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EDITORS'   PREFACE. 

THE  volume  called  Higher  Mathematics,  the  first  edition 

of  which  was  published  in  1896,  contained  eleven  chapters  by 

eleven  authors,  each  chapter  being  independent  of  the  others, 

but  all  supposing  the  reader  to  have  at  least  a^  mathematical 

training  equivalent  to  that  given  in  classical  and  engineering 

colleges.  The  publication  of  that  volume  is  now  discontinued 

and  the  chapters  are  issued  in  separate  form.  In  these  reissues 

it  will  generally  be  found  that  the  monographs  are  enlarged 

by  additional  articles  or  appendices  which  either  amplify^  the 
former  presentation  or  record  recent  advances.  This  plan  of 

publication  has  been  arranged  in  order  to  meet  the  demand  of 
teachers  and  the  convenience  of  classes,  but  it  is  also  thought 

that  it  may  prove  advantageous  to  readers  in  special  lines  of 
mathematical  literature. 

It  is  the  intention  of  the  publishers  and  editors  to  add  other 

monographs  to  the  series  from  time  to  time,  if  the  call  for  the 
same  seems  to  warrant  it.  Among  the  topics  which  are  under 

consideration  are  those  of  elliptic  functions,  the  theory  of  num- 

bers, the  group  theory,  the  calculus  of  variations,  and  non- 
Euclidean  geometry;  possibly  also  monographs  on  branches  of 

astronomy,  mechanics,  and  mathematical  physics  may  be  included. 

It  is  the  hope  of  the  editors  that  this  form  of  publication  may 

tend  to  promote  mathematical  study  and  research  over  a  wider 
field  than  that  which  the  former  volume  has  occupied. 

December,  1905. 
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AUTHOR'S  PREFACE. 

THE  following  pages  are  designed  as  supplementary  to  the 

discussions  of  equations  in  college  text-books,  and  several  methods 
of  solution  not  commonly  given  in  such  works  are  presented 

and  exemplified.  The  aim  kept  in  view  has  been  that  of  the 
determination  of  the  numerical  values  of  the  roots  of  numerical 

equations,  and  algebraic  analysis  has  been  used  only  to  further 
this  end.  Historical  references  are  given,  problems  stated  as 

exercises  for  the  student,  and  the  attempt  has  everywhere  been 

made  to  present  the  subject  clearly  and  concisely.  The  volume 
has  not  been  written  for  those  thoroughly  conversant  with  the 

theory  of  equations,  but  rather  for  students  of  mathematics, 

computers,  and  engineers. 
This  edition  has  been  enlarged  by  the  addition  of  five  articles 

which  render  the  former  treatment  more  complete  and  also  give 

recent  investigations  regarding  the  expression  of  roots  in  series. 

While  not  designed  for  college  classes,  it  is  hoped  that  the  book 

may  prove  useful  to  postgraduate  students  in  mathematics, 

physics  and  engineering,  and  also  tend  to  promote  general  interest 
in  mathematical  science. 

SOUTH  BETHLEHEM,  PA., 
December,  1905. 
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THE    SOLUTION    OF    EQUATIONS. 

ART.  1.    INTRODUCTION. 

THE  science  of  algebra  arose  in  the  efforts  to  solve  equations. 
Indeed  algebra  may  be  called  the  science  of  the  equation,  since 
the  discussion  of  equalities  and  the  transformation  of  forms,  into 

simpler  equivalent  ones  have  been  its  main  objects.  The  solu- 
tion of  an  equation  containing  one  unknown  quantity  consists 

in  the  determination  of  its  value  or  values,  these  being  called 

roots.  An  algebraic  equation  of  degree  n  has  n  roots,  while  tran- 
scendental equations  often  have  an  infinite  number  of  roots.  The 

object  of  the  following  pages  is  to  present  and  exemplify  convenient 
methods  for  the  determination  of  the  numerical  values  of  the 

roots  of  both  kinds  of  equations,  the  real  roots  receiving  special 
attention  because  these  are  mainly  required  in  the  solution  of 

problems  in  physical  science. 
An  algebraic  equation  is  one  that  involves  only  the  opera- 

tions of  arithmetic.  It  is  to  be  first  freed  from  radicals  so  as 

to  make  the  exponents  of  the  unknown  quantity  all  integers; 

the  degree  of  the  equation  is  then  indicated  by  the  highest  ex- 
ponent of  the  unknown  quantity.  The  algebraic  solution  of  an 

algebraic  equation  is  the  expression  of  its  roots  in  terms  of 
the  literal  coefficients ;  this  is  possible,  in  general,  only  for  linear, 

quadratic,  curtc,  and  quartic  equations,  that  is,  for  equations 
of  the  first,  second,  third,  and  fourth  degrees.  A  numerical 

equation  is  an  algebraic  equation  having  all  its  coefficients  real 
numbers,  either  positive  or  negative.  For  the  four  degrees 
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above  mentioned  the  roots  of  numerical  equations  may  be 

computed  from  the  formulas  for  the  algebraic  solutions,  unless 

they  fall  under  the  so-called  irreducible  case  wherein  real 
quantities  are  expressed  in  imaginary  forms. 

An  algebraic  equation  of  the  nth  degree  may   be  written 
with  all  its  terms  transposed  to  the  first  member,  thus: 

xn  +  a^-i  +  aj*~*  + .  .  .  +  an_,x  +  an  =  0, 

and,  for  brevity,  the  first  member  will  be  called  f(x)  and  the 

equation  be  referred  to  as/(;r)  —  o.  The  roots  of  this  equa- 
tion are  the  values  of  x  which  satisfy  it,  that  is,  those  values  of 

x  that  reduce  f(x)  to  o.  When  all  the  coefficients  av ,  #, , .  . .  aH 

are  real,  as  will  always  be  supposed  to  be  the  case,  Sturm's 
theorem  gives  the  number  of  real  roots,  provided  they  are  un- 

equal, as  also  the  number  of  real  roots  lying  between  two 

assumed  values  of  x,  while  Horner's  method  furnishes  a  con- 
venient process  for  obtaining  the  values  of  the  roots  to  any 

required  degree  of  precision. 

A  transcendental  equation  is  one  involving  the  operations 

of  trigonometry  or  of  logarithms,  as,  for  example,  x  -(-  cosx  =  o, 

or  a2*  -|-  *&*  —  O.  No  general  method  for  the  literal  solution 
of  these  equations  exists  ;  but  when  all  known  quantities  are 

expressed  as  real  numbers,  the  real  roots  may  be  located  and 

computed  by  tentative  methods.  Here  also  the  equation  may 

be  designated  as/(;tr)  =  o,  and  the  discussions  in  Arts.  2-5  will 
apply  equally  well  to  .both  algebraic  and  transcendental  forms. 
The  methods  to  be  given  are  thus,  in  a  sense,  more  valuable 

than  Sturm's  theorem  and  Horner's  process,  although  for 
algebraic  equations  they  may  be  somewhat  longer.  It  should 

be  remembered,  however,  that  algebraic  equations  higher  than 

the  fourth  degree  do  not  often  occur  in  physical  problems,  and 
that  the  value  of  a  method  of  solution  is  to  be  measured  not 

merely  by  the  rapidity  of  computation,  but  also  by  the  ease 

with  which  it  can  be  kept  in  mind  and  applied. 

Prob.  i.  Reduce  the  equation  (a  +  #)*  -\-  (a  —  x)i  =  2b  to  an 
equation  having  the  exponents  of  the  unknown  quantity  all  integers. 



GRAPHIC    SOLUTIONS. 

ART.  2.    GRAPHIC  SOLUTIONS. 

Approximate  values  of  the  real  roots  of  two  simultaneous 
algebraic  equations  may  be  found  by  the  methods  of  plane 
analytic  geometry  when  the  coefficients  are  numerically 
expressed.  For  example,  let  the  given  equations  be 

x*  -f-y  ==  a\  x*  —  bx  —  y  —  cy, 

the  first   representing   a   circle   and  the  second  a  hyperbola. 

Drawing  two  rectangular  axes  OX  and  OY,  the  circle  is  de- 
scribed  from  O  with  the  radius  a.     The  coordinates  of   the 

center  of  the  hyperbola  are  found  to  be  OA  ==  \b  and  AC  =  \c, 

while    its    diameter   BD  —<\f  b*  --  ?,    from    which    the    two 
branches    may  be   described. 
The  intersections  of  the  circle 

with  the   hyperbola  give   the 
real   values   of  x   and  y.     If 

a  =  i,  b  =  4,  and  c  —  3,  there 
are  but  two  real  values  for  x 

and    two    real   values    for   y, 
since  the  circle  intersects  but 

one  branch  of  the  hyperbola  ; 
here   Om    is  the  positive  and 

Op  the  negative  value  of  x,  while  mn  is  the  positive  and  pq 
the  negative  value  of  y.     When  the  radius  a  is  so  large  that 
the  circle  intersects  both  branches  of  the  hyperbola  there  are 
four  real  values  of  both  x  and  y. 

By  a  similar  method  approximate  values  of  the  real  roots  of 
an  algebraic  equation  containing  but  one  unknown  quantity  may 
be  graphically  found.  For  instance,  let  the  cubic  equation 

x3  -f-  ax  —  b  =  o  be  required  to  be  solved.*  This  may  be 
written  as  the  two  simultaneous  equations 

k      y  =  x\          y=  —  a 

*See  Proceedings  of  the  Engineers'  Club  of  Philadelphia,   1884,  V<;1.  IV, 
pp.  47-49 
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and  the  graph  of  each  being  plotted,  the  abscissas  of  their 
points  of  intersection  give  the  real  roots  of  the  cubic.  The 

curve  y  =  x*  should  be  plotted  upon 
cross-section  paper  by  the  help  of  a 
table  of  cubes ;  then  OB  is  laid  off 

equal  to  b,  and  OC  equal  to  a/b,  tak- 
ing care  to  observe  the  signs  of  a  and 

b.  The  line  joining  B  and  C  cuts 
the  curve  at  p,  and  hence  qp  is  the 

real  root  of  x*  -\-  ax  —  b  =  o.  If  the 
cubic  equation  have  three  real  roots  the  straight  line  BC  will 
intersect  the  curve  in  three  points. 

Some  algebraic  equations  of  higher  degrees  may  be  graphic- 
ally solved  in  a  similar  manner.  For  the  quartic  equation 

z* -\-  Az* -\-Bz-  C=  o,  it  is  best  to  put  z  —  A*x,  and  thus 
reduce  it  to  the  form  x*  +  x*  -f-  bx  —  c  =  o ;  then  the  two 
equations  to  be  plotted  are 

y  =  x*  +  x\        y=—bx  +  c, 

the  first  of  which  may  be  drawn  once  for  all  upon  cross-section 
paper,  while  the  straight  line  represented  by  the  second  may 

be  drawn  for  each  particular  case,  as  described  above. * 
This  method  is  also  applicable  to  many  transcendental  equa- 

tions ;  thus  for  the  equation  Ax  -*  Bsmx  =  o  it  is  best  to 
write  ax  —  sinx  =  o ;  then  y  =  sin  x  is  readily  plotted  by  help 
of  a  table  of  sines,  while  y  =  ax  is  a  straight  line  passing 

through  the  origin.  In  the  same  way  a?  —  x*  =  o  gives  the 
curve  represented  by  y  =  a*  and  the  parabola  represented  by 

y  =  x*,  the  intersections  of  which  determine  the  real  roots  of 
the  given  equation. 

Prob.  2.  Devise  a  graphic  solution  for  finding  approximate 

values  of  the  real  roots  of  the  equation  x*+  ax*-\-  bx*+  ex  +  d  =Q. 
Prob.  3.  Determine  graphically  the  number  and  the  approximate 

values  of  the  real  roots  of  the  equation  arc  x  —  8  sin  x  =  o. 

,(Ans. — Six  real  roots,  x  =  ±  159°,  ±  430°,  and  ±  456°.) 
*  For  an  extension  of  this  method  to  the  determination  of  imaginary  roots, 

see  Phillips  and  Beebe's  Graphic  Algebra,  New  York,  1882. 
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ART.  3.     THE  REGULA  FALSI. 

One  of  the  oldest  methods  for  computing  the  real  root  of 

an  equation  is  the  rule  known  as  "  regula  falsi,"  often  called 
the  method  of  double  position.*  It  depends  upon  the  princi- 

ple that  if  two  numbers  x^  and  x^  be  substituted  in  the  expres- 
sion /(V),  and  if  one  of  these  renders /(V)  positive  and  the  other 

renders  it  negative,  then  at  least  one  real  root  of  the  equation 

f(x)  =  o  lies  between  x^  and  x^ .  Let  the  figure  represent  a 
part  of  the  real  graph  of  the  equation  y  =f(x).  The  point  X, 
where  the  curve  crosses  the  axis  of  abscissas,  gives  a  real  root 

OX  of  the  equation  f(x)  —  o.  Let  OA  and  OB  be  inferior  and 
superior  limits  of  the  root  OX  which  are  determined  either  by 
trial  or  by  the  method  of  Art.  5.  ^ 
Let  Aa  and  Bb  be  the  values  of 

f(x)  corresponding  to  these  limits. 
Join  ab,  then  the  intersection  C  of 
the  straight  line  ab  with  the  axis 
OB  gives  an  approximate  value 
OC  for  the  root.  Now  compute 

Cc  and  join  ac,  then  the  intersection  D  gives  a  value  OD  which 
is  closer  still  to  the  root  OX. 

Let  ̂   and  x^  be  the  assumed  values  OA  and  OB,  and  let 

f(x^)  and/(^2)  be  the  corresponding  values  of/(;r)  represented 
by  Aa  and  Bb,  these  values  being  with  contrary  signs.  Then 
from  the  similar  triangle  AaC  and  BbC  the  abscissa  OC  is 

*,/(X)  -  *,A*,)_     ,  (*.-*.Vfr.)        ,  (*.-*.)/(*.) 

A*,) -A*,)          *A*>y-A*,)      '+  /<X)  -A*,) ' 
By  a  second  application  of  the  rule  to  xl  and  x^,  another  value 
;r4  is  computed,  and  by  continuing  the  process  the  value  of  x 
can  be  obtained  to  any  required  degree  of  precision. 

