solubility in carbon tetrachloride 503
South Carolina, inspection laws and taxes of 262
South Dakota
Inspection laws and taxes of 263
Properties of crude oil from 187
Space, conversion factors for units of 554-5-6
Specific gravity (see gravlty)
Specific heat
Chart showing specific heat of fluc gases 326
Of various suisstances 345
Of gases and vapors 346
Of gases found in natural gas 409
Specifications
255
U. S. specifications for various grades of gasoline
For aviation gasoline, fighting grade 255
For aviation gaso'ine, domestic grade 255
Motor gasoline, new navy 255
Turpentine substitute or naphtha 257
Various grades of natural or casinghead gasoline 257 257
Motor, natural gasoline or blended casinghead gasoline 258
U. S. specifications for burning oils 267
Water white kerosene 267
Prime white kerosenc 267
Long time burning oil 268
300° mineral seal oil 268
Signal oil 269
Gas oil 270
Diesel engine oil. 270
Straw oil or absorption oil 271-2
Lubricating oils 283-296
Aircraft machine gun oil 286
Recoil oil 287-291
Cup grease 298
Cylinder oil 289
Floor oil 290
Transmission lubricants 288
Marine engine oil 288
Gun grease 293
Car oil 294
Gear, chain and wire rope lubricants 290
Various greases 295
Locomotive engine oil 295 295
Transformer oils 294
Paraffin wax 294
Gun and ice machine oils 290
Liberty aero and motor cycle oil 292
Medicinal oil 299
U. S. P. petrolatum 300
For U. S. P. paraffin 303
Asphaltic cement 373-4 373-4
U S. specifications for fuel oil 332
Bunker fuel oil 333
Oil asphalt filler of National Paving Brick Manufacturers Association 378-9
For carbon black 409
Purposes of, for asphaltic cement 374
Spindle oils
Properties of 279-280
Definition of 307
Spudding in-Method of spudding in wells 32
Stack gases, composition of, from fuel oil furnaces 326 326
Standard Oil Company
80
80
Earnings
Earnings 107
Statistics, petroleum 3-4
Steam
Required for atomizing fuel oil 326
Volume of oil vapors and steam at different temperatures 229
Stll
196
Combination pipe and tower still for petroleum distillation
225
225
Heating area of horizontal stills
226
226
Benzine or gasoline distillation capacity for horizontal stills
Benzine or gasoline distillation capacity for horizontal stills 246
Stitching oil, definition of Page
Storage 307
Cost, weight and capacity of steel storage tanks 135
Of petroleum
Of petroleum
Method of, of oil 113-183
Capacity in Mexico 127
Cost of storage tanks 127
Losses in storage of oil 127
Method of prevention of fire of oil in 129
Gauging of vertical cylindrical storgage tanks. 135
Straw oil, specifications for 271-2
Sulphur
In crude oil from various States, Byerlite pitch, Grahamite, Trinidad asphalt,gasoline, kerosene, lubricating oil and benzol
184
Crude petroleum. 188-9
Method of making sulphur tests for turpentine substitute 491
Content of vacuum distillation hydrocarbons from crude oil 281
Method of determining sulphur in petroleum products by oxygen bomb calori- meter 485
By Eschka method 487
By chemical bomb 486
Method of determining corrosive sulphur in gasoline 487
Method of determining amount of sulphur in naphtha and illuminating oils.. 488-9-90
Sulphuric acid
Composition of fuming sulphuric acid 549
Content and gravity of sulphuric acid solutions 547-8
Summer black oil, definition of 305
Surfaces, conversion factors for units of 554
Swabbing of oil wells 34
Synclines, diagram showing accumulation of oil and gas in 192-0-1-2
Tabbyite, properties of 380
Tables
Conversion tables for units of measurement of oil 150
For conversion of temperatures in ${ }^{\circ}$ Centigrade to and from ${ }^{\circ}$ Fahrenheit 520-1-2
For conversion of specific gravity, pounds per gallon, and Baume' gravity by Tag scale with extension of tables for oils heavier than water 526-7-8
For reduction of Baume' gravity readings at observed temperatures to basis of $60^{\circ} \mathrm{F}$. 629-30-1-2-3-4-5-6-7
For reduction of specific gravity readings at observed temperatures to basis of $60^{\circ} \mathrm{F}$ 638-9-40-1-2
Of equivalent values for gravity of liquids heavier than water 543
Tables
For correction of gauged valume of oil to $60^{\circ} \mathrm{F}$ 152
For gauging contents of horizontal cylindrical tanks 155-6
For gauging contents of bumped ends of hor. cyl. tanks 157-8
For gauging contents of hor. cyl. tanks up to 120 inches diameter 159-173
For gauging standard tank cars 174-182
For conversion of weights and measures 552-561548-9
Caustic soda. 550