As  an  example  let  f(x)  =  **-}-  %x*  -(-7  =  0.  Here  it  may 

be  found  by  trial  that  a  real  root'  lies  between  —2  and  —  1.8. 
*This  originated  in  India,  and  its  first  publication  in  Europe  was  by  Abra- 

ham ben  Esra,  ».n  1130.  See  Matthiesen,  Grundziige  der  antiken  und  moder- 
nen  Algebra  der  litteralen  Gleichungen,  Leipzig,  1878. 
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For  x,  =  —  2,/fo)  =  —  5,  and  for  *a  =  —  i.8,/(a?2)  =  +4.304; 
then  by  the  regula  falsi  there  is  found  x^  =  —  1.90  nearly. 
Again,  for  x^  =  —  1.90,  f(x^)  =  +  0.290,  and  these  combined 
with  x^  and  /(.*,)  give  x^  =  —  1.906,  which  is  correct  to  the 
third  decimal. 

As  a  second  example  let  f(x)  =  arc*  —  sin x  —  0.5  =  o. 
Here  a  graphic  solution  shows  that  there  is  but  one  real  root, 

and  that  the  value  of  it  lies  between  85°  and  86°.  For  ̂ ="85°, 
/(*,)  =  —  0.01266,  and  for  *„  —  86°,  f(x^  =  -f  0.00342  ;  then 
by  the  rule  x^  —  85°  44',  which  gives  f(x^)  —  —  0.00090.  Again, 
combining  the  values  for  x^  and  ,ra  there  is  found  x^  =  85°  47', 
which  gives  f(xt)  =  —  0.00009.  Lastly,  combining  the  values 

for  x^  and  x^  there  is  found  xb  =  85"  47^4,  which  is  as  close  an 
approximation  as  can  be  made  with  five-place  tables. 

In  the  application  of  this  method  it  is  to  be  observed  that 

the  signs  of  the  values  of  x  and  f(x)  are  to  be  carefully  re- 
garded, and  also  that  the  values  of  f(x]  to  be  combined  in  one 

operation  should  have  opposite  signs.  For  the  quickest 
approximation  the  values  of  f(x]  to  be  selected  should  be  those 
having  the  smallest  numerical  values. 

Prob.  4.  Compute  by  the  regula  falsi  the  real  roots  of  ̂ B— 0.25=0. 
Also  those  of  ̂ a  +  sin  2X  =  o. 

ART.  4.    NEWTON'S  APPROXIMATION  RULE. 

Another  useful  method  for  approximating  to  the  value  of 

the  real  root  of  an  equation  is  that  devised  by  Newton  in  1666.* 
If  y  =f(x)  be  the  equation  of  a 
curve,  OX  in  the  figure  represents  a 

real  root  of  the  equation "  f(x)  =  o. 
Let  OA  be  an  approximate  value  of 
OX,  and  Aa  the  corresponding  value 

oif(x\  At  a  let  aB  be  drawn  tangent 
to  the  curve;  then  OB  is  another  approximate  value  of  OX. 

*  See  Analysis  per  equationes  numero  terminorum  infinitas,  p.  269,  Vol.  I 

of  Horsely's  edition  of  Newton's  works  (London,  1779),  where  the  method  is 
given  in  a  somewhat  different  form. 
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Let  Bb  be  the  value  of  f(x)  corresponding  to  OB,  and  at  b 

let  the  tangent  bC  be  drawn  ;  then  OC  is  a  closer  approxima- 
tion to  OX,  and  thus  the  process  may  be  continued. 

Let/(X)  be  the  first  derivative  oif(x);  or,/(.r)  =  df(x]/dx. 
For  x  =  xl  =  OA  in  the  figure,  the  value  of  /(*,)  is  the  ordi- 

nate  Aa,  and  the  value  of  /'(*,)  is  the  tangent  of  the  angle 
aBA  ;  this  tangent  is  also  Aa/AB.  Hence  AB  =  /( 
and  accordingly  OB  and  <9C  are  found  by 

*•-*•    /'(*,)' 

which  is  Newton's  approximation  rule.  By  a  third  application 
to  ;r3  the  closer  value  x^  is  found,  and  the  process  may  be  con- 

tinued to  any  degree  of  precision  required. 

For  example,  let  f(x)  —  x*  +  5^*  +  J  =  o.  The  first  deriv- 
ative is  f'(x]  —  ̂ x*  -f-  i  cur.  Here  it  may  be  found  by  trial  that 

—  2  is  an  approximate  value  of  the  real  root.  For  xl  =  —  2 

/(*,)  —  —  5,  and  f'(x^)  =  60,  whence  by  the  rule  x^  =  —  1.92. 
Now  for  x^  =  —  1.92  are  found  f(x^)  —  —  0.6599  and 

f'(xj)  =  29052,  whence  by  the  rule  x^  =  —  1.906,  which  is 
correct  to  the  third  decimal. 

As  a  second  example  let  f(x]  =  x*  -\-  4  sin  x  =  o.  Here 
the  first  derivative  is  f'(x)  —  2;r  +  4  cos  ;r.  An  approximate 
value  of  x  found  either  by  trial  or  by  a  graphic  solution  is 

#=  —  1.94,  corresponding  to  about  —  m°O9/.  For  .*•,  =  •—  1.94, 
f(x^  —  0.03304  and  f'(x^  —  —  5.323,  whence  by  the  rule 
xt=  —  1.934.  By  a  second  application  x^  —  —  1.9328,  which 

corresponds  to  an  angle  of  —  110°  54^'. 

In  the  application  of  Newton's  rule  it  is  best  that  the 
assumed  value  of  x^  should  be  such  as  to  render  /(^,)  as  small 

as  possible,  and  also  f'(x^)  as  large  as  possible.  The  method 
will  fail  if  the  curve  has  a  maximum  or  minimum  between  a 

and  b.  It  is  seen  that  Newton's  rule,  like  the  regula  falsi, 
applies  equally  well  to  both  transcendental  and  algebraic  equa- 

tions, and  moreover  that  the  rule  itself  is  readily  kept  in  mind 
by  help  of  the  diagram. 
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Prob.  5.  Compute  by  Newton's  rule  the  real  roots  of  the  alge- 
braic equation  x*  —  ̂ x  -j-  6  =  o.  Also  the  real  roots  of  the  trans- 

cendental equation  sin  x  -f-  arc  x  —  2  =  0. 

ART.  5.    SEPARATION  OF  THE  ROOTS. 

The  roots  of  an  equation  are  of  two  kinds,  real  roots  and 

imaginary  roots.  Equal  real  roots  may  be  regarded  as  a  spe- 

cial class,  which  lie  at  the  limit  between  the  real  and  the  imagi- 

nary. If  an  equation  has/  equal  roots  of  one  value  and  q  equal 

roots  of  another  value,  then  its  first  derivative  equation  has 

p  —  i  roots  of  the  first  value  and  ̂   —  I  roots  of  the  second 

value,  and  thus  all  the  equal  roots  are  contained  in  a  factor 

common  to  both  primitive  and  derivative.  Equal  roots  may 

hence  always  be  readily  detected  and  removed  from  the  given 

equation.  For  instance,  let  x*  —  9^  -|-  4.2:  +  12  =  0,  of  which 

the  derivative  equation  is  4Jtr*  —  i8x  -j-  4  =  o  ;  as  x  —  2  is  a 
factor  of  these  two  equations,  two  of  the  roots  of  the  primitive 

equation  are  +  2. 

The  problem  of  determining  the  number  of  the  real  and 

imaginary  roots  of  an  algebraic  equation  is  completely  solved 

by  Sturm's  theorem.  If,  then,  two  values  be  assigned  to  x  the 
number  of  real  roots  between  those  limits  is  found  by  the  same 

theorem,  and  thus  by  a  sufficient  number  of  assumptions  limits 

may  be  found  for  each  real  root.  As  Sturm's  theorem  is  known 
to  all  who  read  these  pages,  no  applications  of  it  will  be  here 

given,  but  instead  an  older  method  due  to  Hudde  will  be 

presented  which  has  the  merit  of  giving  a  comprehensive  view 

of  the  subject,  and  which  moreover  applies  to  transcendental 

as  well  as  to  algebraic  equations.* 

If  any  equation  y  =.  f(x)  be  plotted  with  values  of  x  as 

abscissas  and  values  of  y  as  ordinates,  a  real  graph  is  obtained 

whose  intersections  with  the  axis  OX  give  the  real  roots  of  the 

*  Devised  by  Hudde  in  1659  an(^  published  by  Rolle  in  1690.  See  CEuvres 
de  Lagrange,  Vol.  VIII,  p.  190. 
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equal  ion  f(x)  =  o.  Thus  in  the  figure  the  three  points  marked 
JTgi'^e  three  values  OX  for  three  real  roots.  The  curve  which 

repr/  sentsjj/  -=.f(x)  has  points  of  maxima  and  minima  marked 
A,  and  inflection  points  marked  B.  Now  let  the  first  deriva- 

tive equation  dy/dx=f'(x)  be  formed  and  be  plotted  in  the 
same  manner  on  the  axis  O'X'.  The  condition  /'(#)=  o  gives 
the  abscissas  of  the  points  A,  and  thus  the  real  roots  O'X'  give 
limits  separating  the  real  roots  of  f(x)  =.  o.  To  ascertain  if  a 

real  root  OX  lies  between  two  values  of  O' X1  these  two  values 
are  to  be  substituted  in/(^r):  if  the  signs  of  f(x]  are  unlike  in 
the  two  cases,  a  real  root  of  f(x]  =  o  lies  between  the  two 
limits ;  if  the  signs  are  the  same,  a  real  root  does  not  lie  between 
those  limits. 

In  like  manner  if  the  second  derivative  equation,  that  is, 

d*y/dx?  =  f"(x\  be  plotted  on  O"  X" ,  the  intersections  give 
limits  which  separate  the  real  roots  off'(x)=o.  It  is  also 
seen  that  the  roots  of  the  second  derivative  equation  are  the 

abscissas  of  the  points  of  inflection  of  the  curve  y  =  f(x). 

To  illustrate  this  method  let  the  given  equation  be  the 

quintic  f(x)  =  x*  —  $x*  -\-6x-\-  2  =  o.  The  first  derivative 
equation  is  f'(x]  =  $x*  —  i  $x*  -f~  6  —  °>  tne  roots  of  which  are 
approximately  —  1.59,  — 0.69,  +0.69,  4-  I-59-  Now  let  each 
of  these  values  be  substituted  for  x  in  the  given  quintic,  as  also 

the  values  —  oo  ,  o,  and  +  oo  ,  and  let  the  corresponding  values 
of  f(x]  be  determined  as  follows  : 
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*  =  _oo,     -1.59,      -0.69,     o,     +0.69,     +1.59,     +00; 
/(*)=- oo,     +2.4,        -0.6,  +2,     +4-7»       +1-6,       +  GO. 

Since  f(x)  changes  sign  between  x0  =—  oo  and  x1  =  —  1.59, 
one  real  root  lies  between  these  limits  ;  since  f(x)  changes  sign 

between  x^  =  — 1.59  and  x^  =  —  0.69,  one  real  root  lies  between 
these  limits  ;  since  f(x]  changes  sign  between  x^  =  —  0.69  and 
xz  =  o,  one  real  root  lies  between  these  limits;  since  f(x)  does 

not  change  sign  between  xz  =  o  and  x^  —  oo ,  a  pair  of  imagi- 
nary roots  is  indicated,  the  sum  of  which  lies  between  -f-  0.69 

and  oo . 

As  a  second  example  let  J\x)  =  e*  —  e2*— 4  =  0.  The  first 
derivative  equation  is  f'(x)  —  e*  —  2e*x  =  o,  which  has  two 
roots  e*  =  -J  and  f  =  o,  the  latter  corresponding  to  x  =  —  oo . 
For  x  =  —  oo  ,  f(x)  is  negative;  for  e*  =  J,  f(x)  is  negative  ;  for 
x  =  -f-  oo  ,  f(x}  is  negative.  The  equation  e*  —  e**  —  4  =  o 
has,  therefore,  no  real  roots. 

When  the  first  derivative  equation  is  not  easily  solved,  the 
second,  third,  and  following  derivatives  may  be  taken  until  an 
equation  is  found  whose  roots  may  be  obtained.  Then,  by 
working  backward,  limits  may  be  found  in  succession  for  the 
roots  of  the  derivative  equations  until  finally  those  of  the 

primative  are  ascertained.  In  many  cases,  it  is  true,  this  proc- 
ess may  prove  lengthy  and  difficult,  and  in  some  it  may  fail 

entirely ;  nevertheless  the  method  is  one  of  great  theoretical 
and  practical  value. 

Prob.  6.  Show  that  <?*  +  e~Bx  —  4  =  0  has  two  real  roots,  one 
positive  and  one  negative. 

Prob.  7.  Show  that  x6  -}- x -\-  i  —  o  has  no  real  roots;  also  that 
x'  —  x  —  i  =  o  has  two  real  roots,  one  positive  and  one  negative. 

ART.  6.     NUMERICAL  ALGEBRAIC  EQUATIONS. 

An  algebraic  equation  of  the  ?zth   degree    may  be  written 
with  all  its  terms  transposed  to  the  first  member,  thus: 

xn  +  a,xn~l  +  #X"2  +  •  •  •  -f-  an-\x  +  an  =  o ; 
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and  if  all  the  coefficients  and  the  absolute  term  are  real  num- 

bers, this  is  commonly  called  a  numerical  equation.  The  first 

member  may  for  brevity  be  denoted  by  f(x)  and  the  equation 

itself  by/(V)  =  o. 
The  following  principles  of  the  theory  of  algebraic  equations 

with  real  coefficients,  deduced  in  text-books  on  algebra,  are 
here  recapitulated  for  convenience  of  reference : 

(1)  If  xl  is  a  root  of   the  equation, /(.x)   is   divisible  by  x  —  x^ 
and  conversely,  if  f(x)  is  divisible  by  x  —xlt  then  xl  is  a  root  of  the 
equation. 

(2)  An  equation  of  the  nih  degree  has  n  roots  and  no  more. 
(3)  If  xl ,  #a,  .  .  .  xn  are  the  roots  of  the  equation,  then  the  prod- 

uct (x  —  xt)(x  —  xj  .  .  .  (x  —  xn]  is  equal  tof(x). 

(4)  The  sum  of  the  roots  is  equal  to  —  «,;  the  sum  of  the  prod- 
ucts  of  the  roots,  taken  two  in  a  set,  is  equal  to  -f-  #2;  the  sum  of 

the  products  of  the  roots,  taken  three  in  a  set,  is  equal  to  —  #3;  and 
so  on.     The  product  of  all  the  roots  is  equal  to  —  an  when  n  is 

odd,  and  to  -+-  an  when  n  is  even. 

(5)  The  equation  f(x)  =  o  may  be  reduced  to  an  equation  lack- 

ing its  second  term  by  substituting y  —  ajn  for  x.* 
(6)  If  an  equation   has   imaginary  roots,  they  occur  in  pairs  of 

the  form/  ±  qi  where  /  represents y  —  i. 
(7)  An  equation  of  odd  degree  has  at  least  one  real  root  whose 

sign  is  opposite  to  that  of  an. 

(8)  An  equation  of  even  degree,  having  an  negative,  has  at  least 
two  real  roots,  one  being  positive  and  the  other  negative. 

(9)  A  complete  equation  cannot  have  more  positive  roots  than 

variations  in  the   signs  of   its  terms,  nor  more  negative   roots  than 

permanences  in  signs.     If  all  roots  be  real,  there  are  as  many  posi- 
tive roots  as  variations,  and  as  many  negative  roots  as  permanences. f 
(10)  In  an  incomplete  equation,  if   an   even   number  of  terms, 

say  2m,  are  lacking  between  two  other  terms,  then  it  has  at  least  2m 

*  By  substituting  j2  -\-py-\-  q  for  x,  the  quantities/  and  q  may  be  determined 
so  as  to  remove  the  second  and  third  terms  by  means  of  a  quadratic  equation, 

the  second  and  fourth  terms  by  means  of  a  cubic  equation,  or  the  second  and 

fifth  terms  by  means  of  a  quartic  equation. 

f  The  law  deduced  by  Harriot  in  1631  and  by  Descartes  in  1639. 
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imaginary  roots;  if  an  odd  number  of  terms,  say  2m  -f-  i,  are  lacking 
between  two  other  terms,  then  it  has  at  least  either  2m  -f-  2  or  2m 
imaginary  roots,  according  as  the  two  terms  have  like  or  unlike 

signs.* 
(n)  Sturm's  theorem  gives  the  number  of  real  roots,  provided 

that  they  are  unequal,  as  also  the  number  of  real  roots  lying  be- 
tween two  assumed  values  of  x. 

(12)  If  ar  is  the  greatest  negative  coefficient,  and  if  as  is  the 

greatest  negative   coefficient  after  x  is  changed  into  —  x,  then   all 

real  roots  lie  between  the  limits  ar  -\-  i  and  —  (as  -f-  i). 
(13)  If  ah  is  the  first  negative  and  ar  the  greatest  negative  co- 

efficient, then  ar   +  i  is  a  superior  limit  of  the  positive  roots.     If 
ak  be  the  first  negative  and  as  the  greatest  negative  coefficient  after 

x  is  changed  into  —  x,  then  ask  +  i  is  a  numerically  superior  limit 
of  the  negative  roots. 

(14)  Inferior  limits  of  the  positive  and  negative  roots  may  be 

found  by  placing  x  =  z~l  and  thus  obtaining  an  equation  f(z)  =  o 
whose  roots  are  the  reciprocals  of  f(x)  =  o. 

(15)  Homer's  method,  using  the  substitution  x  =  z  —  r  where  r 
is  an  approximate  value  of  x^ ,  enables  the  real  root  xt  to  be  com- 

puted to  any  required  degree  of  precision. 

The  application  of  these  principles  and  methods  will  be 

familiar  to  all  who  read  these  pages.  Horner's  method  may 
be  also  modified  so  as  to  apply  to  the  computation  of  imagi- 

nary roots  after  their  approximate  values  have  been  found. t 
The  older  method  of  Hudde  and  Rolle,  set  forth  in  Art.  5,  is 

however  one  of  frequent  convenient  application,  for  such  alge- 
braic equations  as  actually  arise  in  practice.  By  its  use, 

together  with  principles  (13)  and  (14)  above,  and  the  regula 
falsi  of  Art.  3,  the  real  roots  may  be  computed  without  any 
.assumptions  whatever  regarding  their  values. 

For  example,  let  a  sphere  of  diameter  D  and  specific  gravity 

*  Established  by  DuGua;  see  Memoirs  Paris  Academy,  1741,  pp.  435-494. 
fSheffler,  Die  Auflosung  der  algebraischen  und  transzendenten  Gleichung- 

en,  Braunschweig,  1859;  a°d  Jelink,  Die  Auflosung  der  hoheren  numerischen 

v.  Gleichungen,  Leipzig,  1865. 
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g  float  in  water,  and  let  it  be  required  to  find  the  depth  of  im- 
mersion. The  solution  of  the  problem  gives  for  the  depth  x 

the  cubic  equation 

As  a  particular  case  let  D  =  2  feet  and  g—  0.65  ;  then  the 
equation 

*'  —  3*'  +  2.6  =  0 

is  to  be  solved.  The  first  derivative  equation  is  3**  —  6x  =  o 
whose  roots  are  o  and  2.  Substituting  these,  there  is  found 

one  negative  root,  one  positive  root  less  than  2,  and  one  posi- 
tive root  greater  than  2.  The  physical  aspect  of  the  question 

excludes  the  first  and  last  root,  and  the  second  is  to  be  computed. 

By  (13)  and  (14)  an  inferior  limit  of  this  root  is  about  0.5,  so 

that  it  lies  between  0.5  and  2.  For  xl  —  0.5,  /(jr,)  =  -j-  1.975, 
and  for  x^  =  2,  f(x^  =  —1.4;  then  by  the  regula  falsi  ̂ "3=1.35. 
For  xz  =i.35,/(^8)  =  —  0.408,  and  combining  this  with  x,  the 
regula  falsi  gives  ;r4  =  1.204  ̂ eet>  which,  except  in  the  last 
decimal,  is  the  correct  depth  of  immersion  of  the  sphere. 

Prob.  8.  The  diameter  of  a  water-pipe  whose  length  is  200  feet 
and  which  is  to  discharge  100  cubic  feet  per  second  under  a  head 
of  10  feet  is  given  by  the  real  root  of  the  quintic  equation 

xb  —  38.*  —  101  =  o.  Find  the  value  of  x. 

ART.  7.    TRANSCENDENTAL  EQUATIONS. 

Rules  (i)  to  (15)  of  the  last  article  have  no  application  to 
trigonometrical  or  exponential  equations,  but  the  general  prin- 

ciples and  methods  of  Arts.  2—5  may  be  always  used  in 
attempting  their  solution.  Transcendental  equations  may 

have  one,  many,  or  no  real  roots,  but  those  arising  from  prob- 
lems in  physical  science  must  have  at  least  one  real  root.  Two 

examples  of  such  equations  will  be  presented. 

A  cylinder  of  specific  gravity  g  floats  in  water,  and  it  is 
required  to  find  the  immersed  arc  of  the  circumference.  If 

this  be  expressed  in  circular  measure  it  is  given  by  the  trans- 
cedental  equation 

f(x)  =  x  —  sin  x  —  27tg  =  o. 
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The  first  derivative  equation  is  I  —  cos  x  —  o,  whose  root  is 
-any  even  multiple  of  2n.  Substituting  such  multiples  in  f(x) 
it  is  found  that  the  equation  has  but  one  real  root,  and  that 
this  lies  between  o  and  2n;  substituting  J/r,  £TT,  and  n  for  x>  it 
is  further  found  that  this  root  lies  between  f  TT  and  n. 

As  a  particular  case  let  g  —  0.424,  and  for  convenience  in 
using  the  tables  let  x  be  expressed  in  degrees;  then 

f(x}  =  x  -  57°  .2958  sin  x  —  152°  .64. 

Now  proceeding  by  the  regula  falsi  (Art.  3)  let  xl  =  180°  and 
*3=I35°»  giving /(X)  =  +  27°  .36  and/(>2)  =  -58°.i6,  whence 
x^  =  166°.  For  x^— 166°,  /(^s)  =  — o°  .469,  and  hence  166°  is  an 
approximate  value  of  the  root.  Continuing  the  process,  x  is 

found  to  be  i66°.237,  or  in  circular  measure  ^=2.9014  radians. 
As  a  second  example  let  it  be  required  to  find  the  horizon- 
tal tension  of  a  catenary  cable  whose  length  is  22  feet,  span  20 

feet,  and  weight  10  pounds  per  linear  foot,  the  ends  being  sus- 
pended from  two  points  on  the  same  level.  If  /  be  the  span,  s 

the  length  of  the  cable,  and  z  a  length  of  the  cable  whose  weight 
equals  the  horizontal  tension,  the  solution  of  the  problem  leads 

/  L        -L\ 

to  the  transcendental  equation  s=  V*  — e  *zi  zy  or  inserting 
the  numerical  values, 

(  ™       -™\ f(z)  =  22  —  \e'  —  e  z  lz  —  o 
is  the  equation  to  be  solved.     The  first  derivative  equation  is 

/   ̂   -i-°\         10 /   ™  -™\ 

f(z]  =  -(e*  -e  *)+  -(e*  +  e   > )  =  o, 

and  this  substituted  in  f(z)  shows  that  one  real  root  is  less  than 

about  20.  Assume  zl  =15,  then /(^J =0.486  an d /'(£,)= 0.206, 
whence  by  Newton's  rule  (Art.  4)  z^=  13  nearly.  Next  for 
2^  =  13,  /(#,)  =  —  0.0298  and  f'(z^)  —  0.322,  whence  zt  =  13.1. 
Lastly  for  zt  =  13.1  f(z3)  =0.0012  and/'fo)  =  0.3142,  whence 
zt  —  13.096,  which  is  a  sufficiently  close  approximation.  The 

horizontal  tension  in  the  given  catenary  is  hence  130.96  pounds.* 

*Since  e9  —  e~6  =•  2  sinhQ,  this  equation  may  be  written  n9  —  10  sinh  0, 
where  6  =  loz'1,  and  the  solution  may  be  expedited  by  the  help  of  tables  of 
hyperbolic  functions.  See  Chapter  IV. 
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Prob.  9.  Show  that  the  equation  3  sin  x  —  2X  —  5  =  o  has  but 
one  real  root,  and  compute  its  value. 

Prob.  10.  Find  the  number  of  real  roots  of  the  equation 

'2.x  -\-  log  x  —  10000  =  o,  and  show  that  the  value  of  one  of  them  is 
•*  =  4995-74- 

ART.  8.    ALGEBRAIC  SOLUTIONS. 

Algebraic  solutions  of  complete  algebraic  equations  are 
only  possible  when  the  degree  n  is  less  than  5.  It  frequently 
happens,  moreover,  that  the  algebraic  solution  cannot  be  used 
to  determine  numerical  values  of  the  roots  as  the  formulas 

expressing  them  are  in  irreducible  imaginary  form.  Neverthe- 
less the  algebraic  solutions  of  quadratic,  cubic,  and  quartic 

equations  are  of  great  practical  value,  and  the  theory  of  the 
subject  is  of  the  highest  importance,  having  given  rise  in  fact 
to  a  large  part  of  modern  algebra. 

The  solution  of  the  quadratic  has  been  known  from  very 
early  times,  and  solutions  of  the  cubic  and  quartic  equations 
were  effected  in  the  sixteenth  century.  A  complete  investiga- 

tion of  the  fundamental  principles  of  these  solutions  was,  how- 

ever, first  given  by  Lagrange  in  1770.*  This  discussion  showed, 

if  the  general  equation  of  the  nih  degree,  f(x)  =o,  be  deprived 
of  its  second  term,  thus  giving  the  equation  f(y)  =  o,  that  the 
expression  for  the  root  y  is  given  by 

y=  cos,       GD  .  •  .        G*" 

in  which  n  is  the  degree  of  the  given  equation,  GO  is,  in  suc- 

cession, each  of  the  nth  roots  of  unity,  I,  e,  e2,  .  .  .  e*-1,  and 
slt  s9,  .  .  .  sn_,  are  the  so-called  elements  which  in  soluble  cases 

are  determined  by  an  equation  of  the  n  —  Ith  degree.  For 
instance,  if  n  =  3  the  equation  is  of  the  third  degree  or  a  cubic, 
the  three  values  of  GO  are 

*  Memoirs  of  Berlin  Academy,  1769  and  1770;  reprinted  in  CEuvres  de 
Lagrange  (Paris,  1868),  Vol.  II,  pp.  539-562.  See  also  Traite  de  la  resolution 
des  equations  numeriques,  Paris,  1798  and  1808. 
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and  the  three  roots  are  expressed  by 

y,  =  *,  +  *,  >         7,  =  &i  +  e\  ,          y^  —  e's,  +  es,  , 

in  which  s^  and  ja8  are  found  to  be  the  roots  of  a  quadratic 
equation  (Art.  9). 

The  n  values  of  GO  are  the  n  roots  of  the  binomial  equation 

aon  —  I  =  o.  If  n  be  odd,  one  of  these  is  real  and  the  others 

are  imaginary  ;  if  n  be  even,  two  are  real  and  n  —  2  are  imagi- 

nary.* Thus  the  roots  of  a?  —  I  =  o  are  -\-  I  and  —  I  ;  those 

of  Go3  —  i  =  o  are  given  above  ;  those  of  o>4  —  I  =  o  are 

+  i,  +  /,  —  i,  and  —  i  where  i  is-v/—  i-  For  the  equation 

co"  —  I  =  o  the  real  root  is  -|-  i,  and  the  imaginary  roots  are 

denoted  by  e,  e8,  e3,  e4;  to  find  these  let  GO*  —  i  =  o  be  divided 
by  GO—  i,  giving 

oo*  +  GO*  +  co9  +  GO  +  I  =  o, 

which  being  a  reciprocal  equation  can  be  reduced  to  a  quad- 
ratic, and  the  solution  of  this  furnishes  the  four  values, 

V- where  it  will  be  seen  that  e.e4  =  I  and  ea.e3  =  i,  as  should  be 

the  case,  since  e6  =  i. 
In  order  to   solve  a  quadratic  equation   by  this   general 

method  let  it  be  of  the  form 

x*  +  2.ax  +  b  =  o, 

and  let  x  be  replaced  by  y  —  a,  thus  reducing  it  to 

y  _  (a*  -b}  =  o. 