Brine solution 551
Tables, gauging tables for standard fifty-gallon harrel 183
Tag scale, tables for conversion of specific gravity pounds per dallon and Baume' gravity by. $526-7-8$
Tas-Robinson colorimeter, equivalents of color by
176
176
Tagliabue open tester, comparison of flash points of, witli other testers
Tagliabue open tester, comparison of flash points of, witli other testers 1.17
Tanks
127
127
Cost of storage tanks 127
Important features of oil tanks
132-3-1
132-3-1
Specifications for brick and tile enclosed tanks
Specifications for brick and tile enclosed tanks
135
135
Gauging of vertical cylindrical storage tanks.
Gauging of vertical cylindrical storage tanks.
$1: 35$
$1: 35$
Cost, weight and capacity of steel storage tanks
Cost, weight and capacity of steel storage tanks
136
136
Design of steel oil storage tanks
Design of steel oil storage tanks 142-3-4-5 142-3-4-5
Owners of tank cars
Owners of tank cars $149-18.3$
$2-3-1$149) 151-2-3-1
Method of construction of gauging tables for oil tanks
Method of construction of gauging tables for oil tanks
Total capacity of horizontal cylindrical tanks without bumped ends 151
Total capacity of humped ends of horizontal cylindrical tanks 151 151
Contents of partially filled horizontal cylindrical tanks. 1.51
5
Method of gauging horizontal cylindrical tanks with humped ends 15.4
Table for gauging contents at various liquid depths of cylindrical horizontal tanks with and without bumped ends 155-8
Contents of horizontal cylindrical tanks of various depths 159-173
Gauging tables for various types of tank cars 174-182
'lankers handing oil from Mexico 71-2
Tar, method of determining tar in cylinder stock 503
Taxes and inspection laws on gasoline and kerosene 259
Temperature
Of oil wells 22-24
Conversion factors for units of 561
Volume occupied by oil at various temperatures based on a unit volume at $60^{\circ} \mathrm{F}$. 431
Factors for temperature correction of gauged volumes of oil to $60^{\circ} \mathrm{F}$. for various petroleum products 152
Operating temperature in various parts of explosion engines 276
Tables for conversion of temperatures in ${ }^{\circ}$ Centigrade to and from ${ }^{\circ}$ Fahrenheit. . 520-1-2Tempering oil, definition of308
Tennessee, inspection laws and taxes of 263
Tensile strength-Method of determining tensile strength of bituminous surface mixtures 508
Tetradecane, properties of 210
Texas
82-86
82-86 187
Oil producers of
Oil producers of
Properties of crude oil from 263
Thermal units in common use 347
Thickened oil, definition of 308
Thread cutting oil, definition of 308
Time, conversion factors for units of 561
Toluol, properties of 248
Topila, Mexico field 63 254
Traction efficiency of automobiles
Traction efficiency of automobiles
Transformer oils
Method of testing dielectric strength of 309
Relation of water content to dielectric strength of 310 310
Specifications for 294
Definition of 308
Solubility of water in 308
Transparency of fetroleum, determination of 442
Transmission lubricants, specifications for 288
Transportation 113-183
Of petroleum
1 18-9-20
1 18-9-20
Cost of pipeline transportation
210
210
Tridecane, properties of
184
Ultimate composition of
369
369
Composition of
Composition of 380
Turbine oil
Properties of 279-280
Definition of 308
Turpentine substitute
Method of making sulphur tests of 491
Specifications for 257
Ubbelohde viscosimeter, method of determininf visccsity of kerosene and gasoline by 450
Ultimate composition Of petroleum and its products 184
Of gasoline 253
Undecane
I86
I86
Properties of
Properties of
210
210
Critical pressure and critical temperature of
Critical pressure and critical temperature of 247
Underreaming of oil wells 3I
Union colorimeterMethod of determining color of lubricants by44
Equivalent of color by, with other colorimeters 441-2
United States, petroleum refineries of 94-103 265
U. S. P. benzine, properties of
U. S. P. benzine, properties of
U. S. Bureau of Standards formula, equivalents of specific gravity, founds per gallon and Baume' gravity by 523-4-5
U. S. Department of Agriculture, publications of 592
U. S. Geological Survey, publications of 592 592
U. S. Government publications on petroleum, asphalt and natural gas 58?-592
U. S, Nary fuel oil 332
Unsaturated hydrocarbons
Page
Definition of 185
Method of determining olefins or 19
Uses of petroleum and its productsUtah, inspection laws and taxes of263
Vapors