Now  the  two  roots  of  this  are  yl  =  +  ̂1  and  y^  =  —  slt  whence 

the  product  of  (y  —  s^)  and  (y  -\-  J,)  is 

y  -  j2  =  o. 
Thus  the  value  of  /  is  given  by  an  equation  of  the  first  degree, 

*  The  values  of  GO  are,  in  short,  those  of  the  n  "  vectors  "  drawn  from  the 
center  which  divide  a  circle  of  radius  unity  into  n  equal  parts,  the  first  vector 

GOi  =  i  being  measured  on  the  axis  of  real  quantities.  See  Chapter  X. 
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£  =  c?  —  b\  and   since  x=  —  a-\-y,  the  roots   of   the  given 

equation  are 

#,  =  —  a  +  ̂ /~^~^b,  x^  —  —  a  —  i/  a*  —  £» 
which  is  the  algebraic  solution  of  the  quadratic. 

The  equation  of  the  n  —  Ith  degree  upon  which  the  solution 
of  the  equation  of  the  «th  degree  depends  is  called  a  resolvent. 
If  such  a  resolvent  exists,  the  given  equation  is  algebraically 

solvable  ;  but,  as  before  remarked,  this  is  only  the  case  for 

quadratic,  cubic,  and  quartic  equations. 

Prob.   n.    Show     that    the    six     6th    roots   of    unity    are  +  *> 

ART.  9.    THE  CUBIC  EQUATION. 

All  methods  for  the  solution  of  the  cubic  equation  lead  to 

the  result  commonly  known  as  Cardan's  formula.*     Let  the 
cubic  be 

x*  +  30**  +  $bx  +  2c  =  o,  (i) 

and  let  the  second  term  be  removed  by  substituting  y  —  a  for 
x,  giving  the  form, 

C=o,  (i') 
in  which  the  values  of  B  and  C  are 

£=-*'  +  £,         C=a*  —  \ab  +  c.  (2) 

Now  by  the  Lagrangian  method  of  Art.  8  the  values  of  y  are 

^1  =  ̂ 1  +  j.  »     y*  =  e^  +  e*s*  »     y*  =  €*s*  +  ej3  » 
in  which  e  and  e2  are  the  imaginary  cube  roots  of  unity. 
Forming  the  products  of  the  roots,  and  remembering  that 

e3  —  I  and  e2  e  i  =  o,  there  are  found 

For  the  determination  of  J,  and  ja  there  are  hence  two  equa- 
tions from  which  results  the  quadratic  resolvent 

2Cs*  —  J3*  =  O,  and  thus 
7^.    (3) 

*  Deduced  by  Ferreo  in  1515,  and  first  published  by  Cardan  in  1545. 
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One  of  the  roots  of  the  cubic  in  y  therefore  is 

and  this  is  the  well-known  formula  of  Cardan. 

The  algebraic  solution  of  the  cubic  equation  (i)  hence  con- 
sists in  finding  B  and  C  by  (2)  in  terms  of  the  given  coefficients, 

and  then  by  (3)  the  elements  5,  and  s^  are  determined.    Finally, 

Xl  =  —  a  +  (s,  -{-  st), 

fa  -  st),  (4) 

which  are  the  algebraic  expressions  of  the  three  roots. 

When  B*  +  C2  is  negative  the  numerical  solution  of  the 
cubic  is  not  possible  by  these  formulas,  as  then  both  s1  and  ja 

are  in  irreducible  imaginary  form.  This,  as  is  well  known,  is 

the  case  of  three  real  roots,  s1  +  s^  being  a  real,  while  sl  —  st  is 

a  pure  imaginary.*  When  B*  -\-  C2  is  o  the  elements  sl  and  S9 
are  equal,  and  there  are  two  equal  roots,  x^  =  x%  =  —  a  +  C$, 

while  the  other  root  is  x^  =  —  a  —  2C*. 

When  B*  +  C*  is  positive  the  equation  has  one  real  and 
two  imaginary  roots,  and  formulas  (2),  (3),  and  (4)  furnish  the 

numerical  values  of  the  roots  of  (i).  For  example,  take  the 
cubic 

x*  —  4.5**+  12*  —  5  =  0, 

whence  by  comparison  with  (i)  are  found  a  =  —  1.5,  b  =  +  4> 

c  —  —2.5.  Then  from  (2)  are  computed  B  =  1.75,  £T=:-)-3-I25- 

These  values  inserted  in  (3)  give  sl  =  +0.9142,  s^  =  —  1.9142  ; 

thus  sl  +  5,  =  —  i.o  and  s,—  Ja  =  +  2.8284.  Finally,  from  (4) 

*,=  1.5  -  1.0  =  +0.5, 

*f  ==  1.5  +0.5  +  1.4142  V~~3  =  2  +  2.44951, 
*3  =  1.5  +  O.5.—  I.4H2  4X^1  =  2  -  2.44951, 

which  are  the  three  roots  of  the  given  cubic. 

*  The  numerical  solution  of  this  case  ij  possible  whenever  the  angle  whose 

cosine  is  —  C/  \/  —  Bz  can  be  geometrically  trisected. 
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Prob.  12.  Compute  the  roots  of  x*  —  2^—5=  o.  Also  the  roots 
of  x3  +  o.6.#2  —  5.76^  -f-  4.32  =  o. 

Prob.  13.  A  cone  has  its  altitude  6  inches  and  the  diameter  of 
its  base  5  inches.  It  is  placed  with  vertex  downwards  and  one  fifth 
of  its  volume  is  filled  with  water.  If  a  sphere  4  inches  in  diameter 
be  then  put  into  the  cone,  what  part  of.  its  radius  is  immersed  in  the 
water  ?  (Ans.  0.5459  inches). 

ART.  10.    THE  QUARTIC  EQUATION. 

The  quartic  equation  was  first  solved  in  1545  by  Ferrari, 
who  separated  it  into  the  difference  of  two  squares.  Descartes 
in  1637  resolved  it  into  the  product  of  two  quadratic  factors, 
Tschirnhausen  in  1683  removed  the  second  and  fourth  terms. 

Euler  in  1732  and  Lagrange  in  1767  effected  solutions  by 
assuming  the  form  of  the  roots.  All  these  methods  lead  to 
cubic  resolvents,  the  roots  of  which  are  first  to  be  found  in 

order  to  determine  those  of  the  quartic. 

The  methods  of  Euler  and  Lagrange,  which  are  closely 
similar,  first  reduce  the  quartic  to  one  lacking  the  second  term, 

and  the  general  form  of  the  roots  being  taken  as 

the  values  slt  ̂ a,  s9,  are  shown  to  be  the  roots  of  the  resolvent, 

Thus  the  roots  of  the  quartic  are  algebraically  expressed  in 
terms  of  the  coefficients  of  the  quartic,  since  the  resolvent  is 
solvable  by  the  process  of  Art.  9. 

Whatever  method  of  solution  be  followed,  the  following 

final  formulas,  deduced  by  the  author  in  1892,  will  result.* 
Let  the  complete  quartic  equation  be  written  in  the  form 

x*  +  4^3  +  6&x*  +4cx  +  d=o.  (i) 

*  See  American  Journal  Mathematics,  1892,  Vol.  XIV,  pp.  237-245. 
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First,  let  g,  h,  and  k  be  determined  from 

Secondly,  let  /  be  obtained  by 

Thirdly,  let  u,  v,  and  w  be  found  from 

u  =  g-\-  /,     v  =  2g  —  /,     w  =  4«a  +  $k  —  I2£-/.          (4) 
Then  the  four  roots  of  the  quartic  equation  are 

^  =  _  a  _[_  V&  _L.  I/?,  .{-  Vw, 

(5) 
#,  =  —  tf  —  Vu  -f  ̂  —  Vw, 

xt=  —  a  —  Vu  —  Vv  —  Vw, 
in  which  the  signs  are  to  be  used  as  written  provided  that 

20*  —  $ab  -\-  c  is  a  negative  number;  but  if  this  is  positive  all 
radicals  except  Vw  are  to  be  reversed  in  sign. 

These  formulas  not  only  serve  for  the  complete  theoretic 
discussion  of  the  quartic  (i),  but  they  enable  numerical  solu- 

tions to  be  made  whenever  (3)  can  be  computed,  that  is,  when- 

ever  ff  -\-k*  is  positive.  For  this  case  the  quartic  has  two  real 
and  two  imaginary  roots.  If  there  be  either  four  real  roots  or 

four  imaginary  roots  h*  -f-  k*  is  negative,  and  the  irreducible 
case  arises  where  convenient  numerical  values  cannot  be  ob- 

tained, although  they  are  correctly  represented  by  the  formulas. 

As  an  example  let  a  given  rectangle  have  the  sides/  and  ̂ , 

and  let  it  be  required  to  find  the  length  of  an  inscribed  rec- 
tangle whose  width  is  m.  If  x  be  this  length,  this  is  a  root  of 

the  quartic  equation 

and  thus  the  problem  is  numerically  solvable  by  the  above 
formulas  if  two  roots  are  real  and  two  imaginary.  As  a  special 

case  let  /  =  4  feet,  q  =  3  feet,  and  in  =  I  foot ;  then 

x*  —  27  x*  +  48^-  —  24  =  o. 
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By  comparison  with  (i)  are  found  a  =  o,  b  —  —  4%,  c  =  +  12, 

and  d——2^  Then  from  (2),  £  =  -{-4.%,  ̂ =.-±J.L,  and 

£  —  _[_  -459-.  Thus  k*  -f-  £3  is  positive,  and  from  (3)  the  value  of  I 
15—3.6067.  From  (4)  are  now  found,  &  = +0.8933,  v=  12.6067, 

and  w=  -\-  161.20.  Then,  since  c  is  positive,  the  values  of  the 
four  roots  are,  by  (5), 

*,  =  —  0.945  -  ̂ 12.607  +  12.697  =  —  5.975  feet, 

x^  =  —  0.945  +  Vi  2.607+  12.697  =  +  4.085  feet, 

*,  =  +  0.945  —  4/12.607  -  12.697  =  +  0.945  —  0.301", 
x^  =  +  0.945  +  lx  1 2.607  —  12.697  =  +  0.945  +  0.302, 

the  second  of  which  is  evidently  the  required  length.     Each  of 

these  roots  closely  satisfies  the  given  equation,  the  slight  dis- 

crepancy in  each  case  being  due  to  the  rounding  off  at  the  third 

decimal.* 

Prob.  14.  Compute  the  roots  of  the  equation  x*  +  yx  +  6  =  o. 

(Ans.  —  1.388,  —  i. ooo,  1.194  ±  1.701*'.) 

ART.  11.    QUINTIC  EQUATIONS. 

The  complete  equation  of  the  fifth  degree  is  not  algebraic- 

ally solvable,  nor  is  it  reducible  to  a  solvable  form.  Let  the 

equation  be 

and  by  substituting  y  —  a  for  x  let  it  be  reduced  to 

/+  5^/+  $Cf+  SDy  +  2E  =  o. 
The  five  roots  -of  this  are,  according  to  Art.  8, 

in  which  e,  ea,  e*  e4  are  the  imaginary  fifth  roots  of  unity.     Now 
if  the  several  products  of  these  roots  be  taken  there  will  be 

*  This  example  is  known  by  civil  engineers  as  the  problem  of  finding  the 
length  of  a  strut  in  a  panel  of  the  Howe  truss. 
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found,  by  (4)  of  Art.  6,  four  equations  connecting  the  four  ele- 
ments slt  s^  s9,  and  st,  namely, 

—    D  = 

-  sfo  v«  +  *.  Vi  +  Vv*  +  J/v.)  ; 
but  the  solution  of  these  leads  to  an  equation  of  the  i2Oth 
degree  for  s,  or  of  the  24th  degree  for  /.  However,  by  taking 

sts4  —  v3  or  si*  +  -^a5  +  *t*  +  -C  as  tne  unknown  quantity,  a 
resolvent  of  the  6th  degree  is  obtained,  and  all  efforts  to  find 

a  resolvent  of  the  fourth  degree  have  proved  unavailing. 

Another  line  of  attack  upon  the  quintic  is  in  attempting  to 
remove  all  the  terms  intermediate  between  the  first  and  the 

last.  By  substituting  y*  -\-  py  -\-g  for  x,  the  values  of  p  and  q 
maybe  determined  so  as  to  remove  the  second  and  third  terms 
by  a  quadratic  equation,  or  the  second  and  third  by  a  cubic 
equation,  or  the  second  and  fourth  by  a  quartic  equation,  as 
was  first  shown  by  Tschirnhausen  in  1683.  By  substituting 

y  ~\~P^  ~\~  $y  4~  r  f°r  x->  three  terms  may  be  removed,  as  was 

shown  by  Bring  in  1786.  By  substituting  y*-\-py*  +  qy*  -\-ry-\-t 
for  x  it  was  thought  by  Jerrard  in  1833  that  four  terms  might 
be  removed,  but  Hamilton  showed  later  that  this  leads  to 

equations  of  a  degree  higher  than  the  fourth. 

In  1826  Abel  gave  a  demonstration  that  the  algebraic  solu- 
tion of  the  general  quintic  is  impossible,  and  later  Galois 

published  a  more  extended  investigation  leading  to  the  same 

conclusion.*  The  reason  for  the  algebraic  solvability  of  the 
quartic  equation  may  be  briefly  stated  as  the  fact  that  there 

exist  rational  three-valued  functions  of  four  quantities.  There 
are,  however,  no  rational  four-valued  functions  of  five  quan- 

tities, and  accordingly  a  quartic  resolvent  cannot  be  found  for 
the  general  quintic  equation. 

*  Jordan's  Trait6  des  substitutions  et  des  Equations  algSbriques;  Paris,  1870. 
Abhandlungen  iiber  die  algebraische  Auflosung  der  Gleichungen  von  N.  H. 

Abel  und  Galois;  Berlin,  1889. 
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There  are,  however,  numerous  special  forms  of  the  quintic 
whose  algebraic  solution  is  possible.  The  oldest  of  these  is  the 

quintic  of  De  Moivre, 

which  is  solved  at  once  by  making  J2  =  s3  =  o  in  the  element 

equations  ;  then  —  B  —  slst  and  —  2E  =  s^  +  s<,  from  which 
j,  and  st  are  found,  and  y^  =  st  +J4,  or 

*  =(-  E 

while  the  other  roots  are  y^  =  es,  +  eV4  ,  yz  =  e"s1  -f-  e*st  , 

y^=  e3^  -f-  eV4  ,  and  y^  —  e's1  +  est  .  If  B"  +  E*  be  negative, 
this  quintic  has  five  real  roots;  if  positive,  there  are  one  real 
and  four  imaginary  roots. 

When  any  relation,  other  than  those  expressed  by  the  four 
element  equations,  exists  between  slts9,  st,  s4,  the  quintic  is 
solvable  algebraically.  As  an  infinite  number  of  such  relations 
may  be  stated,  it  follows  that  there  are  an  infinite  number  of 
solvable  quintics.  In  each  case  of  this  kind,  however,  the  co- 

efficients of  the  quintic  are  also  related  to  each  other  by  a 
certain  equation  of  condition. 

The  complete  solution  of  the  quintic  in  terms  of  one  of  the 

roots  of  its  resolvent  sextic  was  made  by  McClintock  in  1884.* 

By  this  method  s^,  s^,  sa6,  and  ̂ 45  are  expressed  as  the  roots  of 
a  quartic  in  terms  of  a  quantity  /  which  is  the  root  of  a  sextic 

whose  coefficients  are  rational  functions  of  those  of  the  given 
quintic.  Although  this  has  great  theoretic  interest,  it  is,  of 
course,  of  little  practical  value  for  the  determination  of  numer- 

ical values  of  the  roots. 

By  means  of  elliptic  functions  the  complete  quintic  can, 
however,  be  solved,  as  was  first  shown  by  Hermite  in  1858. 

For  this  purpose  the  quintic  is  reduced  by  Jerrard's  transfor- 
mation to  the  form  x*  +  5^+  ̂ e  =  o,  and  to  this  form  can 

also  be  reduced  the  elliptic  modular  equation  of  the  sixth 

degree.  Other  solutions  by  elliptic  functions  were  made  by 

*  American  Journal  of  Mathematics,  1886,  Vol.  VIII,  pp.  49-83. 
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Kronecker  in  1861  and  by  Klein  in  1884.*  These  methods, 
though  feasible  by  the  help  of  tables,  have  not  yet  been  sys- 

tematized so  as  to  be  of  practical  advantage  in  the  numerical 

computation  of  roots. 

Prob.  15.  If  the  relation  stst  —  s^  exists  between  the  elements 

show  that  j,6+  s,f  -f  s3&  +  s^  —  —  2E. 

Prob.  16.  Compute  the  roots  of  y6  -\-  icy*  -f-  2°y  ~f~  6  =  o,  and 
also  those  of  y*  —  icy*  -f-  2oy  -f-  6  =  o. 

ART.  12.    TRIGONOMETRIC  SOLUTIONS. 

When  a  cubic  equation  has  three  real  roots  the  most  con- 
venient practical  method  of  solution  is  by  the  use  of  a  table  of 

sines  and  cosines.  If  the  cubic  be  stated  in  the  form  (i)  of 
Art.  9,  let  the  second  term  be  removed,  giving 

/  +  &y  +  2C=0. 

Now  suppose  y=2r  sin  0,  then  this  equation  becomes 

B  C 
8  sin8  0+6-,  sin  0+2-i  =  o, 

and  by  comparison  with  the  known  trigonometric  formula 

8  sin3  0  —  6  sin  0-f-  2  sin  3$  =  o, 
there  are  found  for  r  and  sin  3$  the  values 

r  =  V^-~B,  sin  30  =  C/  V'=^r9 
in  which  B  is  always  negative  for  the  case  of  three  real  roots 

(Art.  9).  Now  sin  3$  being  computed,  3$  is  found  from  a  table 
of  sines,  and  then  0  is  known.  Thus, 

yv  =  2r  sin  0,  y^  =  2r  sin  (.120°  +  0),  yt  =  2r  sin  (240°  +  #)» 
are  the  real  roots  of  the  cubic 

*  For  an  outline  of  these  transcendental  methods,  sec  Hagen's  Synopsis  der 
hoheren  Mathematik,  Vol.  I,  pp.  339-344. 

f  When  Bz  is  negative  and  numerically  less  than  C"2,  as  also  when  £3  is 
positive,  this  solution  fails,  as  then  one  root  is  real  and  two  are  imaginary.  In 

this  case,  however,  a  similar  method  of  solution  by  means  of  hyperbolic  sines 

is  possible.  See  Grunert's  Archiv  fur  Mathematik  und  Physik,  Vol.  xxxviii, 

pp.  48-76. 
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For  example,  the  depth  of  flotation  of  a  sphere  whose  diam- 
eter is  2  feet  and  specific  gravity  0.65,  is  given  by  the  cubic 

equation  x*  —  $x*  -{-2.6  =  0  (Art.  6).  Placing  x  =  y  +  I  this 
reduces  to^s—  3jj/  -f-  0.6  =  o,  for  which  B  =  —  i  and  C  =-[-0.3. 
Thus  r  =  i  and  sin  3$  =  +  0.3.  Next  from  a  table  of  sines, 

3#  =  17°  27',  and  accordingly  0  =  5°  49'.  Then 

/,  =  2  sin  5°  49'  —  +  0.2027, 

y%  —  2  sin  125°  49'  =  +  1.6218, 

.?.  =  2  sin  245°  49' =  -1.8245. 
Adding  I  to  each  of  these,  the  values  of  x  are 

xl  =  +  1.203  feet,     #,  =  +  2.622  feet,     #,  =—0.825  feet ; 

and  evidently,  from  the  physical  aspect  of  the  question,  the 
first  of  these  is  the  required  depth.  It  may  be  noted  that  the 

number  0.3  is  also  the  sine  of  162°  u',  but  by  using  this  the 
three  roots  have  the  same  values  in  a  different  order. 

When  the  quartic  equation  has  four  real  roots  its  cubic  re- 
solvent has  also  three  real  roots.  In  this  case  the  formulas  of 

Art.  10  will  furnish  the  solution  if  the  three  values  of  /  be  ob- 

tained from  (3)  by  the  help  of  a  table  of  sines.  The  quartic 
being  given,  g,  h,  and  k  are  found  as  before,  and  the  value  of 
k  will  always  be  negative  for  four  real  roots.  Then 

r  =  V—  k,  sin  30  =  —  h/r\ 

and  30  is  taken  from  a  table  ;  thus  B  is  known,  and  the  three 
values  of  /  are 

4  =  r  sin  0,  ̂   =  r  sin(i2o°  +  0),  /,  =  r  sin  (240°  +  8). 
Next  the  three  values  of  u,  of  v,  and  of  w  are  computed,  and 

those  selected  which  give  #,  w,  and  v  —  Vw  all  positive  quanti- 
ties. Then  (5)  gives  the  required  roots  of  the  quartic. 

As  an  example,  take  the  case  of  the  inscribed  rectangle  in 

Art.  10,  and  let/  =  4  feet,  q  —  3  feet,  m  =  4/13  feet;  then  the 
quartic  equation  is 

x*  —  5 1*1 +  48  V\$  x  —  156  =  0. 
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Here  a  =  o,  3  =  —  8 J,  c  —  -\-  12  Vi$,  and  d=  —  156.  Next 

g-  =-\-  8£,  //—  —  £f-&,  and  k  =—  $£-'  The  trigonometric  work 
now  begins;  the  value  of  r  is  found  to  be  +  4J,  and  that  of 

sin  3#  to  be  -f-  0.7476;  hence  from  the  table  3$  =  48°  23',  and 
0=  i6°o7/40//.  The  three  values  of  /  are  then  computed 
by  logarithmic  tables,  and  found  to  be, 

/,  =  +  !. 250,          /,  =  +  3.1187,          /4=-  4.3687. 
Next  the  values  of  u,  v,  and  w  are  obtained,  and  it  is  seen  that 

only  those  corresponding  to  /,  will  render  all  quantities  under 
the  radicals  positive  ;  these  quantities  are  u  =  9.75,  v  =  15.75,. 
and  w  =  192.0.  Then  the  four  roots  of  the  quartic  are 

^=-8.564,  *•  =+  2-3'9>  **=+  1.746,  x,  =+4.499  feet, 

of  which  only  the  second  and  third  belong  to  inscribed  rec- 
tangles, while  the  first  and  fourth  belong  to  rectangles  whose 

corners  are  on  the  sides  of  the  given  rectangle  produced. 

Trigonometric  solutions  of  the  quintic  equation  are  not 

possible  except  for  the  binomial  x*  ±  a,  and  the  quintic  of 
De  Moivre.  The  general  trigonometric  expression  for  the  root 

kof  a  quintic  lacking  its  second  term  isy=2rl  cos#1+2r9  cos  0a, 
and  to  render  a  solution  possible,  rt  and  ra ,  as  well  as  cos  #, 
and  cos#a,  must  be  found;  but  these  in  general  are  roots  of 

equations  of  the  sixth  or  twelfth  degree :  in  fact  r*  is  the  same 
as  the  function  stst  of  Art.  n,  and  r,2  is  the  same  as  s^s3. 
Here  cos#,  and  cos#a  may  be  either  circular  or  hyperbolic 
cosines,  depending  upon  the  signs  and  values  of  the  coefficients 
of  the  quintic. 

Trigonometric  solutions  are  possible  for  any  binomial  equa- 
tion, and  also  for  any  equation  which  expresses  the  division  of 

an  angle  into  equal  parts.  Thus  the  roots  of  x*  +  I  =  o  are 
cos^  30°  ±  i  sin  m  30°,  in  which  m  has  the  values  I,  2,  and  3. 
The  roots  of  x*  —  $x*+$x  —  2  cos  5  6  =  o  are  2  cos  (m  72°+&) 
where  m  has  the  values  o,  1,2,  3,  and  4. 

Prob.  17.  Compute  by  a  trigonometric  solution  the  four  roots  of 

the  quartic  x*  +  4#8  —  24^  —  76^  —  29  =  o.  (Ans.  —6.734,  — 1.550^ 
-f-  0.262,  +  4.022). 
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Prob.  1  8.  Give  a  trigonometric  solution  of  the  quintic  equation 

x6  —  5&#3  -f  S#*x  —  2e  =  o  for  the  case  of  five  real  roots.  Compute 
the  roots  when  b'=i  and  e=  0.752798.  (Ans.  —1.7940,  —  1.3952^ 
0.2864,  0.9317,  1.9710.) 

ART.  13.    REAL  ROOTS  BY  SERIES. 

The  value  of  x  in  any  algebraic  equation  may  be  expressed 

as  an  infinite  series.  Let  the  equation  be  of  any  degree,  and 

by  dividing  by  the  coefficient  of  the  term  containing  the  first 

power  of  x  let  it  be  placed  in  the  form 

a  =  x  +  bx*  +  cx*+  dx*  +  ex*  +/*>  +  .  .  . 

Now  let  it  be  assumed  that  x  can  be  expressed  by  the  series 

x  =  a  +  ma*  -\-  no*  -\-pa*  -\-  qa*  +  . 

By  inserting  this  value  of  x  in  the  equation  and  equating  the 

coefficients  of  like  powers  of  a,  the  values  of  mt  n,  etc.,  are 
found,  and  then 

x=a  -  &a*  +  2t>*-{a*-l>* 

is  an  expression  of  one  of  the  roots  of  the  equation.  In  order 

that  this  series  may  converge  rapidly  it  is  necessary  that  a 

should  be  a  small  fraction.* 

To  apply  this  to  a  cubic  equation  the  coefficients  d,  e,f,  etc., 

are  made  equal  to  o,  For  example,  let  x*  —  $x  -\-  0.6  =  o  ; 

this  reduced  to  the  given  form  is  0.2  =  x  —  \x*,  hence  a  =  o.2, 
£  =  o,  c  =  —  \,  and  then 

x  =  0.2  +  i  .  o.23  +  J  .  o.25  +  etc.  =  +  0.20277, 
which  is  the  value  of  one  of  the  roots  correct  to  the  fourth 

decimal  place.  This  equation  has  three  real  roots,  but  the 

series  gives  only  one  of  them  ;  the  others  can,  however,  be 

found  if  their  approximate  values  are  known.  Thus,  one  root 

is  about  +1.6,  and  by  placing  x=y  -\-i.6  there  results  an 

equation  in  y  whose  root  by  the  series  is  found  to  be-}-  0.0218, 

and  hence  +  1  .62  1  8  is  another  root  of  x*  -  -  $x  -f-  0.6  =  o. 

*This  method  is  given  by  J.  B.  Molt  in  The  Analyst,  1882,  Vol.  IX,  p.  104. 
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Cardan's  expression  for  the  root  of  a  cubic  equation  can  be 
expressed  as  a  series  by  developing  each  of  the  cube  roots  by 

the  binomial  formula  and  adding  the  results.  Let  the  equa- 

tion be  y*  -f-  ̂ By  -\-  2C  =  o,  whose  root  is,  by  Art.  9, 

then  this  development  gives  the  series, 

2          2.3.4  2. 3- 4-S-o 

in  which  r  represents  the  quantity  (P?  -j-  C*)/$C\  If  r  =  o 
the  equation  has  two  equal  roots  and  the  third  root  is  2(  —  C  )*. 
If  r  is  numerically  greater  than  unity  the  series  is  divergent, 
and  the  solution  fails.  If  r  is  numerically  less  than  unity  and 
sufficiently  small  to  make  a  quick  convergence,  the  series  will 
serve  for  the  computation  of  one  real  root.  For  example,  take 

the  equation  x*  —  6x  -\-  6  =  o,  where  B=  —  2  and  C  =  3  ; 
hence  r  =  1/8 1,  and  one  root  is 

y  =  —  2.8845(1  —  0.01235  —  0.00051  —  0.00032—)  =  —  2.846, 

which  is  correct  to  the  third  decimal.  In  comparatively  few 
cases,  however,  is  this  series  of  value  for  the  solution  of  cubics, 

Many  other  series  for  the  expression  of  the  roots  of  equa- 
tions, particularly  for  trinomial  equations,  have  been  devised. 

One  of  the  oldest  is  that  given  by  Lambert  in  1758,  whereby 

the  root  of  xn  -\-  ax  —  b  =  o  is  developed  in  terms  of  the 
ascending  powers  of  b/a.  Other  solutions  were  published  by 
Euler  and  Lagrange.  These  series  usually  give  but  one  root, 
and  this  only  when  the  values  of  the  coefficients  are  such  as  to 
render  convergence  rapid. 