Volume of oil vapor and steam at different temperatures 227, 22
Area of still vapor lines 228
Vapor pressure of heavy oils 234
Vapor pressure of gasoline. $2: 34$
Vaporization, heat of, of gasoline hydrocarbons 247
Velocity, conversion factors for units of 561
Vermiont, inspection laws and taxes of 263
Virginia, inspection laws and taxes of 263
Viscosimeters
Determination of viscosity of lubricants, fuel oil and crude petroleum by the Say- bolt viscosimeter, as adopted by the ASTM 443-5
Engler 446
Redwood $4 \cdot 16$
Equivalent readings of the Saybolt, with the Saybolt Furol, MacMichael, Engler, Tagliabue, Pennsylvania Railroad, Szott, Redwood, Magruder and Ostwald viscosimeters 447
Method of determining viscosity of kerosene and gasoline by the Ubbelolde vis- cosimeter 450
Viscosity
Effect of, on the capacity of oil pipelines 123
Effect of temperature on the viscosity of oil 126, 281
Blending chart for lubricating oils 275
Of various brands of motor lubricants 277-8
Of vacuum distilled hydrocarbons from crude oil 281
Effect of fire distillation on viscosity of lubricating oil 281
Of fuel oils. 312-314
Of fuel oil before and after cracking 312
Curves of miscellancous fuel oils 314
Of asphaltic cement, interpretation of 37- -5
Equivalent values of, by Engler, Saybolt and Redwood viscosimeters $4.17-8$
Method of determining viscosity of fuel oil and road oil by the Furol viscosimeter 449
Method of determining viscosity of petroleum products by the MacMichacl vis- cosimeter 451
Method of determining viscosity or float test of petroleum residues 452
Method of determining zero viscosity of semi-solid petroleum products 453
Method of determining viscosity of kerosene and gasoline by the Ubbelolide vis- cosimeter 45)
Determination of viscosity of lubricants, fuel oil and crude petrocam by Saybolt Universal viscosimeter as adopted by the ASTM 1.13-4
Method of determining viscosity of petrolatum 45:3
Method of determining specific gravity of gases by the viscosity or effusion method 50?-10-11
Viscous neutral oils, definition of 308
Voids
In petroleum sands
20
Calculation of, in mineral aggregates 377
Volatility of asphaltic cement. interpretation of $374-5$
Volume, conversion factors for units of
$26: 3$
Washington, inspection laws and taxes of
Watch oll, definition of 308 308
Water
Removal of from crude oil 202
Solubility of, in transformer oil and petroleum 308
Relation of water content to dielectric strength of transformer oils :30
Method of determining water in crude petroleum and fuel oil by centrifuge m • $h \times x$ 1 19
Method of determining water in petroleum and fuel oil by distillation meth al 163
Method of making distillation of crude petroleum for 1 (1)
Water white distllate, distillation of, from crude oil $1!1$
Wax (see parafin or paraffin wax)
Solubility of 3:1,3
Amount of, in crude oil O) 3
Distillate $1!1: 3$
Sweating of 19
Tailings 197
Pot 19
Method of determining amount of wax in asphaltic petroleum and biluminous p.oducts , (1):
Weight, conversion factors for unlts of 55
Wells
Oil wells in Mexico 41-2
Number and production of, in Mexico (3)
Drilled for petroleum 4
Production of petroleum
22-2
Temperature of oil wells
22-24
22-24
Depth of oil wells
Depth of oil wells
27-36
27-36
Description of oil well drilling
Description of oil well drilling
28
28
Standard derrick for drilling oil wells
Standard derrick for drilling oil wells
30
30
Standard tools for drilling oil wells
Standard tools for drilling oil wells
31
31
Underreaming of oil wells
Underreaming of oil wells
32
32
Method of spudding in wells
Method of spudding in wells
32
32
Method of shooting 3.3
Pumping of oil wells. 34
Pump equipment for oil wells 34
Rate of withdrawal of oil from wells 34 34
Depletion of oil wells 24
Cost of well drilling by motor 35 35
Drilling and operating costs for oil wells 38
Production and decline of individual wells 41
Oil wells in the United States. 41
Pitot tube for testing open flow of gas wells 411-2-3-4-5
Westphal balance, method of determining specific gravity, with 433
West Virginia
Inspection laws and taxes of 263
Properties of crude oil from 187
Wisconsin, inspection laws and taxes of 263
Wood block pavement, cross section of 390
Wool oil, definition of 308
Work, conversion factors for units of 558
Wurtzilite, properties of 380
Wyoming
Map showing production and pipelines in 12
Inspection laws and taxes of 263
Xylol. properties of 248
Young process for cracking 212