Prob.  19.  Consult  Euler's  Anleitung  zur  Algebra  (St.  Petersburg, 
1771),  pp.  143-150,  and  apply  his  method  of  series  to  the  solution  of 
a  quartic  equation. 

ART.  14.     COMPUTATION  OF  ALL  ROOTS. 

A  comprehensive  and  valuable  method  for  the  solution  of 

equations  by  series  was  developed  by  McClintock,  in  1894,  by 
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means  of  his  Calculus  of  Enlargement.*  By  this  method  all 
the  roots,  whether  real  or  imaginary,  may  be  computed  from  a 

single  series,  The  following  is  a  statement  of  the  method  as 
applied  to  trinomial  equations  : 

Let  xn  =  nAxn~k  +  Bn   be  the   given   trinomial   equation. 
Substitute  x  =  By  and  thus  reduce  the  equation  to  the  form 

yn  =  nayn'k  -\-\  where  a  =  A/Bk.     Then  if  Bn  is  positive,  the 
roots  are  given  by  the  series 

y  =  oo  -f  col~k  a  +  Gol~2k(l  —2k-\-  n)a*/2  I 

in  which  G?  represents  in  succession  each  of  the  roots  of  unity. 

If,  however,  Bn  is  negative,  the  given  equation  reduces  to 

yn  =  nayn~k  —  I,  and  the  same  series  gives  the  roots  if  GO  be 
taken  in  succession  as  each  of  the  roots  of  —  I. 

In  order  that  this  series  may  be  convergent  the  value  of  a* 

must  be  numerically  less  than  k~k(n  —  k)k~n  ;  thus  for  the  quar- 
tic  y*  =  Afdx  +  I,  where  n  =  4  and  k  =  3,  the  value  of  a  must 
be  less  than  27-*. 

To  apply  this  method  to  the  cubic  equation  x*  *-=.$Ax  '±,Bl  ', 
place  n  =  3  and  k  =  2,  and  put  y  =  Bx.  It  then  becomes 

y  =  $ay  ±  I  where  #  =  A/B1,  and  the  series  is 

in  which  the  values  to  be  taken  for  GO  are  the  cube  roots  of  I 

or  —  i,  as  the  case  may  be.  For  example,  let  x*  '—  2x  —  5  =  o.. 
Placing  y—  $x,  this  reduces  to  y*=o.6%4y-\-i.  Here  #=0.228, 
and  as  this  is  less  than  4-*  the  series  is  convergent.  Making 
GO  =  i,  the  first  root  is 

y  =  I  -f-  0.2280  —  0.0039  +  0.0009  =  1.2250. 

*See  Bulletin  of  American  Mathematical  Society,  1894,  Vol.  I,  p.  3;  also 

American  Journal  of  Mathematics,  1895,  Vol.  XVII,  pp.  89-110. 
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Next  making  &  =  —  i  +  J-  V—  3,  GO*  is  —  J  —  J  4/—  3, 
and  the  corresponding  root  is  found  to  be 

y  =  -  0.6125  +  0.3836  V^$. 

Again,  making  &  =  —  J  —  J  t7—  3  the  third  root  is  found  to 
be  the  conjugate  imaginary  of  the  second.  Lastly,  multiplying 
each  value  of  y  by  5*, 

x  =  2.095,  x  =  -  1.047  ±  I-13^  ̂ —  l» 

which  are  very  nearly  the  roots  of  x*  —  2x  —  5  =  o. 

In  a  similar  manner  the  cubic  x*  -\-2x-\-  $  =  o  reduces  to 
y*  =  —  0.684}?  —  i,  for  which  the  series  is  convergent.     Here 
the  three  values  of  GO  are,  in  succession,  —  I>  4  +i  V—  3, 

—  J  +  J  V—  3,    and    the   three    roots   are  y  =  —  0.777   an^ 

7  =  0.388  ±  1.137*'. 
When  all  the  roots  are  real,  the  method  as  above  stated 

fails  because  the  series  is  divergent.  The  given  equation  can, 

however,  be  transformed  so  as  to  obtain  n  —  k  roots  by  one 
application  of  the  general  series  and  k  roots  by  another.  As 

an  example,  let  x9  —  243*  +  330  =  o.  For  the  first  applica- 
tion this  is  to  be  written  in  the  form 

--*       330 
~ 

for  which  n  =  I  and  k  =  —  2.     To  make  the  last  term  unity 

place  x  =      -J%  and  the  equation  becomes 

whence  a  =  33O*/3.243*.  These  values  of  n,  k,  and  a  are  now 
inserted  in  the  above  general  value  of  yt  and  GO  made  unity; 

thus  7=0.9983,  whence  #,=1.368  is  one  of  the  roots.  For 

*he  second  application  the  equation  is  to  be  written 

+  243, 
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for  which  n  =  2  and  k  =  3.     Placing  x  —  243*?,  this  becomes 

whence  a  =  —  1  10/243*,  and  the  series  is  convergent.  These 
values  of  n,  k,  and  a  are  now  inserted  in  the  formula  for  y, 

and  GO  is  made  -f-  I  and  —  I  in  succession,  thus  giving  two 

values  for  j/,  from  which  x^  =  14.86  and  x^  =  —  16.22  are  the 
other  roots  of  the  given  cubic. 

McClintock  has  also  given  a  similar  and  more  general 

method  applicable  to  other  algebraic  equations  than  trinomials. 

The  equation  is  reduced  to  the  form  yn  =  na  .  <j>y  ±  I,  where 
na  .  $y  denotes  all  the  terms  except  the  first  and  the  last. 

Then  the  values  of  y  are  expressed  by  the  series 

in  which  the  values  of  <o  are  to  be  taken  as  before.  The 

method  is  one  of  great  importance  in  the  theory  of  equations, 

as  it  enables  not  only  the  number  of  real  and  imaginary  roots 

to  be  determined,  but  also  gives  their  values  when  the  conver- 
gence of  the  series  is  secured. 

Prob.  20.  Compute  by  the  above  method  all  the  roots  of  the 

quartic  x*  -J-  x  -|-  10  =  o. 

ART.  15.    ROOTS  OF  UNITY. 

The  roots  of  +i  and  —  i  are  required  to  be  known  in  the 
numerical  solution  of  algebraic  equations  by  the  method  of  the 

last  article.  From  the  theory  of  binomial  equations  given  in  all 

text-books  on  algebra,  the  n  roots  of  +i  are 

(  +  i)w=cos  (w/»)27r+*sin  (m/ri)2n,  m  =  i,  2,  3,  .  .  .n,     (i) 

while  those  of  —  i  are  expressed  by 
m 

(-i)"»  =cos  (m/ri)n+i  sin  (m/ri)n,  m  =  i,  2,  3,  ...  n,       (2) 
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in  which  i  represents  the  square  root  of  —  i.     From  these  general 
formulas  it  is  seen  that  the  two  imaginary  cube  roots  of  +  1  are 

-0.5  +0.8660254*', 
=  —0.5—0.8660254*, 

and  that  the  two  imaginary  cube  roots  of  —  i  are 

£/  =  +J  +  i*\/3=  +0.5+0.8660254*, 

£2'  =  +i~i*V3=  +0.5-0.8660254*. 

For  the  first  case  ^+£3  +  1=0  and   el£2  =  ij  as  also  e1  =  £2 

e22  =  e1,  and  similar  relations  apply  to  the  other  case. 

The  imaginary  fifth  roots  of  positive  unity  are  given  in  Art,  8' 
expressed  in  radicals;  reducing  these  to  decimals,  or  deriving 

them  from  the  above  formula  (i)  with  the  help  of  a  trigonometric 
table,  there  result 

e  =+0.3090170+0.9510565*,     £2=  —0.8090170+0.5877853*, 

£4=  +0.3090170-0.9510565*,     £3=  -0.8090170-0.5877853*, 

while  the  imaginary  fifth  roots  of  negative  unity  are  obtained 

from  these  by  changing  the  signs.  In  general,  if  a>  is  an  imaginary 

wth  root  of  positive  unity,  —  a>  is  an  imaginary  nth  root  of  nega- 
tive unity. 

The  imaginary  sixth  roots  of  positive  unity  may  be  expressed 

in  terms  of  the  cube  roots.  Let  £  be  one  of  the  imaginary  cube 

roots  of  +i,  then  the  imaginary  sixth  roots  of  +i  are  +£,  +£2. 

—  £,  —  £2;  these  are  also  the  imaginary  sixth  roots  of  —  i. 

From  (i)  the  imaginary  seventh  roots  of  +i  are  found  to  be 

£  =+0.6234898+0.7818316*,     £6=  +0.6234898-0.7818316*, 

£2=  —0.2225209+0.9749234*,     £5=  —0.2225209—0.9749234*,  ' 
£3=  -0.9009688+0.4338837*,       £4=  —0.9009688-0.4338837*, 

and  if  the  signs  cf  these  be  reversed  there  result  the  imaginary 

seventh  roots  of  —  i. 

The  imaginary  eighth  roots  of  +i  are  +»',  —  *,  +iv/2(i±*), 
and  -JV2(i±*).  The  imaginary  ninth  roots  of  +i  are  the  two 
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imaginary  cube  roots  of  +i,  cos  %x±i  sin  -§71,  and  cos  fa±i  sin  |TT. 
The  imaginary  tenth  roots  of  +i  are  the  five  imaginary  roots 

of  +i  and  the  five  imaginary  roots  of  —  i.  For  any  value  of 
n  the  roots  of  +i  may  be  graphically  represented  in  a  circle 

of  unit  radius  by  taking  one  radius  as  +i  and  drawing  other 

radii  to  divide  the  circle  into  n  equal  parts;  if  unit  distances 

normal  to  +i  and  —  i  be  called  +i  and  —i,  the  n  radii  repre- 
sent all  the  roots  of  + 1 .  When  this  figure  is  viewed  in  a  mirror, 

the  image  represents  the  n  roots  of  —  i.  Or,  in  other  words, 

the  (m/n)ih  roots  of  +i  are  unit  vectors  which  make  the  angles 

(m/ri)2x  with  the  unit  vector  +i,  while  the  (m/rif*  roots  of  —  i 
are  unit  vectors  which  make  the  angles  (m/ri)2n  with  the  unit 

vector  —i. 
The  n  roots  of  any  unit  vector  cos  6+i  sin  0  are  readily  found 

from  De  Moivre's  theorem  by  the  help  of  trigonometric  tables. 
Accordingly  the  cube  roots  of  this  vector  are  cos  %6+i  sin  J0, 

cosj(#  +  27r)+zsinj(0  +  27r)  and  cos"J(0-r-47r)+isin  J(0+47r);  the 
vectors  representing  these  three  roots  divide  the  circle  into  three 

parts.  The  trigonometric  solution  of  the  cubic  equation  (Art.  12) 

is  one  application  of  De  Moivre's  theorem. 

Prob.  21.  Compute  to  six  decimal  places  two  or  more  of  the  eleventh 
imaginary  roots  of  unity. 

Prob.  22.  Compute  to  five  decimal  places  the  five  roots  of  the 

equation  y?—  0.8  —  0.62=0. 
Prob.. 23.  Compute  to  five  decimal  places  the  six  roots  of  the 

equation  #6—  80+602'  =o. 

ART.  16.    SOLUTIONS  BY  MACLAURIN'S  FORMULA. 

In  1903  Lambert  published  a  method  for  the  expression  by 

Maclaurin's  formula  of  the  roots  of  equations  in  infinite  series.* 
It  applies  to  both  algebraic  and  transcendental  equations,  and 

for  the  former  it  gives  all  the  roots  whether  they  be  real  or  imag- 
inary. The  method  is  based  on  the  device  of  introducing  a 

*  Proceedings  American  Philosophical  Society,  Vol.  42. 
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factor  x  into  all  the  terms  but  two  of  the  equation  /fy)  =o,  whereby 
y  becomes  an  implicit  function  of  x.  The  successive  derivatives 

of  y  with  respect  to  x  are  then  obtained,  and  their  values,  as  also 

those  of  y,  are  evaluated  for  x=o.  By  Maclaurin's  formula, 
the  expansions  of  y  in  powers  of  x  become  known,  and  if  x  be 

made  unity  in  these  expansions,  the  roots  of  f(y)=o  are  found, 
provided  the  resulting  series  are  convergent. 

To  illustrate  this  method  by  a  numerical  example,  take  the 

quartic  equation 

y4-3y2+7$y-io  000=0,  (i) 

and  introduce  an  x  into  the  second  and  third  terms,  thus, 

—  10  000=0.  (2) 

By  Maclaurin's  formula  y  may  be  expressed  in  terms  of  x, 
and  then  when  x  is  made  unity,  the  four  series  thus  obtained 

furnish  the  four  roots  of  (i).  Maclaurin's  formula  is 

where  y0,  (dy/dx\,  (dzy/dx2)0,  etc.,  denote  the  values  which  y 
and  the  successive  derivatives  take  when  x  is  made  o.  Differen- 

tiating equation  (2)  twice  in  succession,  and  then  placing  x=o, 
there  are  found 

+  10, 

(dy/dx\  =-0.1125,  -0.2625,  +  0.1875-0.0750*,  +0.1875+0.0750*, 

(d*y/dx2)0=  —  0.0030,  +0.0030,  —  0.0000+0.00392,  —o.oooo—  0.0039^ 

in  which  i  represents  the  square  root  of  negative  unity.  Sub- 

stituting each  set  of  corresponding  values  in  Maclaurin's  formula 
and  then  placing  x  =  i,  there  result 

y,=  +9.886,  3/3=0.1875  +9.927*', 
y2=  -10.261,  ^=0.1875  -9.927*, 

which  are  the  roots  of  (i),  all  correct  to  the  last  decimal. 
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This  method  may  be  readily  applied  to  the  trinomial  equation 

yn—nayn~k  —  b=o.  When  x  is  inserted  in  the  second  term,  the 
series  obtained  is 

JA  l-* 
n)        (i- 2k+n)a*/2\ 

($" 
and  each  of  the  roots  is  hence  expressed  in  an  infinite  series, 

since  bn  has  n  values.  This  series  is  convergent  when  an  is 

numerically  less  than  k~k(n  —  k)k~nbk1  and  for  this  case  the  roots 

can  be  computed.  Now  the  condition  an  =  k~k(n  —  k)k~nbk  is 
that  of  equal  roots  in  the  trinomial  equation;  hence  for  the  cubic 

equation  the  above  series  is  applicable  when  one  root  is  real  and 

the  others  imaginary,  while  for  the  quartic  equation  it  is  applicable 

when  two  roots  are  real  and  two  imaginary.  For  the  irreducible 

case  in  cubics  and  quartics  the  above  series  does  not  converge 
and  the  roots  cannot  be  computed  from  it;  this  case  is  treated 

on  the  next  page  by  inserting  x  in  other  terms.  This  series  is  the 

same  as  that  derived  for  trinomial  equations  by  McClintock's 
method  of  enlargement  (Art.  14). 

Asa  special  case  take  the  quintic  equation  y5  —  $ay  —  i=o,  in 
which  the  value  of  n  is  5,  that  of  k  is  4,  and  those  of  b*  are  the 
five  imaginary  roots  of  unity  (Art.  15).  When  a  is  less  than 

4~4,  or  a  less  than  about  0.33,  the  above  series  applies,  and  if  e 
designates  one  of  the  imaginary  fifth  roots  of  unity  (Art.  15), 
the  five  roots  of  the  equation  are 

yl  =  i  +  a  —  a2  +  a3  —  -2-J-a5  + 
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For  example,  let  a=o.i,  or  y5  —  \y  — 1=0;    then  the  value  of  yl 
is  found  to  be  +1.09097,  while  the  other  roots  are 

y2=  +0.23649  +  1.014701,    }'3=  -0.781975+0.48372*, 

y^=  +0.23649-1.01470?',     ^=-0.781975-0.48372*, 
which  are  correct  in  the  fifth  decimal  place. 

For  the  case  where  an  is  greater  than  k~k(n  —  k)k~nbn  in  the 

trinomial  equation  yn  —  nayn~k  —  b  =  o,  the  roots  may  be  obtained 
by  inserting  x  in  other  terms  than  the  second.  To  illustrate  the 

method  by  the  quintic  y5  —  $ay  — 1=0,  let  x  be  placed  in  the 

last  term,  giving  y5  —  $ay  —  #=o;  obtaining  the  derivatives  and 
making  n=o,  there  is  found  a  series  giving  four  of  the  roots, 

since  (50)*  in  this  series  has  four  values.  Again,  placing  x  in 

the  first  term  the  equation  is  xys  —  $ay  —  i=om,  and  applying  the 
method,  there  is  found  a  series  which  gives  the  other  root:  It 

may  also  be  shown  that  these  series  are  convergent  when  a5  is 

numerically  greater  than  4~4.  When  #5  =  4~4  the  quintic  has  two 
equal  roots  and  the  series  do  not  apply,  but  in  this  case  the  equal 

roots  are  readily  found  (Art.  5)  and  after  their  removal  the  other 

three  roots  are  found  by  the  solution  of  a  cubic  equation. 

When  this  method  is  applied  to  an  algebraic  equation  of  the 

Mth  (-[egree  wnich  contains  more  terms  than  three,  there  may  be 
obtained  several  series  by  inserting  x  in  different  terms,  and  the 

series  desired  are  those  which  are  convergent.  A  general  rule 

for  selecting  the  terms  which  are  to  contain  x  is  given  by  Lam- 
bert, and  he  applies  the  method  to  the  solution  of  the  quintic 

equation  y5  —  ioyz  +  6y  + 1  =o.  First,  writing  y5  —  ioy*  +  6xy  +x  =  o, 
the  values  of  y0  are  +3.167  and  —3.167,  those  of  (dy/dx)0  are 

—  i. oo  and  +0.090,  and  those  of  (d*y/dx*)  are  —  0.016  and 

+0.016;  inserting  these  In  Maclaurin's  formula  there  are  found 

^=+3.05  and  ;y2=— 3-o6.  Secondly,  writing  xys  —  io^3  +  6^  + 
x=o,  a  series  results  which  gives  ̂ =+0.87  and  y4= —o.6g. 

Lastly,  writing  ocy6—ioxy*+6y+i,  there  is  found  y$=  —  0.17. 

This  method  may  likewise  be  used  for  computing  one  of 

the  roots  of  a  transcendental  equation,  provided  the  resulting 
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series  is  convergent.  For  example,  take  2^+log  y  —  iox>oo=o. 

Writing  2y+x\og  y  —  io  000=0,  there  are  found  the  values 

y0=  +  5  ooo,  (dy/dx\  =  -  J  log  y0,  and  (dzy/dxz\=  +0.0001  log  y0. 
When  the  logarithm  is  in  the  common  system  the  root  is  7=4998.1  5  ; 

when  it  is  in  the  Naperian  system  the  root  is  7=4995.74. 

Prob.  24.  Compute  the  roots  of  x3—  2X—  2  =  0  by  the  above  method 
and  also  by  that  of  Art.  9. 

Prob.  25.  The  equation  y4—  n  727^+40385  =  0  occurs  in  a  paper 
on  the  precession  of  a  viscous  spheroid  by  G.  H.  Darwin  in  Philosoph- 

ical Transactions  of  the  Royal  Society,  1879,  -Par^  n'>  P-  5°8-  Com- 
pute the  four  roots  to  five  significant  figures. 

ART.  17.    SYMMETRIC  FUNCTIONS  OF  ROOTS. 

The  coefficients  of  an  algebraic  equation  are  the  simplest 

symmetric  functions  of  its  roots.  Let  the  equation  be 

xn-axn-l+bxn-2-cxn-3+dxn~*-.  .  .=o,      .     .     (i) 
and  let  xv  x2,  XB,  .  .  .  be  its  n  roots.    Then 

C  =  XJC2XZ  +  X2X3X4  +  .  .  .  ,       d 

and  the  last  term  is  ±xlx2x5  .  .  .  xn.    All.symmmetric  functions  of 

the  roots  may  be  expressed  in  terms  of  the  coefficients.    • 

The  sums  of  the  powers  of  the  roots  are  important  symmetric 

functions.  Let  Sm  represent  xlm+x2m+x3m+.  .  .  ;  then  when 
m  is  equal  to  or  less  than  n,  the  following  are  the  Newtonian 

expressions  for  the  sums  of  the  powers  of  the  roots  : 

S  i  =  a*  —  ̂  

Let  ±1  represent  the  coefficient  of  the  (w  +  i)th  term  in  the 
general  equation  (i),  this  being  +  when  m  is  even  and  --  when 
m  is  odd.  Then  the  following  general  formulas  furnish  values 
of  Sm  for  all  cases: 

-3+.  .  .  ±ml  =o, 
—  .  .  .   ±lSm=O, 
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For  example,  take  x3  —  200-2=0,  for  which  a=o,  b=  —2, 
c=+2\  then  from  the  first  formula  ̂ =0,  S2  =  4,  53  =  6,  and 
from  the  second  formula  S4  =  8,  55  =  2O,  S6  =  28,  etc. 

Other  important  symmetric  functions  of  the  roots  are  the 

sums  of  the  squares  of  the  terms  in  the  above  expressions  for 
the  coefficients  b,  c,  d,  etc.  Let  these  be  called  B,  C,  D,  etc.,  or 

B  =  x*x*  +  x22x32  +  .  .  .  ,     C=  x,2x22x32  +  X22x32x42  +  .  .  .  , 

and  let  it  be  required  to  find  the  values  of  B,  C,  D,  etc.,  in  terms 

of  a,  b,  c,  etc.  For  tfris  purpose  let  (i)  be  written 

xn+bxn~2+dxn~4+.  .  .=a#n-1+c#n-3+e#n-5+.  .  .  , 

and  let  both  members  be  squared  and  the  resulting  equation  be 
reduced  to  the  form 

.     .     (2) 

in  which  y  represents  x2.  This  equation  has  n  roots  x^2,  x22, 

x32,  .  .  .  ;  hence  the  value  of  A  is  x^+xf+x^-t-.  .  .  ,  and  the 
values  of  B  and  C  are  the  symmetric  functions  above  written. 

The  algebraic  work  shows  that 

A=a2-2b,    B  =  b2-2ac+ad,    C  =  c2  — 

and  thus  in  general  any  coefficient  in  (2)  is  obtained  from  those 

in  (i)  by  the  following  rule:  the  coefficient  of  ym  in  (2)  is  found 

by  taking  the  square  of  the  coefficient  of  xm  in  (i)  together  with 
twice  the  products  of  the  coefficients  of  the  terms  equally  re- 

moved from  it  to  right  and  left,  these  products  being  alternately 

negative  and  positive.  0 

An  equation  whose  roots  are  the  squares  of  those  of  (2)  may 

be  obtained  by  a  similar  process,  the  equation  being 

zn-A1zn~l^Blzn-2-Clzn-3+Dzn-4-.  .  .=o,  .     .     (3) 

in  which  Alt  Blt  Cv  .  .  .  are  computed  from  A,  B,  C,  in  the  same 

manner  that  A,  B,  C,  ...  were  computed  from  (i).  For  example, 

take  the  equation  ̂ 7+3^4  +6=0;  the  equation  whose  roots  are 
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squares  of  those  of  the  given  equation  is  y1  +gy4-\-^6y2  +36=0, 
and  that  whose  roots  are  the  fourth  powers  of  those  of  the  given 

equation  is  27+8iz4-648z3  + 194422 -25922  +  1296=0. 

Prob.  26.  Find  an  equation  the  roots  of  which  are  the  fourth  powers 

of  the  roots  of  xs+x+io=o. 

Prob.  27.  For  the  cubic  equation  x3—ax2+bx—c=o  show  that  the 

value  of  x*xf+xfxf+xfoc*  is  b3—^abc^-^c2. 
Prob.  28.  For  the  quartic  equation  x4— axs+bx2—  cx+  d=o  show 

that  the  value  of  55  is  a5—  $a?b-$ab2+$a2c—  $ad—  $bc. 
I 

ART.  18.    LOGARITHMIC  SOLUTIONS. 

A  logarithmic  method  for  the  solution  of  algebraic  equations 

with  numerical  coefficients  was  published  by  Graffe  in  1837  and 

exemplified  by  Encke  in  1841.*  The  method  involves  the  forma- 
tion of  an  equation  whose  roots  are  high  powers  of  the  roots 

of  the  given  equation;  to  do  this  an  equation  is  first  derived, 

by  help  of  the  principles  in  Art.  17,  whose  roots  are  the  squares 
of  those  of  the  given  equation,  then  one  whose  roots  are  the  squares 

of  those  of  the  second  equations  or  the  fourth  powers  of  those 

of  the  given  equation,  and  so  on.  With  the  use  of  addition  and 

subtraction  logarithms,  the  greater  part  of  the  numerical  work 

may  be  made  logarithmic.  The  method  is  of  especial  value 

when  all  the  roots  of  the  given  equation  are  real  and  unequal. 

To  illustrate  the  theory  of  the  method,  let  p,  q,  r,  s,  etc.,  denote 

the  roots,  each  of  which  is  supposed  to  be  a  real  negative  number; 

let  [p]  denote  p  +  q+r  +  .  .  .  ,  [pq]  denote  pq+qr+rs+.  .  .  ,  and 
so  on.  Then  the  general  algebraic  equation  may  be  written 

xn-[p]xn-l+[pq]xn-2-[pqr]xn-3+[pqrs]xn~*-. . .  ,          (i) 

and  the  equation  whose  roots  are  p2,  q2,  r2, .  .  .  is,  by  Art.  1 7, 

yn-[p2]yn-l+[p2q2]yn-2-[p2q2r2]yn-3+[p2q2r2s2]yn-*-.  .  .  , 

in  which  [p2]  denotes  p2  +q2+r2 +. . . ,  [p2q2]  denotes  p2q2  +  q2r2+. . . , 

*  Crelle's  Journal  fur  Mathematik,  1841,  Vol.  XXII,  pp.  193-248. 
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and  so  on.  From  this  equation  another  may  be  derived  having 

the  roots  p4,  q4,  r4,  .  .  .  ,  and  then  another  may  be  found  having 
the  roots  ps,  (f,  r8,  .  .  .  .  This  process  can  be  continued  until 
an  equation  is  derived  whose  roots  are  pm,  qm,  rm,  .  .  .  ,  where  m 
is  a  power  of  2  sufficiently  high  for  the  subsequent  operations. 

This  equation  is 

zn—[pm]zn~l+[pmqm]zn~2—[pmqmrm]zn~3-}-.  .  .  . 

Now  let  p  be  the  root  of  (i)  which  is  largest  in  numerical 

value,  q  the  next,  r  the  next,  and  so  on.  Then,  as  m  increases 

the  value  of  [pm]  approaches  pm,  that  of  [pmqm]  approaches  pmqm, 
that  of  [pmqmrm]  approaches  pmqmrm,  and  so  on.  Hence  when 

m  is  large  [pm]  is  an  approximation  to  the  value  of  pm,  and 

[pmqm]/[pm]  is  an  approximation  to  the  value  of  qm.  Accordingly 
by  making  m  sufficiently  large,  the  values  of  pm,  qm,  rm,  .  .  .  , 
and  hence  those  of  p,  q,  r,  .  .  .  ,  may  be  obtained  to  any  required 

degree  of  numerical  precision.  When  two  roots  are  nearly  equal 

numerically,  it  will  be  necessary  to  make  m  very  large;  when 

equal  roots  exist  they  should  be  removed  by  the  usual  method. 

To  illustrate  the  application  of  the  method,  let  it  be  required 
to  find  the  roots  of  the  quintic  equation 

—  Six3  —  34#2  +464^  —  181  =o. 

By  comparison  with  (i)  of  Art.  17  it  is  seen  that  a=  —  13,  &=  —  81, 

c=+34,  d=  +464,  e=+i8i.  The  equation  whose  roots  are 
the  squares  of  those  of  the  given  quintic  is  now  found  from  (2) 

of  Art.  17,  by  computing  A=  a2  —  2^  =  331,  B  =  b2  —  2^+2^  =  8373, 

C  =  c2-2bd  +  2ae  =  71618,  D  =  d2-  2^  =  202988,  £  =  ̂ =32761, 
and  then 

T5  ~33I74  +83737*  —  7i6i8>>2  +202988?  —  32761=0. 