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

> ip
> 690
> $C 76$
> 1922

Engin

[^0]:

[^1]:

[^2]: "In distilling mineral oils-such as natural petroleum or similar wil made from shale, coal or other bituminous substances-in order in separate the lighter oils, suitable for lamps and other purposes, from the heavier oils, there is frequently a very large residue of heavy oil. Attempts have been made to obtain lighter oils from such resiflues or from heavy natural petroleums by caising the vapor genMrated in the still-boiler to pass a heavily-loaded valve, so that the vaporization takes place under considerable pressure. It has also been proposed to arrange the still-boiler with its upper part conlenl, so that the less volatile portion of the vapor may become more or loss condensed and fall back into the hot liquid below, this morle of operating leing commonly termed 'cracking.' Both these merthols are ohjectionahle, the former on account of the irregularity of the distillation and the latter on account of the waste of heat in (onducting the cracking process and the slowness and insufficiency of the results.

[^3]:

[^4]: Sample No. 20 is castor oil.

[^5]: for the heating
 a veat variety
 tests from of thousands of bomb calorimeter values are based upon the average These of sources.

[^6]: The following tahle is based on the data contained in Bureau of Standards Technologic Paper No. 77 and upon which are based the tables contained in Bureau of Standards Circuiar No. 57 . United States Standard Tables for Petroleum Olls. It differs from Thble 3 of Circular No. 57 In that the specific gravity of the oll ls known as $60^{\circ} / 60 \circ \mathrm{~F}$ instead of at tho temperature at which the rolume measurements are made.

[^7]: Fig. 89—
 B a u me Hydro-
 $m e t e r$