Taking  the  logarithms  of  the  coefficients,  this  equation  may  be 
written 

75  ~  (2.5I983)/  +  (3.92288)^  -  (4.85502)7'  +  (5.30747)7 
-(4-5I536)=o, 
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in  which  the  coefficients  are  expressed  by  their  logarithms  in- 
closed in  parentheses.  The  logarithms  of  the  coefficients  for  the 

equation  whose  roots  are  the  fourth  powers  of  the  given  quintic 

are  now  found  by  the  use  of  addition  and  subtraction  logarithmic 

tables,  and  this  equation  is 

25  -  (4.96y62)z4  +  (7.36364)2*  -  (9.24342)22  +  (10.56243)2 
-  (9.03072)  =o. 

Next  the  equation  whose  roots  are  the  eighth  powers  of  the 

roots  of  the  given  quintic  is  derived  from  the  preceding  one  in  a 
similar  manner  and  is  found  to  be 

w5-(9-9329°X  +  (I4.3I934X-(i8.i4025X  +  (21.  12363)-^ 
—  (18.06144)  =o, 

and  then  the  equation  whose  roots  are  the  sixteenth  powers  of  the 

roots  of  the  given  quintic  is 

vs  -  (19.86580)^  +  (28.29778)^  -  (36.I3I3I)?;2  +  (42.24726)7; 
-  (36.12288)  =o. 

It  is  now  observed  that  the  coefficients  of  the  second,  fourth, 

and  fifth  terms  in  the  equation  for  v  are  the  squares  of  those 
of  the  similar  terms  in  the  equation  for  w.  Hence  two  of  the 
roots  are  now  determined  as  follows: 

log#8  =  9-93290)  log  #  =  1.24161,     #  =  17.443; 
log  /8  =  i8.o6i44  —  21.12363,     log  £  =  1.61723,      1=0.4142. 

These  are  the  numerical  values  of  the  largest  and  smallest  roots 

of  the  given  quintic,  but  the  method  does  not  determine  whether 

they  are  positive  or  negative;  by  trial  in  the  given  quintic  it  will 

be  found  that  —17.443  and  +0.4142  are  roots.  To  obtain  the 
others,  the  process  must  be  continued  until  two  successive  equa- 

tions are  found  for  which  all  the  coefficients  in  the  second  are 

the  squares  of  those  in  the  first.  Since  in  this  case  two  roots  lie 

near  together,  the  process  does  not  terminate,  with  five-place 

logarithms,  until  the  51  2th  powers  are  reached.  The  three 
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remaining  roots  are  thus  found  to  be  £=+3.  230,  7=+ 
and  s=  —1.4142. 

When  this  method  is  applied  to  an  algebraic  equation  which 

has  imaginary  roots,  this  fact  is  indicated  by  the  deviation  of 

signs  of  the  terms  in  the  power  equations  from  the  form  as  given 

in  (2)  of  Art.  17;  that  is,  these  signs  are  not  alternately  positive 

and  negative.  As  an  example  of  such  a  case  Encke  applies  the 

process  to  the  equation 

-  $x  +6  =o, 

and  deduces  for  the  equation  of  the  256th  powers  of  the  roots 

—  (190.991  29)l>2  —  (195.  21  132)^  —  (199.20704)  =O. 

Here  it  is  seen  that  the  coefficients  of  v4  and  v  have  signs 
opposite  to  those  of  the  normal  ,  form,  and  hence  two  pairs  of 

imaginary  roots  are  indicated.  The  real  roots  of  the  given  equa- 
tion are  then  determined  as  follows: 

log  ̂256  =  74.95884,  log  #!  =0.29281,    #!=—  1.9625, 

Iog^2256  =  i22.8i202-  74.95886,  log  #2  =0.1  8693,  #2=+I-5379> 

log  #6256  =  1  90.991  29  -i  79.  58882,  log  #6  =0.04454,  #6=+i.  1080, 

while  the  logarithms  of  the  moduli  of  the  imaginary  pairs  may 

be  obtained  by  taking  the  difference  of  the  logarithms  of  v5  and 
v3  and  that  of  v2  and  i*0,  and  dividing  each  by  512.  It  is  then 
not  difficult  to  show  that  the  two  quadratic  equations 

x2  -0.609213;  +  1.07668  =o,         x2  +  1.29263  +  1  .66642  =o, 

furnish  the  imaginary  roots  of  the  given  equation  of  the  seventh 

degree. 

Prob.  29.  Compute  the  roots  of  x5—  io#3+6#+i  =  o. 

Prob.  30.  How  many  real  roots  has  the  equation 

Can  they  be  advantageously  computed  by  the  above  method  ?    What 
is  the  best  method  for  finding  the  roots  to  four  decimal  places  ? 
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ART.  19.    INFINITE  EQUATIONS. 

An  infinite  series  containing  ascending  powers  of  oc  may 

be  equated  to  zero  and  be  called  an  infinite  equation.  For 

example,  consider  the  equation 

in  which  the  first  member  is  the  expansion  of  sin  x;  this  equa- 
tion has  the  roots  o,  TT,  271,  y:  ,  etc.,  since  these  are  the  values 

which  satisfy  the  equation  sin  #=o.  Again, 

X2      X4      X*      X8 

I-f2l+T!  +  6!  +  8!  +  '"=0 

is  the  same  as  cosh  x=o,  and  hence  its  roots  are  JTTZ,  f  ;rz,  etc. 

The  series  known  as  Bessel's  first  function  when  equated  to 
zero  furnishes  an  infinite  equation  whose  roots  are  of  interest 

in  the  theory  of  heat  *  ;  this  equation  is 

X2          X*  XQ  X8 

i  —  ;.+• 22-42     22-42-62   '  22-42-62-82 

and  it  has  an  infinite  number  of  real  positive  roots,  the  smallest 

of  which  is  2.4048.  The  roots  of  equations  of  this  kind  may 

be  computed  by  tentative  methods,  and  when  they  are  approxi- 

mately known  Newton's  rule  (Art.  4)  may  be  used  to  obtain 
more  precise  values. 

As  an  example  take  another  equation  which  also  occurs  in 

the  theory  of  heat,  namely, 

x2        x3        x*        x5 

+  (^?~(3!?  +  (4!?~(5!72  + 

It  is  plain  that  this  equation  can  have  no  negative  roots,  for  a 
negative  value  of  x  renders  all  the  terms  of  the  first  member 

*  Mathematical  Monograph,  No.  5,  pp.  23,  63. 
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positive.     Calling  the  first  member  f(x),  the  first  derivative  is 

x       x2          x3  x4 

By  trial  it  may  be  found  that  one  root  of  f(x)=o  lies  between 

1.44  and  1.45.  For  #  =  1.44,  f(x)  becomes  +0.002508  and/'(#) 
becomes  +0.4334.  Then  f(x)/f(x)  =  0.0058,  and  accordingly 
^  =  1.44+0.0058  =  1.4458  is  one  of  the  roots.  Another  root  of 

this  equation  is  #2  =  7.6178.  In  general  equations  of  this  kind 
have  an  infinite  number  of  roots. 

The  term  infinite  is  sometimes  applied  to  an  algebraic  equa- 
tion having  an  infinite  root,  and  cases  of  this  kind  are  often 

stated  as  curious  mathematical  problems.  For  instance,  the 

solution  of  the  equation 

when  made  by  squaring  each  member  twice,  gives  the  roots  x  =  f  0 

and  x=o.  But  x=o  does  not  satisfy  the  equation  as  written, 
although  it  applies  if  the  sign  of  the  second  radical  be  changed. 
The  equation,  however,  may  be  put  in  the  form 

and  it  is  now  seen  that  x=  °o  is  one  of  its  roots.  The  false  value 

x=o  arises  from  the  circumstance  that  the  squaring  operations 
give  results  which  may  be  also  derived  from  equations  having 

signs  before  the  radicals  different  from  those  written  in  the  given 

equation. 

Prob.  31.  Differentiate  the  above  function  of  Bessel  and  equate 
the  derivative  to  zero.  Compute  two  of  the  roots  of  this  infinite 

equation. 

Prob.  32.  Find  the  roots  of  2\/x—  2=\/x—  3+\/x—  i. 

Prob.  33.  Consult  a  paper  by  Stern  in  Crelle's  Journal  fur  Mathe- 
matik,  1841,  pp.  1-62,  and  explain  his  methods  of  solving  the  equations 

cos  x  cosh  #+ 1  =  o  and  (4-  3#2)  sin  x-  4*  cos  x=  o. 
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ART.  20.    NOTES  AND  PROBLEMS. 

The  algebraic,  solutions  of  the  quadratic,  cubic,  and  quartic 

equations  are  valid  for  imaginary  coefficients  also.  In  general 
the  roots  of  such  equations  are  all  imaginary.  The  method  of 

McClintock  (Art.  14)  and  that  of  Lambert  (Art.  16)  may  also* 
be  applied  to  the  expression  of  the  roots  of  these  equations  ia 
infinite  series. 

As  an  illustration  take  the  equation  x5  —  3^+4^=0.  By  any 
method  may  be  found  the  roots  x^=  —  i,  x2=  —0.52  +  1.936  and 

#3=  —0.52  —  1.936;  two  of  the  roots  here  form  a  pair  in  which  the 
imaginary  part  is  the  same  for  both,  the  real  and  imaginary  parts 

of  the  complex  quantities  having  changed  places.  There  are, 

however,  many  equations  with  imaginary  and  complex  coefficients 

in  which  pairs  of  roots  do  not  occur. 

The  most  general  case  of  an  algebraic  equation  is  when  the 

coefficients  a,  b,  c, . .  .  in  (i)  of  Art.  17  are  complex  quantities 

of  the  form  m+ni,  p+qi,  ....  Such  equations  rarely,  if  ever, 

occur  in  physical  investigations,  but  the  general  methods  ex- 

plained in  the  preceding  pages  will  usually  suffice  for  their  solution, 

approximate  values  of  the  roots  being  first  obtained  by  trial  if 

necessary.  In  general  the  roots  of  such  equations  are  all  com- 
plex, although  conditions  between  m  and  n,  p  and  q,  etc.,  may 

be  introduced  which  will  render  real  one  or  more  of  the  roots. 

Prob.  34.  Show  that  the  equation  x—ex=o  has  many  pairs  of 

imaginary  roots  and  that  the  smallest  roots  are  0.3181  ±1.3372$'. 
T^        3C^       \^       IC*' 

Prob.  35-  Solve  -+_+_++..  .—  x. 

Prob.  36.  Discuss  the  equation  x—  tan#=o  and  show  that  its 
smallest  root  is  4.49341. 

Prob.  37.  Find  the  value  of  x  in  the  equation  e**+i  =  o,  and  also- 
that  in  the  equation  e^x— i=o. 

Prob.  38.  Show  that  xz+(a+bi)x+c+di=o  has  one  real  and  one 
complex  root  when  the  coefficients  are  so  related  that  b2c+d2—abd=o^ 
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Prob.  39.  When  and  by  whom  was  the  sign  of  equality  first  used? 
What  reason  was  given  as  to  the  propriety  of  its  use  for  this  purpose  ? 

Prob.  40.  There  is  a  conical  glass,  6  inches  deep,  and  the  diameter 

at  the  top  is  5  inches.  When  it  is  one-fifth  full  of  water,  a  sphere 
4  inches  in  diameter  is  put  into  the  glass.  What  part  of  the  vertical 
diameter  of  the  sphere  is  immersed  in  the  water? 

Prob.  41.  When  seven  ordinates  are  to-be  erected  upon  an  abscissa 
line  of  unit  length  in  order  to  determine  the  area  between  that  line 

and  a  curve,  their  distances  apart  in  order  to  give  the  most  advan- 
tageous result  are,  according  to  Gauss,  determined  by  the  equation 

Compute  the  roots  to  five  decimal  places  and  compare  them  with 
those  given  by  Gauss. 



INDEX. 

Abel's  discussion  of  quintic,  22. 

Algebraic  equations,  i,  2. 
solutions,  15-24. 

Approximation  of  roots,  3,  12,  49. 
rule,  6. 

Bessel's  function,  43. 
Binomial  equations,  16,  26,  31. 

Cardan's  formula,  17,  18,  28,  29. 
Catenary,  14. 
Cube  roots  of  unity,  32. 

Cubic  equations,  3,  17,  28. 

Cylinder,  floating,  13. 

De  Moivre's  quintic,  22,  26. 
theorem,  33. 

Derivative  equation,  9. 

Elliptic  solution  of  quintic,  23. 

Fifth  roots  of  unity,  16,  32. 

Graphic  solutions,  3. 

Graphs  of  equations,  9. 

Graffe's  method,  14. 

Horner's  process,  2,  12. 
Howe  truss  strut  problem,  21. 

Hudde's  method,  8,  12. 

Imaginary  coefficients,  45. 
roots,  n,  18,  20,  30,  34,  42. 

Infinite  equations,  43. 

Lagrange's  resolvent,  15. 
Lambert's  method,  33. 
Literal  equations,  i,  10. 

Logarithmic  solutions,  39. 

Maclaurin's  formula,  34. 

McClintock's  quintic  discussion,  23. 
series  method,  29. 

Newton's  approximation  rule,  6. 
Numerical  equations,  i,  10. 

Powers  of  roots,  38,  40. 

Properties  of  equations,  n. 

Quadratic  equations,  16. 
Quartic  equations,  19,  20. 
Quintic  equations,  21,  36. 

Real  roots,  2,  3,  12,  40. 

Regula  falsi,  5. 

Removal  of  terms,  22. 
Resolvent,  17. 

Root,  i. 
Roots  in  series,  27,  29,  31,  34. 

of  unity,  16,  31. 

Separation  of  roots,  8. 
Sixth  roots  of  unity,  17,  32. 

Sphere,  floating,  13,  25. 

Sturm's  theorem,  8,  12. 
Symmetric  functions,  37. 

Transcendental  equations,  2,  4,  13. 

Trigonometric  solutions,  24,  26, 
Trinomial  equations,  29,  35. 

Tschirnhausen's  transformation,  22 

Vectors,  16,  33. 

Water-pipe  problem,  13. 













QA 
211 

M47 

1906 

Merriman,  Mansfield 
The  solution  of  equations 

4th  ed.,  enl. 

Ph>  licit  fc 

Applied  ScL 

PLEASE  DO  NOT  REMOVE 

CARDS  OR  SLIPS  FROM  THIS  POCKET 

UNIVERSITY  OF  TORONTO  LIBRARY 




